共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurons are terminally post-mitotic cells that utilize their microrubule arrays for the growth and maintenance of axons and dendrites rather than for the formation of mitotic spindles. Recent studies from our laboratory suggest that the mechanisms that organize the axonal and dendritic microtubule arrays may be variations on the same mechanisms that organize the mitotic spindle in dividing cells. In particular, we have identified molecular motor proteins that serve analogous functions in the establishment of these seemingly very different microtubule arrays. In the present study, we have sought to determine whether a non-motor protein termed NuMA is also a component of both systems. NuMA is a ~230 kDa structural protein that is present exclusively in the nucleus during interphase. During mitosis, NuMA forms aggregates that interact with microtubules and certain motor proteins. As a result of these interactions, NuMA is thought to draw together the minus-ends of microtubules, thereby helping to organize them into a bipolar spindle. In contrast to mitotic cells, post-mitotic neurons display NuMA both in the nucleus and in the cytoplasm. NuMA appears as multiple small particles within the somatodendritic compartment of the neuron, where its levels increase during early dendritic differentation. A partial but not complete colocalization with minus-ends of microtubules is suggested by the distribution of the particles during development and during drug treatments that alter the microtubule array. These observations provide an initial set of clues regarding a potentially important function of NuMA in the organization of microtubules within the somatodendritic compartment of the neuron. 相似文献
2.
《Cell cycle (Georgetown, Tex.)》2013,12(12):2403-2411
Katanin is a microtubule severing enzyme with demonstrated roles in a variety of cellular activities including mitosis. Here we identify the closely related, but relatively uncharacterized human protein, Katanin-like 1 (KL1), as a novel mitotic regulator. Over expression of KL1 in tissue culture cells results in the complete disassembly of cellular microtubules strongly suggesting that it is an active microtubule severing protein. During mitosis, the localization of KL1 is restricted to spindle poles and is notably absent from centrosomes. This is in clear contrast to conventional Katanin whose localization extends from centrosomes onto poles. Consistent with its localization, siRNA depletion of KL1 from U2OS cells results in a specific and significant reduction in the density of microtubules at spindle poles and significantly increases spindle length. Depletion of KL1 also alters the distribution of gamma-tubulin at centrosomes/spindle poles. Despite its impact on spindle morphology, we could find no evidence that KL1 influences anaphase chromosome motility. Based on our findings, we propose that KL1-mediated microtubule severing is utilized to generate microtubule seeds within the poles and that loss of this activity alters the normal balance of motor-generated forces that determine spindle length. 相似文献
3.
Axin is known to have an important role in the degradation of β‐catenin in the Wnt pathway. Here, we reveal a new function of Axin at the centrosome. Axin was localized to the centrosome in various cell lines and formed a complex with γ‐tubulin. Knockdown of Axin reduced the localization of γ‐tubulin and γ‐tubulin complex protein 2—components of the γ‐tubulin ring complex—to the centrosome and the centrosomal microtubule nucleation activity after treatment with nocodazole. These phenotypes could not be rescued by the reduction in the levels of β‐catenin. Although the expression of Axin rescued these phenotypes in Axin‐knockdown cells, overexpression of Axin2, which is highly homologous to Axin, could not. Axin2 was also localized to the centrosome, but it did not form a complex with γ‐tubulin. These results suggest that Axin, but not Axin2, is involved in microtubule nucleation by forming a complex with γ‐tubulin at the centrosome. 相似文献
4.
The mitotic apparatus. Identification of the major soluble component of the glycol-isolated mitotic apparatus 下载免费PDF全文
Kane RE 《The Journal of cell biology》1967,33(2):243-253
Particles having ribosome-like characteristics are described in proplastids of dark-grown wheat seedlings as the membranes of the prolamellar body become transformed, under the influence of light, into grana and fret membranes. Three arrangements of particles were noted: (1) a random distribution of discrete particles; (2) particles occurring in helices or parallel rows; and (3) particles arranged in rough squares with six to eight particles per side. It is possible that the third type of particle is a cross-section of long parallel rods. A particle ranges in size from 170 to 220 A, those of group three being somewhat smaller. The particulates vary from diamond shaped with smooth surfaces to circular with irregular surfaces. These particles have the characteristics of ribosomes as visualized by the electron microscope: they are preserved by glutaraldehyde and osmium tetroxide, they stain intensely with uranyl acetate, and are digested by RNase. Their properties do not coincide with those of viruses, smog-induced particles, stromacenter particles, or phytoferritin. They are frequently adjacent to membranes but never attached to membranes. The involvement of ribosomes in membrane development is discussed. 相似文献
5.
