首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Didymocarpus pedicellata R. Br. (Gesneriaceae) is widely used in traditional Indian medicines against renal afflictions. In the present study, we have revealed ethanolic extract of aerial parts of D. pedicellata to possess significant antioxidant activity and protect against ferric nitrilotriacetate (Fe-NTA) mediated renal oxidative stress, nephrotoxicity and tumor promotion response. D. pedicellata extract was found to possess a high content of total polyphenolics, exhibit potent reducing power and significantly scavenge free radicals including several reactive oxygen species (ROS) and reactive nitrogen species (RNS). The extract also significantly and dose-dependently protected against Fe-NTA plus H(2)O(2)-mediated damage to lipids and DNA. Protective efficacy of the extract was also tested in vivo against Fe-NTA mediated nephrotoxicity and tumor promotion response. Administration of Fe-NTA (9 mg/kg body weight, i.p.) to Swiss albino mice depleted renal glutathione content and activities of antioxidant and phase II metabolizing enzymes with concomitant induction of oxidative damage. Fe-NTA also incited hyperproliferation response elevating ornithine decarboxylase activity and [(3)H]-thymidine incorporation into DNA. Elevation in serum creatinine (SCr) and blood urea nitrogen (BUN), and histopathological changes were also evident and suggested Fe-NTA to afflict damage to kidney. Pretreatment of mice with D. pedicellata extract (100-200 mg/kg body weight) for 7 days not only restored antioxidant armory near normal values but also significantly protected against renal oxidative stress and damage restoring normal renal architecture and levels of renal damage markers, viz., BUN and SCr. The results of the present study indicate D. pedicellata to possess potent antioxidant and free radical scavenging activities and preclude oxidative damage and hyperproliferation in renal tissues.  相似文献   

2.
Ferric nitrilotriacetate (Fe-NTA) is a known potent nephrotoxic agent. In this communication, we report the chemopreventive effect of soy isoflavones on renal oxidative stress, toxicity and cell proliferation response in Wistar rats. Fe-NTA (9 mg Fe/kg body weight, intraperitoneally) enhances gamma-glutamyl transpeptidase, renal lipid peroxidation, xanthine oxidase and hydrogen peroxide (H2O2) generation with reduction in renal glutathione content, antioxidant enzymes, viz., glutathione peroxidase, glutathione reductase, catalase, glucose-6-phosphate dehydrogenase and phase-II metabolising enzymes such as glutathione-S-transferase and quinone reductase. Fe-NTA treatment also induced tumor promotion markers, viz., ornithine decarboxylase (ODC) activity and thymidine [3H] incorporation into renal DNA. A sharp elevation in the levels of blood urea nitrogen and serum creatinine has also been observed. Treatment of rats orally with soy isoflavones (5 mg/kg body weight and 10 mg/kg body weight) resulted in significant decreases in gamma-glutamyl transpeptidase, lipid peroxidation, xanthine oxidase, H2O2 generation, blood urea nitrogen, serum creatinine, renal ODC activity and DNA synthesis (P < 0.001). Renal glutathione content (P < 0.01), glutathione metabolizing enzymes (P < 0.001) and antioxidant enzymes were also returned to normal levels (P < 0.001). Thus, our data suggest that soy isoflavones may be used as an effective chemopreventive agent against Fe-NTA-mediated renal oxidative stress, toxicity and cell proliferation response in Wistar rats.  相似文献   

3.
Weaning mice were fed a diet supplemented with beef tallow (BT) or BT plus docosahexaenoic acid (DHA) containing 100 mg alpha-tocopherol/kg (alpha-Toc100) or 500 mg alpha-tocopherol/kg (alpha-Toc500) for 4 wk to modify membrane fatty acid unsaturation, and then were administered ferric nitrilotriacetate (Fe-NTA). The mortality caused by Fe-NTA was higher in the group fed the DHA (alpha-Toc100) diet than in the BT diet groups but the DHA (alpha-Toc500) diet suppressed this increase. Serum and kidney alpha-tocopherol contents were slightly influenced by the dietary fatty acids but not significantly. These results indicate that the increased unsaturation of tissue lipids enhances oxidative damage induced by Fe-NTA in mice fed DHA (alpha-Toc100) but not when additional alpha-tocopherol is supplemented. The apparent discrepancy between the observed enhancement by dietary DHA of oxidative damage and the beneficial effects of dietary DHA on the so-called free radical diseases is discussed in terms of strong bolus oxidative stress and moderate chronic oxidative stress.  相似文献   

