首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The beta-catenin pathway plays a critical role in the pathogenesis of certain types of cancers. To gain insight into mechanisms by which altered receptor tyrosine kinases regulate cytoplasmic beta-catenin accumulation, the effect of an oncogenic receptor originated from Nantes (RON) variant on beta-catenin accumulation and the role of beta-catenin in RON-mediated tumorigenic activities were studied. In NIH3T3 cells harboring oncogenic variant RONDelta160, increased beta-catenin accumulation with tyrosine phosphorylation and nuclear translocation was observed. Overexpression of RONDelta160 also resulted in increased expression of beta-catenin target genes c-myc and cyclin D1. By analyzing cellular proteins that regulate beta-catenin stabilities, it was found that RONDelta160 activates the protein disheveled (DVL) and inactivates glycogen synthase kinase-3beta by Ser-9 residue phosphorylation. These effects were channeled by RONDelta160-activated PI 3-kinase-AKT pathways that are sensitive to specific inhibitors, such as wortmannin, but not to other chemical inhibitors. Silencing RONDelta160 expression by specific small interfering RNA blocked not only beta-catenin expression but also c-myc and cyclin D1 expression, suggesting that RON expression is required for the activation of the beta-catenin signaling pathway. Moreover, it was found that knockdown of the beta-catenin gene expression by small interfering RNA techniques reduces significantly the RONDelta160-mediated NIH3T3 cell proliferation, focus-forming activities and anchorage-independent growth. Thus, the oncogenic RON variant regulates beta-catenin stabilities through activation of DVL and inactivation of glycogen synthase kinase-3beta. The activated beta-catenin cascade is one of the pathways involved in tumorigenic activities mediated by the oncogenic RON variant.  相似文献   

2.
3.
Cooperation between integrins and growth factor receptors plays an important role in the regulation of cell growth, differentiation, and survival. The function of growth factor receptor tyrosine kinases (RTKs) can be regulated by cell adhesion to extracellular matrix (ECM) even in the absence of ligand. We investigated the pathway involved in integrin-mediated RTK activation, using RON, the receptor for macrophage-stimulating protein. Adhesion of RON-expressing epithelial cells to ECM caused phosphorylation of RON, which depended on the kinase activity of both RON itself and c-Src. This conclusion is based on these observations: 1) ECM-induced RON phosphorylation was inhibited in cells expressing kinase-inactive c-Src; 2) active c-Src could phosphorylate immunoprecipitated RON from ECM-stimulated cells but not from unstimulated cells; and 3) ECM did not cause RON phosphorylation in cells expressing kinase-dead RON, nor could active c-Src phosphorylate RON immunoprecipitated from these cells. The data fit a pathway in which ECM-induced integrin aggregation causes both c-Src activation and RON oligomerization followed by RON kinase-dependent autophosphorylation; this results in RON becoming a target for activated c-Src, which phosphorylates additional tyrosines on RON. Integrin-induced epidermal growth factor receptor (EGFR) phosphorylation also depended on both EGFR and c-Src kinase activities. This sequence appears to be a general pathway for integrin-dependent growth factor RTK activation.  相似文献   

4.
5.
6.
MET, RON, and SEA are members of a gene family encoding tyrosine kinase receptors with distinctive properties. Besides mediating growth, they control cell dissociation, motility ("scattering"), and formation of branching tubules. While there are transforming counterparts of MET and SEA, no oncogenic forms of RON have yet been identified. A chimeric Tpr-Ron, mimicking the oncogenic form of Met (Tpr-Met) was generated to investigate its transforming potential. For comparison, a chimeric Tpr-Sea was also constructed. Fusion with Tpr induced constitutive activation of the Ron and Sea kinases. While Tpr-Sea was more efficient than Tpr-Met in transformation, Tpr-Ron did not transform NIH 3T3 cells. The differences in the transforming abilities of Tpr-Met and Tpr-Ron were linked to the functional features of the respective tyrosine kinases using the approach of swapping subdomains. Kinetic analysis showed that the catalytic efficiency of Tpr-Ron is five times lower than that of Tpr-Met. Moreover, constitutive activation of Ron resulted in activation of the MAP kinase signaling cascade approximately three times lower than that attained by Tpr-Met. However, constitutive activation of Ron did induce a mitogenic-invasive response, causing cell dissociation, motility, and invasion of extracellular matrices. Tpr-Ron also induced formation of long, unbranched tubules in tridimensional collagen gels. These data show that RON has the potential to elicit a motile-invasive rather than a transformed phenotype.  相似文献   