PF16 encodes a protein with armadillo repeats and localizes to a single microtubule of the central apparatus in Chlamydomonas flagella 总被引:6,自引:0,他引:6 下载免费PDF全文
《The Journal of cell biology》1996,132(3):359-370
Several studies have indicated that the central pair of microtubules and their associated structures play a significant role in regulating flagellar motility. To begin a molecular analysis of these components we have generated central apparatus-defective mutants in Chlamydomonas reinhardtii using insertional mutagenesis. One paralyzed mutant recovered in our screen, D2, is an allele of a previously identified mutant, pf16. Mutant cells have paralyzed flagella, and the C1 microtubule of the central apparatus is missing in isolated axonemes. We have cloned the wild-type PF16 gene and confirmed its identity by rescuing pf16 mutants upon transformation. The rescued pf16 cells were wild-type in motility and in axonemal ultrastructure. A full-length cDNA clone for PF16 was obtained and sequenced. Database searches using the predicted 566 amino acid sequence of PF16 indicate that the protein contains eight contiguous armadillo repeats. A number of proteins with diverse cellular functions also contain armadillo repeats including pendulin, Rch1, importin, SRP-1, and armadillo. An antibody was raised against a fusion protein expressed from the cloned cDNA. Immunofluorescence labeling of wild-type flagella indicates that the PF16 protein is localized along the length of the flagella while immunogold labeling further localizes the PF16 protein to a single microtubule of the central pair. Based on the localization results and the presence of the armadillo repeats in this protein, we suggest that the PF16 gene product is involved in protein-protein interactions important for C1 central microtubule stability and flagellar motility. 相似文献
6.
Douglas N Robinson Stephani S Ocon Ronald S Rock James A Spudich 《The Journal of biological chemistry》2002,277(11):9088-9095
Dynacortin is a novel protein that was discovered in a genetic suppressor screen of a Dictyostelium discoideum cytokinesis-deficient mutant cell line devoid of the cleavage furrow actin bundling protein, cortexillin I. While dynacortin is highly enriched in the cortex, particularly in cell-surface protrusions, it is excluded from the cleavage furrow cortex during cytokinesis. Here, we describe the biochemical characterization of this new protein. Purified dynacortin is an 80-kDa dimer with a large 5.7-nm Stokes radius. Dynacortin cross-links actin filaments into parallel arrays with a mole ratio of one dimer to 1.3 actin monomers and a 3.1 microm K(d). Using total internal reflection fluorescence microscopy, GFP-dynacortin and the actin bundling protein coronin-GFP are seen to concentrate in highly dynamic cortical structures with assembly and disassembly half-lives of about 15 s. These results indicate that cells have evolved different actin-filament cross-linking proteins with complementary cellular distributions that collaborate to orchestrate complex cell shape changes. 相似文献
7.
A factor found in nuclear extracts of human cells bound to the heat shock element of a human heat shock protein 70 gene. The level of this factor was significantly increased after heat shock. This induction was rapid and was not blocked by cycloheximide, suggesting that an initial event in the response of a human cell to heat is the activation of a preexisting regulatory factor. 相似文献
8.
9.
The nuclear-mitotic apparatus protein is important in the establishment and maintenance of the bipolar mitotic spindle apparatus. 总被引:11,自引:0,他引:11 下载免费PDF全文
The formation and maintenance of the bipolar mitotic spindle apparatus require a complex and balanced interplay of several mechanisms, including the stabilization and separation of polar microtubules and the action of various microtubule motors. Nonmicrotubule elements are also present throughout the spindle apparatus and have been proposed to provide a structural support for the spindle. The Nuclear-Mitotic Apparatus protein (NuMA) is an abundant 240 kD protein that is present in the nucleus of interphase cells and concentrates in the polar regions of the spindle apparatus during mitosis. Sequence analysis indicates that NuMA possesses an unusually long alpha-helical central region characteristic of many filament forming proteins. In this report we demonstrate that microinjection of anti-NuMA antibodies into interphase and prophase cells results in a failure to form a mitotic spindle apparatus. Furthermore, injection of metaphase cells results in the collapse of the spindle apparatus into a monopolar microtubule array. These results identify for the first time a nontubulin component important for both the establishment and stabilization of the mitotic spindle apparatus in multicellular organisms. We suggest that nonmicrotubule structural components may be important for these processes. 相似文献
10.