4.
Probucol is a clinically used cholesterol-lowering drug, with pronounced antioxidant properties. We have reported previously, that dietary supplementation of probucol enhances NAD(P)H:quinone reductase (Iqbal M, Okada S (2003) Pharmacol Toxicol 93:259–263) and inhibits Fe-NTA induced lipid peroxidation and DNA damage in vitro (Iqbal M, Sharma SD, Oakada (2004) Redox Rep 9:167–172). Further to this, in the present study, we evaluated the modulatory effect of probucol on iron nitrilotriacetae (Fe-NTA) dependent renal carcinogenesis, hyperproliferative response and oxidative stress. In Fe-NTA alone treated group, a 20% renal cell tumor incidence was recorded whereas, in N-diethylnitrosamine (DEN)-initiated and Fe-NTA promoted animals, the percentage tumor incidence was increased to 70% as compared with untreated controls. No tumor incidence was recorded in DEN-initiated, nonpromoted group. Diet supplemented with 1.0% probucol fed prior to, during and after Fe-NTA treatment in DEN-initiated animals afforded >65% protection in renal cell tumor incidence. Probucol fed diet pretreatment also resulted a significant and dose dependent inhibition of Fe-NTA induced renal ornithine decarboxylase (ODC) activity. In oxidative stress studies, Fe-NTA alone treatment enhanced lipid peroxidation, accompanied by a decrease in the level of GSH, activities of antioxidants and phase II metabolizing enzymes in kidney concomitant with histolopathological changes. These changes were significantly and dose-dependently alleviated by probucol fed diet. From this data, it can be concluded that probucol can modulates toxic and tumor promoting effects of Fe-NTA and can serve as a potent chemopreventive agent to suppress oxidant induced tissue injury and carcinogenesis, in addition to being a cholesterol lowering and anti-atherogenic drug.  相似文献   

5.
To determine the mechanism(s) underlying enhanced oxidative stress in kidneys of salt-sensitive hypertension, neonatal Wistar rats were given vehicle or capsaicin (CAP, 50 mg/kg sc) on the first and second days of life. After being weaned, male rats were assigned into four groups and treated for 2 wk with the following: vehicle + a normal sodium diet (NS, 0.4%, CON-NS), vehicle + a high-sodium diet (HS, 4%, CON-HS), CAP + NS (CAP-NS), and CAP + HS (CAP-HS). Systolic blood pressure was significantly increased in CAP-HS but not CAP-NS or CON-HS rats. Plasma and urinary 8-iso-prostaglandin F(2alpha) levels increased by approximately 40% in CON-HS and CAP-HS rats compared with their respective controls fed a NS diet (P < 0.05), and these parameters were higher in CAP-HS compared with CON-HS rats. Superoxide (O(2)(-)*) levels in the renal cortex and medulla increased by approximately 45% in CAP-HS compared with CON-HS, CON-NS, and CAP-NS rats (P < 0.05). Enhanced O(2)(-)* levels in the cortex and medulla in CAP-HS rats were prevented by preincubation of renal tissues with apocynin, a selective NAD(P)H oxidase inhibitor. Protein expression of NAD(P)H oxidase subunits, including p47(phox) and gp91(phox) in the renal cortex and medulla, was significantly increased in CAP-HS compared with CON-HS, CON-NS, and CAP-NS rats. In contrast, protein expression and activities of Cu/Zn SOD and Mn SOD were significantly increased in the renal medulla in both CAP-HS and CON-HS but in the cortex in CAP-HS rats only. Creatinine clearance decreased by approximately 45% in CAP-HS rats compared with CON-HS, CON-NS, and CAP-NS rats (P < 0.05). O(2)(-)* levels in the renal cortex of CAP-HS rats negatively correlated with creatinine clearance (r = -0.76; P < 0.001). Therefore, regardless of enhanced SOD activity to suppress oxidative stress, increased oxidative stress in the kidney of CAP-treated rats fed a HS diet is likely the result of increased expression and activities of NAD(P)H oxidase, which may contribute to decreased renal function and increased blood pressure in these rats. Our results suggest that sensory nerves may play a compensatory role in attenuating renal oxidative stress during HS intake.  相似文献   