7.
RON is a transmembrane receptor tyrosine kinase that mediates biological activities of Macrophage Stimulating Protein (MSP). MSP is a multifunctional factor regulating cell adhesion, motility, growth and survival. MSP binding to RON causes receptor tyrosine phosphorylation leading to up-regulation of RON catalytic activity and subsequent activation of downstream signaling molecules. Recent studies show that RON is spatially and functionally associated with other transmembrane molecules including adhesion receptors integrins and cadherins, and cytokine and growth factor receptors IL-3 betac, EPOR and MET. For example, MSP-induced cell shape change is mediated via RON-activated IL-3 betac receptor. Activation of integrins causes MSP-independent RON phosphorylation, and the integrin/RON collaboration regulates cell survival. Thus, RON can be activated without MSP by ligand stimulation of RON-associated receptors, and MSP-activated RON can cause ligand-independent activation of RON-associated receptors. As a result of the receptor cross-activation RON-specific pathways become a part of a signal transduction network of other receptors, and conversely signaling pathways activated by other receptors can be used by RON. This receptor collaboration extends the spectrum of cellular responses generated by MSP and by putative ligands of RON-associated receptors. However signaling pathways involved in the receptor cross-talk and underlying activation mechanisms remain to be investigated. The purpose of this review is to summarize data and to discuss a role of cross-talk between RON and other transmembrane receptors.  相似文献   

8.
Crystal structure of a beta-catenin/Tcf complex   总被引:17,自引:0,他引:17  
Graham TA  Weaver C  Mao F  Kimelman D  Xu W 《Cell》2000,103(6):885-896
The Wnt signaling pathway plays critical roles in embryonic development and tumorigenesis. Stimulation of the Wnt pathway results in the accumulation of a nuclear beta-catenin/Tcf complex, activating Wnt target genes. A crystal structure of beta-catenin bound to the beta-catenin binding domain of Tcf3 (Tcf3-CBD) has been determined. The Tcf3-CBD forms an elongated structure with three binding modules that runs antiparallel to beta-catenin along the positively charged groove formed by the armadillo repeats. Structure-based mutagenesis defines three sites in beta-catenin that are critical for binding the Tcf3-CBD and are differentially involved in binding APC, cadherin, and Axin. The structural and mutagenesis data reveal a potential target for molecular drug design studies.  相似文献   

9.
10.
11.
12.
13.
The deregulation of tyrosine kinase receptors (RTKs) is frequent in human tumors and is often associated with the acquisition of an aggressive phenotype. The Met oncogene, encoding the RTK for hepatocyte growth factor (HGF), controls genetic programs leading to cell growth, invasion and protection from apoptosis. The deregulated activation of Met is crucial not only for the acquisition of tumorigenic properties but also to achieve an invasive phenotype. The involvement of MET in human tumors has been definitively established and can be achieved through several mechanisms, including MET interaction with unrelated membrane receptors, such as integrins, plexins, CD44, FAS and other RTKs. Interfering with Met activation is thus a new and challenging approach to hamper tumorigenic and metastatic processes.  相似文献   

14.
15.
16.
17.
beta-catenin/Tcf and NF-kappaB signaling pathways play an important role in biological functions and crosstalk between these pathways has been reported. We found that the modulation of NF-kappaB activity showed a direct correlation with beta-catein/Tcf pathway in human adipose tissue (hASCs) and bone marrow (hBMSCs)-derived mesenchymal stem cells. Expression of lzts2, which inhibits nuclear translocation of beta-catenin and its transactivation activity, was regulated by NF-kappaB activity. Downregulation of lzts2 by RNA interference increased the nuclear translocation of beta-catenin and NF-kappaB activity in hASCs. NF-kappaB activation by the downregulation of lzts2 was accompanied by the increase of beta-TrCP1 expression and the decrease of IkappaB level. Downregulation of lzts2 increased the proliferation of hASCs and hBMSC, and blocked the NF-kappaB inhibitor-induced inhibitory effect on their proliferation and Tcf promoter activation. These findings provide the first evidence that the reciprocal crosstalk between beta-catenin/Tcf pathway and NF-kappaB signaling in hMSCs is mediated through the regulation of lzts2 expression.  相似文献   

18.
19.
Although the signal transduction mechanisms of the receptor tyrosine kinase MET are well defined, less is known about its close relative RON. MET initiates intracellular signaling by autophosphorylation on specific cytoplasmic tyrosines that form docking sites for the adaptor proteins Grb2 and Gab1. Grb2 binds directly and is essential for all of the biological activities of MET. Gab1 docks either directly or indirectly via Grb2 and controls only a subset of MET functions. Because MET and RON possess similar adaptor binding sites, it was anticipated that their adaptor interactions would be conserved. Here we show that in contrast to MET, RON relies primarily on Gab1 for signal transmission. Surprisingly, disruption of the Grb2 docking site of RON or Grb2 depletion augments activity, whereas enhancement of Grb2 binding attenuates Gab1 recruitment and signaling. Hence, RON and MET differ in their adaptor interactions; furthermore, Grb2 performs a novel antagonistic role in the context of RON signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号