11.
Tubulin and calmodulin. Effects of microtubule and microfilament inhibitors on localization in the mitotic apparatus 总被引:18,自引:17,他引:18 下载免费PDF全文
Indirect immunofluorescence was used to determine the distribution of calmodulin in the mitotic apparatus of rat kangaroo PtK2 and Chinese hamster ovary (CHO) cells. The distribution of calmodulin in PtK2 cells was compared to the distribution of tubulin, also as revealed by indirect immunofluorescence. During mitosis, calmodulin was found to be a dynamic component of the mitotic apparatus. Calmodulin first appeared in association with the forming mitotic apparatus during midprophase. In metaphase and anaphase, calmodulin was found between the spindle poles and the chromosomes. While tubulin was found in the interzonal region throughout anaphase, calmodulin appeared in the interzone region only at late anaphase. The interzonal calmodulin of late anaphase condensed during telophase into two small regions, one on each side of the midbody. Calmodulin was not detected in the cleavage furrow. In view of the differences in the localization of calmodulin, tubulin, and actin in the mitotic apparatus, experiments were designed to determine the effects of various antimitotic drugs on calmodulin localization. Cytochalasin B, an inhibitor of actin microfilaments, had no apparent effect on calmodulin or tubulin localization in the mitotic apparatus of CHO cells. Microtubule inhibitors, such as colcemid and N2O, altered the appearance of tubulin- and calmodulin-specific fluorescence in mitotic CHO cells. Cold temperature (0 degrees C) altered tubulin-specific fluorescence of metaphase PtK2 cells but did not alter calmodulin-specific fluorescence. From these studies, it is concluded that calmodulin is more closely associated with the kinetichore-to-pole microtubules than other components of the mitotic apparatus. 相似文献
12.
PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone 总被引:23,自引:0,他引:23
Mollinari C Kleman JP Jiang W Schoehn G Hunter T Margolis RL 《The Journal of cell biology》2002,157(7):1175-1186
Midzone microtubules of mammalian cells play an essential role in the induction of cell cleavage, serving as a platform for a number of proteins that play a part in cytokinesis. We demonstrate that PRC1, a mitotic spindle-associated Cdk substrate that is essential to cell cleavage, is a microtubule binding and bundling protein both in vivo and in vitro. Overexpression of PRC1 extensively bundles interphase microtubules, but does not affect early mitotic spindle organization. PRC1 contains two Cdk phosphorylation motifs, and phosphorylation is possibly important to mitotic suppression of bundling, as a Cdk phosphorylation-null mutant causes extensive bundling of the prometaphase spindle. Complete suppression of PRC1 by siRNA causes failure of microtubule interdigitation between half spindles and the absence of a spindle midzone. Truncation mutants demonstrate that the NH2-terminal region of PRC1, rich in alpha-helical sequence, is important for localization to the cleavage furrow and to the center of the midbody, whereas the central region, with the highest sequence homology between species, is required for microtubule binding and bundling activity. We conclude that PRC1 is a microtubule-associated protein required to maintain the spindle midzone, and that distinct functions are associated with modular elements of the primary sequence. 相似文献
13.
Huckaba TM Gennerich A Wilhelm JE Chishti AH Vale RD 《The Journal of biological chemistry》2011,286(9):7457-7467
Drosophila Kinesin-73 (Khc-73), which plays a role in mitotic spindle polarity in neuroblasts, is a metazoan-specific member of the Kinesin-3 family of motors, which includes mammalian KIF1A and Caenorhabditis elegans Unc-104. The mechanism of Kinesin-3 motors has been controversial because some studies have reported that they transport cargo as monomers whereas other studies have suggested a dimer mechanism. Here, we have performed single-molecule motility and cell biological studies of Khc-73. We find that constructs containing the motor and the conserved short stretches of putative coiled-coil-forming regions are predominantly monomeric in vitro, but that dimerization allows for fast, processive movement and high force production (7 piconewtons). In Drosophila cell lines, we present evidence that Khc-73 can dimerize in vivo. We also show that Khc-73 is recruited specifically to Rab5-containing endosomes through its "tail" domain. Our results suggest that the N-terminal half of Khc-73 can undergo a monomer-dimer transition to produce a fast processive motor and that its C-terminal half possesses a specific Rab5-vesicle binding domain. 相似文献
14.