6.
Metallothioneins (MTs) have demonstrated strong antioxidant properties, however the biological significance of their effect against hydroxyl radical toxicity remains unclear. We investigated the oxidation and turnover of renal MTs in MT-preinduced mice after an injection of ferric nitrilotriacetate (Fe-NTA). Incubation of MTs with Fe-NTA and H(2)O(2) resulted in a loss of their metal-binding properties and a decrease in their thiol concentration independent of binding potential and isoforms. Moreover, in vitro reduction of renal oxidized MT with dithiothreitol (DTT) reversed these oxidative changes. An injection of Fe-NTA oxidized renal preinduced MT in Zn- and Cd-pretreated mice. The metal-binding properties of renal MTs were lost when the Fe-NTA dose was increased. However, analysis of renal MTs using an immunoassay showed that its protein concentration did not decrease 4h after the injection with various Fe-NTA doses. Furthermore, in vitro reduction of renal oxidized MTs with DTT resulted in an increase in the concentration of metals in the MT fraction. These data indicate that radicals produced by Fe-NTA may oxidize MTs in vitro and in vivo. When we investigated the turnover of oxidized MTs in Fe-NTA-treated mice, effects on the concentration of renal (35)S-labeled MTs were opposite to those observed in Cd-pretreated mice. The concentration of preinduced (35)S-labeled MTs in the kidneys of Cd-pretreated mice showed a significant decrease (p<0.05), whereas that of newly synthesized (35)S-labeled MTs showed a considerable increase. These data suggest that degradation of oxidized MTs may be faster than intact MTs. Therefore, the radical scavenging system of MTs may include their induction and degradation during oxidative stress conditions.  相似文献   

7.
Formation of excess free radical causes cellular oxidative stress, which has been shown to be associated with a variety of pathologic conditions. While electron spin resonance (ESR) spectroscopy has been the only method to demonstrate the presence of free radicals, its application to tissue samples has been challenging. We report here the successful ESR detection in thin-sliced fresh tissues or frozen sections in a rat model. Ferric nitrilotriacetate (Fe-NTA) induces oxidative renal tubular damage that ultimately leads to high incidence of renal carcinoma in rodents. Twenty minutes after administration of 5 mg iron/kg Fe-NTA to rats, a thin-slice of the kidney was mounted on a tissue-type cell and analyzed by ESR spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). An ESR signal from alkylperoxyl radical adduct was obtained, and the signal was inversely proportional to renal alpha-tocopherol content which was modulated through diet. Furthermore, we undertook ex vivo study using frozen sections. Fe-NTA (1 mM) was added to a rat kidney frozen section for 10 min. After washing the specimen was mounted on a tissue-type cell and analyzed with ESR spin trapping using DMPO. Alkylperoxyl radical signal was dependent on thickness, incubation time and renal tissue levels of alpha-tocopherol, and was reduced by preincubation with catalase or dimethyl sulfoxide but not with alpha-tocopherol outside tissue. This versatile method facilitates identification of free radicals in pathologic conditions, and may be useful for selection of antioxidants.  相似文献   

