首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The W3110 strain of Escherichia coli K-12 is unusually sensitive to adenine. Inhibition of growth is relieved by a combination of thiamine and uridine (or cytidine). In the presence of histidine, inhibition is more severe and is relieved by a combination of thiamine, glycine, uridine (or cytidine), and inosine (or guanosine).  相似文献   

2.
3.
L C Yip  M E Balis 《Biochemistry》1975,14(14):3204-3208
Preassay-incubation of the highly purified human erythrocyte adenine phosphoribosyltransferase (EC 2.4.2.7) (AMP pyrophosphorylase) with one of its substrates, 5-phosphoribosyl 1-pyrophosphate (PRibPP), changes the apparent V max value of the enzyme reaction. The extent of inhibition by preassay-incubation with an inhibitor, fructose 1,6-diphosphate (FDP), or a destabilizer, hypoxanthine (Hx), is found not to be proportional to the amount of the inhibitor present. The maximum inhibition achieved by preassay-incubation was about 40%. The PRibPP, FDP, and Hx induced changes in AMP pyrophosphorylase do not require the presence of divalent ions. The inhibtion of AMP pyrophosphorylase produced by preincubation with Hx was prevented when PRibPP was added to the preassay-incubation system. However, the preassay-incubation effect of FDP was only partially diminished under the same conditions. Contrary to the PRibPP-bound AMP pyrophosphorylase, the adenine-bound enzyme was found to be more heat labile than the unbound enzyme. Similar thermal instability was also observed with FDP- and Hx-bound enzyme. Our experimental results indicate that a conformational change of AMP pyrophosphorylase induced by the binding of metabolites is a slow process as compared to the overall catalytic reaction. This hysteretic characteristic of AMP pyrophosphorylase may be one of the regulatory mechanisms in purine intermediary metabolism.  相似文献   

4.
Reduced nicotinamide adenine dinucleotide (NADH) has been characterized electrochemically by solid electrode voltammetry and controlled potential electrolysis. Photometric and enzymatic assay showed that enzymatically active nicotinamide adenine dinucleotide (NAD-+) could be regenerated electrolytically from its reduced form without the use of so-called electron mediators. Complete regeneration of enzymatically active NAD can be expected in pyrophosphate buffers and phosphate buffers during the electrolysis. Advantages of electrochemical regeneration of coenzymes are discussed, especially with regard to immobilization of enzymes.  相似文献   

5.
One-to-one mercury complexes of thionicotinamide adenine dinucleotide (TNAD+) were prepared by using HgSO4 and Hg(CH3 COO-)2. Optical absorption spectroscopy indicated that the mercury probably binds to the TNAD+ through the thio-keto group on the pyridine ring. X-ray diffraction patterns of crystals of mitochondrial malate dehydrogenase soaked in solution containing TNAD+ . mercury complex indicated binding and the X-ray intensity differences are different from mercurials alone.  相似文献   

6.
Although germinated conidia of Neurospora crassa transport adenine through two different systems, only one of these, namely, the general purine transport system, which transports adenine, hypoxanthine, guanine, and 6-methylpurine, is present in freshly harvested conidia of the wild type. The second system develops during germination. The latter system can transport adenine and 6-methylpurine. Time course and kinetic studies of adenine transport in freshly harvested conidia of an ad-8 mutant indicated that, in contrast to the wild type, the general purine transport activity is very low in this strain and that the second adenine transport system is possibly present in the ungerminated conidia. A study of adenine and hypoxanthine uptake in ad-8 and ad-4 mutants, both of which cannot utilize hypoxanthine for growth, isolated that the two transport systems may be under different metabolic controls.  相似文献   

7.
8.
The binding of NADH to bull semen NAD nucleosidase was observed to be accompanied by a considerable enhancement of the fluorescence of NADH. The fluorescence enhancement observed in the binding of NADH to the enzyme was utilized to study the stoichiometry of binding of this compound to the enzyme. Results obtained from the fluorescence titration of the enzyme with NADH indicated the binding of one mole of NADH per mole of enzyme (36,000 g). The dissociation constant for the enzyme-NADH complex was determined to be 2.52 × 10?6m. NADH was also found to be a very effective competitive inhibitor of the NADase-catalyzed hydrolysis of NAD, and the inhibitor dissociation constant (KI) for the enzyme-NADH complex was determined to be 2.99 × 10?6m which was in good agreement with the value obtained from the fluorescence titration experiments.  相似文献   