X Zeng J A Kahana P A Silver M K Morphew J R McIntosh I T Fitch J Carbon W S Saunders 《The Journal of cell biology》1999,146(2):415-425
We have identified a novel centromere-associated gene product from Saccharomyces cerevisiae that plays a role in spindle assembly and stability. Strains with a deletion of SLK19 (synthetic lethal Kar3p gene) exhibit abnormally short mitotic spindles, increased numbers of astral microtubules, and require the presence of the kinesin motor Kar3p for viability. When cells are deprived of both Slk19p and Kar3p, rapid spindle breakdown and mitotic arrest is observed. A functional fusion of Slk19p to green fluorescent protein (GFP) localizes to kinetochores and, during anaphase, to the spindle midzone, whereas Kar3p-GFP was found at the nuclear side of the spindle pole body. Thus, these proteins seem to play overlapping roles in stabilizing spindle structure while acting from opposite ends of the microtubules. 相似文献
15.
The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends 总被引:12,自引:0,他引:12
MCAK belongs to the Kin I subfamily of kinesin-related proteins, a unique group of motor proteins that are not motile but instead destabilize microtubules. We show that MCAK is an ATPase that catalytically depolymerizes microtubules by accelerating, 100-fold, the rate of dissociation of tubulin from microtubule ends. MCAK has one high-affinity binding site per protofilament end, which, when occupied, has both the depolymerase and ATPase activities. MCAK targets protofilament ends very rapidly (on-rate 54 micro M(-1).s(-1)), perhaps by diffusion along the microtubule lattice, and, once there, removes approximately 20 tubulin dimers at a rate of 1 s(-1). We propose that up to 14 MCAK dimers assemble at the end of a microtubule to form an ATP-hydrolyzing complex that processively depolymerizes the microtubule. 相似文献
16.
Biofilms are microbial communities characterized by three-dimensional growth resulting from the ability of individual cells to adhere to each other as well as to produce an extracellular matrix that ensures biofilm physical cohesion. Numerous bacteria produce cellulose as a biofilm matrix polymer, a property relying on the expression of bacterial cellulose synthesis (Bcs) proteins and their post-translational activation upon binding of cyclic di-guanosine mono-phosphate second messenger (c-di-GMP) produced by diguanylate cyclases. In Escherichia coli and other Enterobacteriaceae, two genes of unknown function, yhjR and yhjQ , are located upstream of the bcs genes. Here, we show that yhjQ , but not yhjR , is essential for cellulose biosynthesis; it has therefore been renamed bcsQ. Using a green fluorescent protein (GFP) fusion approach, we demonstrate that BcsQ, a MinD homologue, displays a polar localization and that cell-to-cell adhesion is initiated through production of cellulose at the BcsQ-labelled pole. Although we did not detect a similar localization for other Bcs proteins, immunogold labelling of cellulose itself at the pole of individual bacteria indicates the localized activity of the cellulose biosynthesis apparatus. These results therefore suggest that BcsQ could participate in spatial restriction of cellulose biosynthesis activity in Enterobacteriaceae. 相似文献
17.
The Bacillus subtilis division protein DivIC is a highly abundant membrane-bound protein that localizes to the division site 总被引:1,自引:1,他引:0
The Bacillus subtilis divIC gene is involved in the initiation of cell division. It encodes a 14.7 kDa protein, with a potential transmembrane region near the N-terminus. In this paper, we show that DivIC is associated with the cell membrane and, in conjunction with previously published sequence data, conclude that it is oriented such that its small N-terminus is within the cytoplasm and its larger C-terminus is external to the cytoplasm. DivIC is shown to be a highly abundant division protein, present at approximately 50 000 molecules per cell. Using immunofluorescence microscopy, DivIC was seen to localize at the division site of rapidly dividing cells between well-segregated nucleoids. Various DivIC immunostaining patterns were observed, and these correlated with different cell lengths, suggesting that the DivIC localization takes on various forms during the cell cycle. The DivIC immunolocalization patterns are very similar to those of another membrane-bound B . subtilis division protein, DivIB. 相似文献
18.