8.
Oxidative stress is implicated in the pathophysiology of a number of chronic diseases including atherosclerosis, diabetes, cataracts and accelerated aging. The aim of this study was to elucidate the protective role of vitamin E supplementation when oxidative stress is induced by CCl4 administration, using the rat as a model. Rats were fed diets for four weeks either with or without dl-alpha-tocopherol acetate supplementation. Half of the rats (n = 9) from each of the diet groups were then challenged with CCl4 at the completion of the four week diet period. Plasma levels of 8-iso-PGF(2alpha), antioxidant micronutrients and antioxidant enzyme activities were measured to examine changes in oxidative stress subsequent to the supplementation of dl-alpha-tocopherol in the diet. Plasma alpha-tocopherol (vitamin E) concentrations were higher for the groups supplemented with dl-alpha-tocopherol acetate, however the supplemented diet group that was subsequently challenged with CCl4 had significantly lower (p <0.001) plasma alpha-tocopherol concentration than the dl-alpha-tocopherol acetate diet group that was not challenged with CCl4. Total plasma 8-iso-PGF(2alpha) concentration was elevated in diet groups challenged with CCl4, however, the concentration was significantly lower (p <0.001) when the diet was supplemented with dl-alpha-tocopherol acetate. The antioxidant enzymes were not influenced by either dietary alpha-tocopherol manipulation or by the inducement of oxidative stress with CCl4. Plasma concentrations of trans-retinol (vitamin A) were reduced by CCl4 administration in both the dl-alpha-tocopherol acetate supplemented and unsupplemented diet groups. The results of this study indicate that dl-alpha-tocopherol acetate supplementation was protective of lipid peroxidation when oxidative stress is induced by a pro-oxidant challenge such as CCl4.  相似文献   

9.
Intraperitoneal injection of the iron chelate ferric-nitrilotriacetate (Fe-NTA) induces in rodents renal and hepatic suffering, associated with oxidative damage. We investigated the oxidation pattern in plasma of treated rats in relation to liver and kidney, monitoring the variation of the lipid components more susceptible to oxidation, unsaturated fatty acids (UFA) and alpha-tocopherol, as biomarkers of the oxidative damage. A sublethal dose of Fe-NTA induced a strong and extremely significant decrease of UFA levels at 1 h after injection in the plasma compartment and at 3 h in the kidney, with reductions up to 40-50% of the control values, together with an increase of conjugated dienes fatty acids hydroperoxides and a consumption of alpha-tocopherol. The same modifications were observed in the liver, but to a lesser extent. Histological observation proved that biochemical changes in the lipid fraction were a direct consequence of an ongoing membrane lipid peroxidation process. Our data show that oxidative damage to the lipid fraction is initially evident in the plasma compartment, where Fe-NTA toxicity is assumed to be caused by the elevation of serum free iron concentration, and proceeds with different speed and severity in the kidney and liver.  相似文献   

10.
Dahl salt-sensitive (SS) and consomic, salt-resistant SS-13(BN) rats possess substantial differences in blood pressure salt-sensitivity even with highly similar genetic backgrounds. The present study examined whether increased oxidative stress, particularly H2O2, in the renal medulla of SS rats contributes to these differences. Blood pressure was measured using femoral arterial catheters in three groups of rats: 1) 12-wk-old SS and consomic SS-13(BN) rats fed a 0.4% NaCl diet, 2) SS rats fed a 4% NaCl diet and chronically infused with saline or catalase (6.9 microg x kg(-1) x min(-1)) directly into the renal medulla, and 3) SS-13(BN) fed high salt (4%) and infused with saline or H2O2 (347 nmol x kg(-1) x min(-1)) into the renal medullary interstitium. After chronic blood pressure measurements, renal medullary interstitial H2O2 concentration ([H2O2]) was collected by microdialysis and analyzed with Amplex red. Blood pressure and [H2O2] were both significantly higher in SS (126 +/- 3 mmHg and 145 +/- 17 nM, respectively) vs. SS-13(BN) rats (116 +/- 2 mmHg and 56 +/- 14 nM) fed a 0.4% diet. Renal interstitial catalase infusion significantly decreased [H2O2] (96 +/- 41 vs. 297 +/- 52 nM) and attenuated the hypertension (146 +/- 2 mmHg catalase vs. 163 +/- 4 mmHg saline) in SS rats after 5 days of high salt (4%). H2O2 infused into the renal medulla of consomic SS-13(BN) fed high salt (4%) for 7 days accentuated the salt sensitivity (145 +/- 2 mmHg H2O2 vs. 134 +/- 1 mmHg saline). [H2O2] was also increased in the treated group (83 +/- 1 nM H2O2 vs. 44 +/- 9 nM saline). These data show that medullary production of H2O2 may contribute to salt-induced hypertension in SS rats and that chromosome 13 of the Brown Norway contains gene(s) that protect against renal medullary oxidant stress.  相似文献   

