首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate the effects of midazolam on the angiokinesis of segments of rabbits' thoracic aorta stripped of endothelium and stimulated by adrenaline.Two groups of aortic rings removed from albinic rabbits anesthetized with thiopental were used (Group I – 6 animals; Group II – 12 animals), stripped of endothelium, studied in an organ chamber, perfused by Krebs-Henseleit solution. The groups were stimulated by adrenaline, recording the maximum contraction and dT/dt at 12, 36, 60 and 120. When the plateau phase was reached, the vessel was washed with perfusion solution, recording relaxation at 2, 4 and 6. When the base values were reached, Group I underwent a new adrenergic stimulus; and Group II was stimulated with midazolam and then with adrenaline, and the same values were recorded. T test was applied as a statistical analysis when two variables were studied. When studying more than two variables the Anova test was used, supplemented by the Tuckey test.Group I did not show any significant difference between the two stimuli. Group II – the midazolam significantly reduced the maximum contraction induced by adrenaline (83.01 ± 4.11%) (p < 0.01). The dT/dt was reduced at 12 (57.06 ± 8.47%), and also at 36 (70.59 ± 5.26%). There was no significance at 60 and 120 (p < 0.01).The relaxation increased significantly at all measurements – at 2-adrenaline 39.31 ± 9.60%; adrenaline/midazolam: 44.06 ± 9.62% (p < 0.05). At 4-adrenaline: 53.08 ± 8.3%; adrenaline/midazolam: 61.68 ± 8.50% (p < 0.01). At 6-adrenaline: 76.26 ± 5.45%; adrenaline/midazolam: 84.20 ± 7.96% (p < 0.01).Midazolam significantly reduced the maximum contraction obtained by the adrenergic stimulus as well as the dT/dt in the initial phases of contraction. The relaxation speed also increased.  相似文献   

2.
In a previous paper, and opiate receptors were shown to be co-localized on the same cell in enriched primary cultures of astroglia from neonatal rat cerebral cortex. Activation of the receptors inhibited adenylate cyclase. In this work, the presence of opiate receptors was investigated in astroglial primary cultures from neonatal rat striatum and brain stem. Cyclic adenosine 3, 5-monophosphate accumulation was quantified in the presence of different opioid receptor ligands after stimulation of the cyclic adenosine 3,5-monophosphate system with forskolin. Morphine was used as a receptor agonist. [d-Ala2, D-Leu5]-enkephalin or[d-Pen2,d-Pen5]-enkephalin were used as receptor agonists and dynorphin 1–13 or U-50,488H were used as receptor agonists. Specific antagonists for the respective receptors were used. After striatum or brain stem cultures had been incubated in 10–9–10–5M of each [d-Ala2,d-Leu5]-enkephalin, [d-Pen2, D-Pen5]-enkephalin and Dynorphin 1–13 or U-50,488H, dose related inhibitions of the 10–5M rorskolin stimulated cyclic adenosine 3,5-monophosphate accumulation were observed. The changes were reversed to the forskolin-induced control level in the presence of the respective antagonists. 10–9–10–5M morphine did not significantly change the forskolin-induced accumulation of cyclic adenosine 3,5-monophosphate in the cultures studied. Furthermore, cultures from cerebral cortex, striatum or brain stem were incubated with isoproterenol alone or together with morphine or [d-Ala2,d-Leu5]-enkephalin. Isoproterenol stimulated cyclic adenosine 3,5-monophosphate accumulation more prominently in the cerebral cortex and striatum cultures than in the brain stem cultures. Morphine did not influence isoproterenol-induced cyclic adenosine 3,5-monophosphate accumulation, while [d-Ala2,d-Leu5]-enkephalin inhibited the accumulation. The results indicate that astroglial cells in primary cultures from striatum, brain stem and cerebral cortex express andk opioid receptors linked to the adenylate cyclase/cyclic adenosine 3,5-monophosphate system. No receptors were detected, however, in the present model. Aspects of the relation between the expression of opioid peptides and opioid receptors are discussed, while speculations are also made on the functional aspects of opioid receptors on astroglia.  相似文献   