The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells 总被引:4,自引:0,他引:4
The mouse and human Zip5 proteins are members of the ZIP family of metal ion transporters. In this study, we present evidence that mouse Zip5 is a zinc uptake transporter that is specific for Zn(II) over other potential metal ion substrates. We also show that, unlike many other mammalian ZIP proteins, the endocytic removal of mZip5 from the plasma membrane is not triggered by zinc treatment. Thus, the activity of mZip5 does not appear to be down-regulated by zinc repletion. Zip5 expression is restricted to many tissues important for zinc homeostasis, including the intestine, pancreas, liver, and kidney. Zip5 is similar in sequence to the Zip4 protein, which is involved in the uptake of dietary zinc. Co-expression of Zip4 and Zip5 in the intestine led to the hypothesis that these proteins play overlapping roles in the uptake of dietary zinc across the apical membrane of intestinal enterocytes. Surprisingly, however, we found that mZip5 localizes specifically to the basolateral membrane of polarized Madin-Darby canine kidney cells. These observations suggest that Zip5 plays a novel role in polarized cells by carrying out serosal-to-mucosal zinc transport. Furthermore, given its expression in tissues important to zinc homeostasis, we propose that Zip5 plays a central role in controlling organismal zinc status. 相似文献
19.
Characterization of the novel human transmembrane protein 9 (TMEM9) that localizes to lysosomes and late endosomes 总被引:9,自引:0,他引:9
Kveine M Tenstad E Døsen G Funderud S Rian E 《Biochemical and biophysical research communications》2002,294(4):912-917
We report the isolation and characterization of a cDNA coding for Fugu rubripes prion protein (PrP)-like of 180 amino acids which includes the PrP-conserved hydrophobic region homologous to that of Xenopus PrP. In addition to the hydrophobic region, Fugu PrP-like has several features common to PrPs, such as a signal sequence, a basic nature (pI 9.7) and a single intron in the 5' untranslated region. A possible glycosyl phosphatidylinositol (GPI) anchor site also exists in PrP-like. In expression analysis, PrP-like mRNA was detected in retina, skin, and brain, all of which express PrP mRNA in mammals. In a genome fragment clone (T002589, 31945 bp) sequenced by the Fugu Genomics Project, PrP-like located between KIAA0168 and SLC231A homologues. In human chromosome 20p13, PrP, Doppel, KIAA0168, and SLC231A align in this order. The close gene arrangement between the Fugu and human genomes suggests that Fugu PrP-like is a real orthologue of human PrP. However, Fugu PrP-like does not possess tandem repeats or a region with two glycosylation sites and a disulphide bridge. We do not declare that the cloned Fugu PrP-like represents fish PrP due to structural inconsistency, but believe that it will offer new insights into the evolution of PrPs from fish to tetrapods. 相似文献
20.
Evidence that heat shock protein-70 associated with progesterone receptors is not involved in receptor-DNA binding. 总被引:4,自引:0,他引:4
S A O?ate P A Estes W J Welch S K Nordeen D P Edwards 《Molecular endocrinology (Baltimore, Md.)》1991,5(12):1993-2004
In the absence of hormone, human progesterone receptors (PR) are recovered in the cytosolic fraction of cell lysates as a multimeric complex containing the steroid-binding polypeptide, heat shock protein-90 (hsp90), and heat shock protein-70 (hsp70). Activated forms of human PR that acquire the ability to bind to DNA are dissociated from hsp90, but retain association with hsp70. The present study has examined whether associated hsp70 has a function in receptor-DNA binding. When activated PR was bound to specific target DNA in a gel shift assay, no hsp70 was detectable in the PR-DNA complex, as evidenced by the failure of several antibodies to hsp70 to affect the mobility or the amount of complexes. To determine whether hsp70 might indirectly influence DNA-binding activity, we have examined the effect of hsp70 dissociation on PR-DNA-binding activity. Dissociation was achieved either by treatment of immunoaffinity-purified immobilized PR complexes with ATP or by the binding of PR complexes to ATP-agarose, followed by elution with high salt. Under both conditions, dissociation from hsp70 neither enhanced nor impaired the ability of PR to bind to specific DNA. These results suggest that hsp70 is not involved in PR binding to DNA, either directly by participating in DNA binding or indirectly by modulating PR-DNA-binding activity. This implies that hsp70 functions at an earlier stage in the receptor activation pathway. Consistent with the known involvement of hsp70 in stabilizing unfolded states of other target proteins, we propose that hsp70 may assist in nuclear transport of PR or in assembly-disassembly of the 8-10S multimeric complex. 相似文献