11.
12.
We investigated whether habitual exercise (HE) modulates levels of oxidative DNA damage and responsiveness to oxidative stress induced by renal carcinogen Fe-nitrilotriacetic acid (Fe-NTA). During a ten week protocol, two groups of rats either remained sedentary or underwent swimming for 15–60?min per day, 5 days per week, with or without a weight equivalent to 5% of their body weight. Then we injected Fe-NTA and sacrificed the rats 1?h after the injection. We determined the activity of superoxide dismutase (SOD) in diaphragm and kidney, evaluated levels of 8-hydroxydeoxyguanosine (8OHdG), catalase, and glutathione peroxidase, and assayed OGG1 protein levels in kidney. SOD activity in the diaphragm and kidney was increased in HE rats. By itself, HE had no effect on the level of 8OHdG, but it did significantly suppress induction of 8OHdG by Fe-NTA, and the amount of suppression correlated with intensity of exercise. These results suggest that HE induces resistance to oxidative stress and, at least at the initiation stage, inhibits carcinogenesis.  相似文献   

13.
Lipid peroxidation in blood of vitamin B6 deficient rats was significantly increased when compared to pair-fed controls. The observed increased lipid peroxidation in vitamin B6 deficiency was correlated with high levels of lipids, metal ions and low levels of antioxidants, alpha-tocopherol, ascorbic acid and reduced GSH. Supplementation of methionine or vitamin E along with the vitamin B6 deficient diet restored the levels of antioxidants to near normal and also protected against oxidative stress. However plasma TBARS level as well as total lipids were still elevated in M-B6 diet fed rats and normalized in E-B6-d rats.  相似文献   

14.
Khan N  Sultana S 《Life sciences》2005,77(11):1194-1210
Ferric nitrilotriacetate (Fe-NTA) is a well-known renal carcinogen. In this communication, we show the chemopreventive effect of Ficus racemosa extract against Fe-NTA-induced renal oxidative stress, hyperproliferative response and renal carcinogenesis in rats. Fe-NTA (9 mg Fe/kg body weight, intraperitoneally) enhances renal lipid peroxidation, xanthine oxidase, gamma-glutamyl transpeptidase and hydrogen peroxide (H(2)O(2)) generation with reduction in renal glutathione content, antioxidant enzymes, viz., glutathione peroxidase, glutathione reductase, catalase, glucose-6-phosphate dehydrogenase and phase-II metabolising enzymes such as glutathione-S-transferase and quinone reductase. It also enhances blood urea nitrogen, serum creatinine, ornithine decarboxylase (ODC) activity and thymidine [(3)H] incorporation into renal DNA. It also enhances DEN (N-diethylnitrosamine) initiated renal carcinogenesis by increasing the percentage incidence of tumors. Treatment of rats orally with F. racemosa extract (200 and 400 mg/kg body weight) resulted in significant decrease in gamma-glutamyl transpeptidase, lipid peroxidation, xanthine oxidase, H(2)O(2) generation, blood urea nitrogen, serum creatinine, renal ODC activity, DNA synthesis (P<0.001) and incidence of tumors. Renal glutathione content (P<0.01), glutathione metabolizing enzymes (P<0.001) and antioxidant enzymes were also recovered to significant level (P<0.001). Thus, our data suggests that F. racemosa extract is a potent chemopreventive agent and suppresses Fe-NTA-induced renal carcinogenesis and oxidative damage response in Wistar rats.  相似文献   