3.
Summary Physarum polycephalum microplasmodia exposed to 1.6×10–5 M cytochalasin A evidenced intracellular cytoplasmic condensation, slow contraction, and eventual breaks at discrete surface areas, within one hour. Other cytochalasins tested (CB or CD) did not substitute for CA. CA effects on plasmodia were not abolished by immediate washing or media replacement. In nutrient medium, CA plus ATP (375 M) produced within minutes herniation (blebbing) and plasmodial disruption. The order of addition of reagents was important; ATP added simultaneously with or prior to CA stimulated the phenomenon, whereas initial addition of CA resulted in no such dynamic response. Several other nucleotides (e.g., AMP, cAMP) could substitute for ATP; however, such changes were not observed with 5-adenylylimidodiphosphate. Blebbing was not abolished in the presence of 2,4-dinitrophenol. In minimal medium, it was best stimulated by simultaneous addition of Ca++ and Mg++. Preincubation of CA with L-cysteine or with -mercaptoethanol negates its individual or nucleotide-combined effects. Yet, 10–5 M ethacrynic acid, a sulfhydryl-reactive liposoluble drug, in the presence of ATP does not mimic the blebbing response. These observed effects, which take place at or near the plasmodial surface, presumably reflect acceleration of normal contractile processes inPhysarum. Abbreviations CA cytochalasin A - CB cytochalasin B - CD cytochalasin D - AMP adenosine 5-monophosphate - ADP adenosine 5-diphosphate - ATP adenosine 5-triphosphate - di-butyryl-cAMP di-butyryl-cyclic adenosine 35-monophosphate - di-butyrylcGMP di-butyryl-cyclic guanosine 35-monophasphate. This work was supported by a grant (AI-11902) from the U.S. Public Health Service.  相似文献   

4.
Internal motions of d-ribose selectively 2H-labeled at the 2 position were measured using solid state 2H NMR experiments. A sample of d-ribose-2 -d was prepared in a hydrated, non-crystalline state to eliminate effects of crystal-packing. Between temperatures of –74 and –60°C the C2–H2 bond was observed to undergo two kinds of motions which were similar to those of C2–H2/H2 found previously in crystalline deoxythymidine (Hiyama et al. (1989) J. Am. Chem. Soc., 111, 8609–8613): (1) Nanosecond motion of small angular displacement with an apparent activation energy of 3.6 ± 0.7 kcal mol–1, and (2) millisecond to microsecond motion of large amplitude with an apparent activation energy 4 kcal mol–1. At –74°C, the slow, large-amplitude motion was best characterized as a two-site jump with a correlation time on the millisecond time scale, whereas at –60°C it was diffusive on the microsecond time scale. The slow, large-amplitude motions of the C2–H2 bond are most likely from interconversions between C2-endo and C3-endo by way of the O4-endo conformation, whereas the fast, small-amplitude motions are probably librations of the C2–H2 bond within the C2-endo and C3-endo potential energy minima.  相似文献   

5.
Summary Polymerization of various nucleoside-5-phosphorimidazolides has been conducted in neutral aqueous solution using divalent metal ions as catalysts. Oligonucleotide formation took place from each of the ribonucleoside-5-phosphorimidazolides, ImpC, ImpU, ImpA, ImpG, and ImpI. The yields and distributions of the resulting oligonucleotides varied depending on the difference of the nucleic acid base and the metal ions used. The catalytic effect of divalent metal ions on the formation of oligocytidylates occurred in the following order: Pb2+>Zn2+>Co2+, Mn2+>Cd2+>Cu2+>Ni2+>Ca2+, Mg2+, none >Hg2+. The order changes slightly for other types of oligoribonucleotide formation. Oligoribonucleotides up to hexamers were obtained in 35–55% overall yield, when Pb2+ ion was used as a catalyst. Zn2+ ions yielded oligoribonucleotides up to tetramers in 10–20% overall yield. The resulting oligonucleotides contained mainly 2–5 internucleotide linkages.Little or no oligonucleotide was obtained from nucleoside-5-phosphorimidazolides modified in the sugars, Imp(3-dA), Imp(2-dA), Imp(Ara), Imp(Aris), and Imp(Nep). The results indicate that a ribosyl system is required for the metal ion-catalyzed synthesis of oligonucleotides. Abbreviations. EDTA, ethylenediaminetetraacetic acid; Versenol,N-hydroxyethylethylenediaminetriacetic acid; Tris, tris-(hydroxymethyl)aminomethane; pN (N is A, C, G, U, I, 3-dA, 2-dA, AraA, Aris, or Nep), nucleoside-5-phosphate; Np, nucleoside-2(3)-phosphate; I, inosine; 3-dA, 3-deoxyadenosine; 2-dA, 2-deoxyadenosine; AraA, arabinosyladenine; Aris, aristeromycin; Nep, neplanocin A; ImpN, nucleoside-5-phosphorimidazolide; NppN, P1,P2-dinucleoside-5,5-pyrophosphate; (pN)n (n=2, 3, ...), oligomers of pN, numbers given between a nucleoside and a phosphate indicate the type of internucleotide linkage, e.g., pC2 p5C is 5-phosphorylcytidyl-(2–5)-cytidine; , cyclic dimers of pN; BAP, bacterial alkaline phosphatase; N.Pl, nuclease Pl; VPDase, venom phosphodiesterase; HPLC, high pressure liquid chromatography  相似文献   