9.
Three recognition events at the branch-site adenine.   总被引:18,自引:1,他引:17       下载免费PDF全文
C C Query  S A Strobel    P A Sharp 《The EMBO journal》1996,15(6):1392-1402
An adenosine at the branch site, the nucleophile for the first transesterification step of splicing, is nearly invariant in mammalian pre-mRNA introns. The chemical groups on the adenine base were varied systematically and assayed for formation of early spliceosome complexes and execution of the first and second steps of splicing. Recognition of constituents of the adenine is critical in formation of a U2 snRNP-containing complex on a minimal branch-site oligonucleotide. Furthermore, the efficiencies of the first and second chemical steps have different dependencies on the functional groups of the adenine. In total, the chemical groups on the adenine base at the branch site are differentially recognized during at least three different processes in the splicing of pre-mRNA. Moreover, a protein, p14, interacts with the adenine in a base-specific fashion and may mediate early recognition of this base.  相似文献   

10.
Inosine.adenine base pairs in a B-DNA duplex.   总被引:13,自引:12,他引:1       下载免费PDF全文
The structure of the synthetic deoxydodecamer d(C-G-C-I-A-A-T-T-A-G-C-G) has been determined by single crystal X-ray diffraction techniques at 2.5A resolution. The refinement converged with a crystallographic residual, R = 0.19 and the location of 64 solvent molecules. The sequence crystallises as a B-DNA helix with 10 Watson-Crick base-pairs (4 A.T. and 6 G.C) and 2 inosine.adenine (I.A) pairs. The present work shows that in the purine.purine base-pairs the adenine adopts syn orientation with respect to the furanose moiety while the inosine is in the trans (anti) orientation. Two hydrogen bonds link the I.A. base-pair, one between N-1(I) and N-7(A), the other between O-6(I) and N-6(A). This bulky purine.purine base-pair is incorporated in the double helix at two positions with little distortion of either local or global conformation. The pairing observed in this study is presented as a model for I.A base-pairs in RNA codon-anticodon interactions and may help explain the thermodynamic stability of inosine containing base-pairs. Conformational parameters and base stacking interactions are presented and where appropriate compared with those of the native compound, d(C-G-C-G-A-A-T-T-C-G-C-G) and with other studies of oligonucleotides containing purine.purine base-pairs.  相似文献   

11.
Search for an adenine photoproduct in DNA.   总被引:6,自引:4,他引:2       下载免费PDF全文
Poly(d[14C]A), p(dA)2, and [14C]adenosine-labeled DNA were irradiated at 254 nm with fluences up to 50 J/m2, and then following formic acid hydrolysis at 170 degrees C WERE SUBJECTED TO PAPER CHROMAtography using a butanol:water:acetic acid (80:30:12) solvent system. For poly(dA), up to 25% of the radioactivity appeared as fluorescent material located in the Rf 0.21-0.29 region. The hydrolysate of the purified photoproduct, p(dA)2, isolated from irradiated p(dA)2 by DEAE chromatography also had an Rf of 0.29 as well as an absorbance maximum at 310 nm. In all cases studied, however, the photoproduct yield in the Rf 0.29 region for native DNA was less than 2%. Denaturation of the DNA appeared to enhance the yield slightly, although no pronounced peak in this region of the chromatogram was discerned. Mechanistic studies indicate that the yield of the adenine photoproduct in poly(dA) is favored by base stacking, has a singlet excimer as a precursor, and is quenched by hydrogen bonding to a pyrimidine. It is concluded that the yield of the adenine photoproduct in both native and denatured DNA is considerably less than in poly (dA) and in all probability does not represent a biologically significant product.  相似文献   

12.
The functional pathways of nicotinamide adenine dinucleotide (NAD) biosynthesis and their regulation were studied in the dimorphic fungus Candida albicans. The presence of a functional endogenous pathway of NAD biosynthesis from tryptophan was demonstrated. In addition, nicotinamide served as an efficient salvage precursor for NAD biosynthesis but nicotinate was not utilized. The pathway for nicotinamide utilization involved nicotinate and nicotinate nucleotides as intermediates, suggesting that the failure to utilize nicotinate involves a transport defect. The mechanisms that regulate NAD levels during exponential growth operated to maintain constant NAD levels when NAD biosynthesis occurred exclusively from endogenous or salvage pathways or from a combination of the two. The regulation also operated such that the salvage pathway was preferentially utilized.  相似文献   