15.
Ferric nitrilotriacetate (Fe-NTA) is a potent renal and hepatic tumor promoter, which acts through a mechanism involving oxidative stress. Fe-NTA when injected intraperitoneally into rats induces hepatic ornithine decarboxylase activity as well as hepatic DNA synthesis. Vitamin E is a well-known, lipid-soluble and chain-breaking antioxidant which protects cell membranes from peroxidative damage. In this study, we investigated the protective effect of vitamin E, a major fat-soluble antioxidant, against Fe-NTA-mediated hepatic oxidative stress, toxicity and hyperproliferation in Wistar rats. Animals were treated with two different doses of vitamin E for 1 week prior to Fe-NTA treatment. Vitamin E at a higher dose of 2.0 mg/animal/day showed significant reduction in Fe-NTA-induced hepatic ornithine decarboxylase activity, DNA synthesis, microsomal lipid peroxidation and hydrogen peroxide generation. Fe-NTA treatment alone caused depletion of glutathione, glutathione metabolizing and antioxidant enzymes in rat liver, whereas pretreatment of animals with vitamin E reversed these changes in a dose-dependent manner. Taken together, our results suggest that vitamin E may afford substantial protection against the damage caused by Fe-NTA exposure and can serve as a potent preventive agent to suppress oxidant-induced tissue injury.  相似文献   

16.
We investigated whether habitual exercise (HE) modulates levels of oxidative DNA damage and responsiveness to oxidative stress induced by renal carcinogen Fe-nitrilotriacetic acid (Fe-NTA). During a ten week protocol, two groups of rats either remained sedentary or underwent swimming for 15-60 min per day, 5 days per week, with or without a weight equivalent to 5% of their body weight. Then we injected Fe-NTA and sacrificed the rats 1 h after the injection. We determined the activity of superoxide dismutase (SOD) in diaphragm and kidney, evaluated levels of 8-hydroxydeoxyguanosine (8OHdG), catalase, and glutathione peroxidase, and assayed OGG1 protein levels in kidney. SOD activity in the diaphragm and kidney was increased in HE rats. By itself, HE had no effect on the level of 8OHdG, but it did significantly suppress induction of 8OHdG by Fe-NTA, and the amount of suppression correlated with intensity of exercise. These results suggest that HE induces resistance to oxidative stress and, at least at the initiation stage, inhibits carcinogenesis.  相似文献   

17.
We have shown recently that oxidative stress by chronic hyperglycemia damages the pancreatic beta-cells of GK rats, a model of non-obese type 2 diabetes, which may worsen diabetic condition and suggested the administration of antioxidants as a supportive therapy. To determine if natural antioxidant alpha-tocopherol (vitamin E) has beneficial effects on the glycemic control of type 2 diabetes, GK rats were fed a diet containing 0, 20 or 500 mg/kg diet alpha-tocopherol. Intraperitoneal glucose tolerance test revealed a significant increment of insulin secretion at 30 min and a significant decrement of blood glucose levels at 30 and 120 min after glucose loading in the GK rats fed with high alpha-tocopherol diet. The levels of glycated hemoglobin A1c, an indicator of glycemic control, were also reduced. Vitamin E supplementation clearly ameliorated diabetic control of GK rats, suggesting the importance of not only dietary supplementation of natural antioxidants but also other antioxidative intervention as a supportive therapy of type 2 diabetic patients.  相似文献   

18.
Food restriction is the most effective modulator of oxidative stress and it is believed that a reduction in caloric intake per se is responsible for the reduced generation of reactive oxygen species (ROS) by mitochondria. Hydrogen peroxide (H(2)O(2)) generation and oxygen consumption (O(2)) by skeletal muscle mitochondria were determined in a peculiar strain of rats (Lou/C) characterized by a self-low-caloric intake and a dietary preference for fat. These rats were fed either with a standard high-carbohydrate (HC) or a high-fat (HF) diet and the results were compared to those measured in Wistar rats fed a HC diet. H(2)O(2) production was significantly reduced in Lou/C rats fed a HC diet; this effect was not due to a lower O(2) consumption but rather to a decrease in rotenone-sensitive NADH-ubiquinone oxidoreductase activity and increased expression of uncoupling proteins 2 and 3. The reduced H(2)O(2) generation displayed by Lou/C rats was accompanied by a significant inhibition of permeability transition pore (PTP) opening. H(2)O(2) production was restored and PTP inhibition was relieved when Lou/C rats were allowed to eat a HF diet, suggesting that the reduced oxidative stress provided by low caloric intake is lost when fat proportion in the diet is increased.  相似文献   