6.
The action of cyclic adenosine-3,5-monophosphate (3,5-AMP) and of substances modifying the rate of its breakdown (inhibitors and activators of phosphodiesterase) on the olfactory epithelium was investigated in frogs. The slow electrical response of the olfactory epithelium to stimulation by solutions of various substances was recorded. Cyclic 3,5-AMP and its dibutyryl derivative were found to excite the olfactory receptors effectively. Responses to these substances developed after an appreciably longer delay than responses to stimulation by solutions of odiferous substances. It is postulated that the depolarizing action of 3,5-AMP and dibutyryl 3,5-AMP is manifested only after they have penetrated inside the receptor cell through its membrane. Both 5-AMP and cyclic 2,3-AMP were ineffective. In the next series of experiments the integral receptor potential was recorded in response to short stimulation by the vapor of an odiferous substance. The duration of this potential was increased after treatment of the olfactory epithelium with phosphodiesterase inhibitors: methylxanthines or papaverine. Conversely, the negative wave of the integral receptor potential was shortened under the influence of the phosphodiesterase activator imidazole. Cyclic 3,5-AMP is considered to play the role of mediator in the mechanism of excitation of the olfactory receptor; during interaction between an odiferous substance and the receptor, adenyl cyclase is activated and the concentration of 3,5-AMP increases; this, in turn, causes depolarization of the receptor cell membrane.Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 415–422, July–August, 1973.  相似文献   

7.
The reaction of the 5-AMP with water soluble carbodiimide (EDAC) in the presence of Na+-montmorillonite 22A results in the formation of 2,5-(pA)2 (18.9%), 3,5-(pA)2 (11%), and AppA (4.8%). When poly(U) is used in place of the clay the product yields are 2,5-(pA)2 (15.5%), 3,5-(pA)2 (3.7%) and AppA (14.9%). The 3,5-cyclic dinucleotide, 3,5-c(pA)2, is also formed when poly(U) is used. AppA is the principal reaction product when neither clay nor poly(U) is present in the reaction mixture. Products which contain the phophodiester bond are formed at different ionic strengths, pH and temperatures using Na+-montmorillonite. Phosphodiester bond formation was not observed when Cu2+-montmorillonite was used or when DISN was used in the place of EDAC. The extent catalysis of phophodiester bond formation varied with the particular clay mineral used. Those Na+-clays which bind 5-AMP more strongly are better catalysts. Cu2+-montmorillonite, which binds 5-AMP strongly, exhibits no catalytic activity.  相似文献   