13.
14.
NAD+ had a biphasic effect on the NADH oxidase activity in electron transport particles from Mycobacterium phlei. The oxidase was inhibited competitively by NAD+ at concentrations above 0.05 mM. NAD+ in concentrations from 0.02 to 0.05 mM resulted in maximum stimulation of both NADH oxidation and oxygen uptake with concentrations of substrate both above and below the apparent K-M. Oxygen uptake and cyanide sensitivity indicated that the NAD+ stimulatory effect was linked to the terminal respiratory chain. The stimulatory effect was specific for NAD+. NAD+ was also specific in protecting the oxidase during heating at 50 degrees and against inactivation during storage at 0 degrees. NAD+ glycohydrolase did not affect stimulation nor heat protection of the NADH oxidase activity if the particles were previously preincubated with NAD+. Binding studies revealed that the particles bound approximately 3.6 pmol of [14C1NAD+ per mg of electron transport particle protein. Although bound NAD+ represented only a small fraction of the total added NAD+ necessary for maximal stimulation, removal of the apparently unbound NAD+ by Sephadex chromatography revealed that particles retained the stimulated state for at least 48 hours. Further addition of NAD+ to stimulated washed particles resulted in competitive inhibition of oxidase activity. Desensitization of the oxidase to the stimulatory effect of NAD+ was achieved by heating the particles at 50 degrees for 2 min without appreciable loss of enzymatic activity. Kinetic studies indicated that addition of NADH to electron transport particles prior to preincubation with NAD+ inhibited stimulation. In addition, NADH inhibited binding of [14C]NAD+. The utilization of artificial electron acceptors, which act as a shunt of the respiratory chain at or near the flavoprotein component, indicated that NAD+ acts as at the level of the NADH dehydrogenase at a site other than the catalytic one resulting in a conformational change which causes restoration as well as protection of oxidase activity.  相似文献   

15.
16.
17.
18.
Following X irradiation of adenine.HCl.H2O at 10 K, evidence for five distinct radical products was present in the EPR/ENDOR. (In both adenine.HCl.1/2H2O and adenosine.HCl, the adenine base is present in a cationic form as it is protonated at N1). From ENDOR data, radical R1, stable at temperatures up to 250 K, was identified as the product of net hydrogen loss from N1. This product, evidently formed by electron loss followed by proton loss, is equivalent to the radical cation of the neutral adenine base. Radical R2, unstable at temperatures above 60 K, was identified as the product of net hydrogen addition to N3, and evidently formed by electron addition followed by proton addition. Radicals R3-R5 could not be identified with certainty. Similar treatment of adenosine.HCl provided evidence for six identifiable radical products. Radical R6, stable to ca. 150 K, was identified as the result of net hydrogen loss from the amino group, and evidently was the product of electron loss followed by proton loss. Radical R7 was tentatively identified as the product of net hydrogen addition to C4 of the adenine base. Radical R8 was found to be the product of net hydrogen addition to C2 of the adenine base, and R9 was the product of net hydrogen addition to C8. Radical R10 was identified as the product of net hydrogen abstraction from C1' of the ribose, and R11 was an alkoxy radical formed from the ribose. With the exception of R11, all products were also found following irradiation at 65 K. Only radical R8 and R9 were stable at room temperature. Most notable is the different deprotonation behavior of the primary electron-loss products (radical R1 vs. R6) and the different protonation behavior of the primary electron-gain products (radical R2 vs. no similar product in adenosine.HCl). The major structural difference in the two crystals is the electrostatic environment of the adenine base. Therefore, this study provides further evidence that environmental influences are important in determining proton transfer processes.  相似文献   

19.
20.
The enzyme adenine phosphoribosyltransferase (APRT) functions to salvage adenine by converting it to adenosine-5-monophosphate (AMP). APRT deficiency in humans is a well characterized inborn error of metabolism, and APRT may contribute to the indispensable nutritional role of purine salvage in protozoan parasites, all of which lack de novo purine biosynthesis. We determined crystal structures for APRT from Leishmania donovani in complex with the substrate adenine, the product AMP, and sulfate and citrate ions that appear to mimic the binding of phosphate moieties. Overall, these structures are very similar to each other, although the adenine and AMP complexes show different patterns of hydrogen-bonding to the base, and the active site pocket opens slightly to accommodate the larger AMP ligand. Whereas AMP adopts a single conformation, adenine binds in two mutually exclusive orientations: one orientation providing adenine-specific hydrogen bonds and the other apparently positioning adenine for the enzymatic reaction. The core of APRT is similar to that of other phosphoribosyltransferases, although the adenine-binding domain is quite different. A C-terminal extension, unique to Leishmania APRTs, extends an extensive dimer interface by wrapping around the partner molecule. The active site involves residues from both subunits of the dimer, indicating that dimerization is essential for catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号