19.
Nitric oxide (NO) is a short lived, readily diffusible intracellular messenger molecule associated with multiple organ-specific regulatory functions. In this communication, we elucidate the effect of exogenous NO administration, using nitroglycerin (GTN), on ferric nitrilotriacetate (Fe-NTA)-induced renal oxidative stress, hyperproliferative response and necrosis in ddY mice. Fe-NTA is a known complete renal carcinogen as well as renal and hepatic tumor promoter, which act by generating oxidative stress in the tissues. GTN treatment to ddY mice prior to Fe-NTA administration resulted in a highly significant protection against Fe-NTA-induced renal oxidative stress, hyperproliferative response and necrosis. In oxidative stress protection studies, the decrease in the level of renal glutathione and antioxidant enzyme activities induced by Fe-NTA were significantly reversed by GTN pretreatment in a dose-dependent manner (12-46% recovery, P<0.05-0.001). GTN pretreatment also resulted in a dose-dependent inhibition (24-39% inhibition, P<0.05-0.001) of Fe-NTA-induced lipid peroxidation as measured by TBARS formation in renal tissues. Similarly, in hyperproliferation protection studies, GTN pretreatment showed a strong inhibition of Fe-NTA-induced renal ornithine decarboxylase (ODC) activity (51-57% inhibition, P<0.001) and [3H]thymidine incorporation (43-58% inhibition, P<0.001) into renal DNA. GTN pretreatment almost completely prevented kidney biomolecules from oxidative damage and protected the tissue against the observed histopathological alterations. From this data, it can be concluded that exogenously produced NO from GTN might scavenge reactive oxygen species (ROS) and decreases toxic metabolites of Fe-NTA and thereby inhibiting renal oxidative stress. In addition, exogenously produced NO can also inhibit Fe-NTA-induced hyperproliferative response by down-regulating the activity of ODC and the rate of [3H]thymidine incorporation into renal DNA and could be suggested as another possible clinical application for this NO-donor (GTN, traditionally used as a vasodilator) in oncological medicine.  相似文献   

20.
To assess the effect of chronic ethanol ingestion in the content of the reduced forms of coenzymes Q9 (ubiquinol-9) and Q10 (ubiquinol-10) as a factor contributing to oxidative stress in liver and brain, male Wistar rats were fed ad libitum a basal diet containing either 10 or 2.5 mg alpha-tocopherol/100 g diet (controls), or the same basal diet plus a 32% ethanol-25% sucrose solution. After three months treatment, ethanol chronically-treated rats showed identical growth rates to the isocalorically pair-fed controls, irrespectively of alpha-tocopherol dietary level. Lowering dietary alpha-tocopherol led to a decreased content of this vitamin in the liver and brain of control rats, without changes in that of ubiquinol-9, and increased levels of hepatic ubiquinol-10 and total glutathione (tGSH), accompanied by a decrease in brain tGSH. At the two levels of dietary alpha-tocopherol, ethanol treatment significantly decreased the content of hepatic alpha-tocopherol and ubiquinols 9 and 10. This effect was significantly greater at 10 mg alpha-tocopherol/100 g diet than at 2.5, whereas those of tGSH were significantly elevated by 43% and 9%, respectively. Chronic ethanol intake did not alter the content of brain alpha-tocopherol and tGSH, whereas those of ubiquinol-9 were significantly lowered by 20% and 14% in rats subjected to 10 and 2.5 mg alpha-tocopherol/100 g diet, respectively. It is concluded that chronic ethanol intake at two levels of dietary alpha-tocopherol induces a depletion of hepatic alpha-tocopherol and ubiquinols 9 and 10, thus contributing to ethanol-induced oxidative stress in the liver tissue. This effect of ethanol is dependent upon the dietary level of alpha-tocopherol, involves a compensatory enhancement in hepatic tGSH availability, and is not observed in the brain tissue, probably due to its limited capacity for ethanol biotransformation and glutathione synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号