8.
The sugar conformation of a DNA decamer was studied with proton-proton 3J coupling constants. Two samples, one comprising stereospecifically labeled 2-R-2H for all residues and the other 2-S-2H, were prepared by the method of Kawashima et al. [J. Org. Chem. (1995) 60, 6980–6986; Nucleosides Nucleotides (1995) 14, 333–336], the deuterium labeling being highly stereospecific 99% for all 2-2H, 98% for 2-2H of A, C, and T, and 93% for 2-2H of G). The 3J values of all H1-H2 and H1-H2 pairs, and several H2-H3 and H2-H3 pairs were determined by line fitting of 1D spectra with 0.1–0.2 Hz precision. The observed J coupling constants were explained by the rigid sugar conformation model, and the sugar conformations were found to be between C3-exo and C2-endo with m values of 26° to 44°, except for the second and 3 terminal residues C2 and C10. For the C2 and C10 residues, the lower fraction of S-type conformation was estimated from JH1H2 and JH1H2 values. For C10, the N–S two-site jump model or Gaussian distribution of the torsion angle model could explain the observed J values, and 68% S-type conformation or C1-exo conformation with 27° distribution was obtained, respectively. The differences between these two motional models are discussed based on a simple simulation of J-coupling constants.  相似文献   

9.
The filamentous cyanophyteNostoc muscorum A grew aseriately in light in a mineral salts (sugar-free) culture medium supplemented with adenosine 3:5-cyclic-monophosphate or N6, O2-dibutyryl adenosine 3:5-cyclic-monophosphate (1 mM). The aseriate morphology thus formed in the light on the 10th day following inoculation was similar to that formed in the dark after 20–30 days growth in cAMP-free medium containing glucose or sucrose. Inoculum previously grown in sucrose- or glucose-containing medium displayed aseriate morphology with lesser proliferation of coccoid cells as compared to inoculum grown in the absence of glucose or sucrose. cGMP, ADP, AMP and inhibitors of phosphodiesterase (theophylline and caffeine) did not have any effect on the persistence of aseriate morphology. However they stimulated cell division at the aseriate stage and delayed the release of hormogonia.Abbreviations cAMP adenosine 3:5-cyclic-monophosphate - db cAMP N6, O2-dibutyryl adenosine 3:5-cyclic-monophosphate - cGMP guanosine 3:5-cyclic-monophosphate - ATP adenosine 5-triphosphate - ADP adenosine5-diphosphate - AMP adenosine 5-monophosphate  相似文献   

10.
Summary The circular DNA decamer 5-dpCGC-TT-GCG-TT-3 was studied in solution by means of NMR spectroscopy and molecular dynamics in H2O. At a temperature of 269 K, a 50/50 mixture of two dumbbell structures (denoted L2L2 and L2L4) is present. The L2L2 form contains three Watson-Crick C-G base pairs and two two-residue loops in opposite parts of the molecule. On raising the temperature from 269 K to 314 K, the L2L4 conformer becomes increasingly dominant (95% at 314 K). This conformer has a partially disrupted G(anti)-C(syn) closing base pair in the 5-GTTC-3 loop with only one remaining (solvent-accessible) hydrogen bond between NH of the cytosine dC(1) and O6 of the guanine dG(8). The opposite 5-CTTG-3 loop remains stable. The two conformers occur in slow equilibrium (rate constant 2–20 s–1). Structure determination of the L2L2 and L2L4 forms was performed with the aid of a full relaxation matrix approach (IRMA) in combination with restrained MD. Torsional information was obtained from coupling constants. Coupling constant analysis (3JHH, 3JHP, 3JCP) gave detailed information about the local geometry around backbone torsion angles , , and , revealing a relatively high flexibility of the 5-GTTC-3 loop. The values of the coupling constants are virtually temperature-independent. Weakly constrained molecular dynamics in solvent was used to sample the conformational space of the dumbbell. The relaxation matrices from the MD simulation were averaged over r–3 to predict dynamic NOE volumes. In order to account for the 1:1 conformational mixture of L2L2 and L2L4 present at 271 K, we also included S2 factors and r–6 averaging of the r–3-averaged relaxation matrices. On matrix averaging, the agreement of NOE volumes with experiment improved significantly for protons located in the thermodynamically less stable 5-GTTC-3 loop. The difference in stability of the 5-CTTG-3 and 5-GTTC-3 loops is mainly caused by differences in the number of potential hydrogen bonds in the minor groove and differences in stacking overlap of the base pairs closing the minihairpin loops. The syn conformation for dC(1), favored at high temperature, is stabilized by solvation in the major groove. However, the conformational properties of the dC(1) base, as deduced from R-factor analysis and MD simulations, include a large flexibility about torsion angle .  相似文献   

11.
Evidence is presented that a poly(U) template selectively favors the oligomerization of the activated, 3–5 pyrophosphate-linked dimer pdAppdAp, in comparison with the 3–3 and 5–5 linked dimers. In the absence of poly(U), the 5–5linked dimer is the most reactive, and chains are formed which are more than 60 monomer units in length.Nucleic Acid-Like Structures V. For the previous paper in this series see Visscher and Schwartz (1988).  相似文献   

12.
Uptake ofl-[35S]cysteic acid (L-CA) in rat synaptic membrane vesicles was investigated. Preincubation with either 10 mMl-glutamic acid (L-Glu), 25 mM L-CA, 10 mMdl-homocysteic acid, or 25 mMdl-2-amino-4-phosphonobutyrate on membrane vesicles enhanced L-[35S]CA and L-[3H]Glu uptake. Na+ (5 mM) and omission of Cl from the assay medium decreased L-[35S]CA uptake into both 10 mM L-Glu-loaded and non-loaded membrane vesicles. The anion transport blockers, 4-acetamide-4-isothiocyano-2,2-disulfonic acid stibene (SITS) and 4,4-diisothiocyano-2,2-disulfonic acid stilbene (DIDS), inhibited L-[35S]CA uptake in a dose-dependent manner. The maximal uptake rate for L-[35S]CA was decreased by 50 M SITS, while the apparent Km value of L-CA was not changed. SITS increased the EC50 value of Cl for L-[35S]CA uptake from 5 mM to 10 mM with reduction of the maximal effect. These results suggested that L-[35S]CA uptake into synaptic membrane vesicles was mediated by a SITS-sensitive hetero-exchange transport with non-labeled substrates.Abbreviations SITS 4-Acetamide-4-isothiocyano-2,2-disulfonic acid stilbene - DIDS 4,4-Diisothiocyano-2,2-disulfonic acid stilbene - CA Cysteic acid - APB 2-Amino-4-phosphonobutyrate - CSA Cysteine sulfinic acid - EGTA Ethyleneglycol bis(aminoethylether) tetraacetate - GABA -Aminobutyric acid  相似文献   

13.
Adenine deoxynucleotides bind more strongly to Na+-montmorillonite than do the corresponding ribonucleotides. Thymidine nucleotides binds less strongly to Na+-montmorillonite than do the corresponding adenine deoxynucleotides. Oligomers of 2-dpA up to the tetramer were detected in the reaction 2-d-5-AMP with EDAC (a water-soluble carbodiimide) in the presence of Na+-montmorillonite. Reaction of 3-d-5-AMP with EDAC on Na+-montmorillonite yields 3-d-2,5-pApA while the reaction of 2-d-3-AMP yields almost exclusively 3,5-cdAMP. The reaction of 5-TMP under the same reaction conditions give 3,5-cpTpT and 3,5-pTpT while 3-TMP gives mainly 3,5-cpT. The yield of dinucleotide products (dpNpN) containing the phosphodiester bond is 1% or less when Na+-montmorillonite is omitted from the reaction mixture.  相似文献   

14.
Using primary cultures of gill pavement cells from freshwater rainbow trout, a method is described for achieving confluent monolayers of the cells on glass coverslips. A continuous record of intracellular pH was obtained by loading the cells with the pH-sensitive flourescent dye 2,7-bis(2-carboxyethyl)-5(6)-carboxyfluorescein and mounting the coverslips in the flowthrough cuvette of a spectrofluorimeter. Experiments were performed in HEPES-buffered media nominally free of HCO3. Resting intracellular pH (7.43 at extracellular pH=7.70) was insensitive to the removal of Cl or the application of 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (0.1 mmol·l–1), but fell by about 0.3 units when Na+ was removed or in the presence of amiloride (0.2 mmol·l–1). Exposure to elevated ammonia (ammonia prepulse; 30 mmol·l–1 as NH4Cl for 6–9 min) produced an increase in intracellular pH (to about 8.1) followed by a slow decay, and washout of the pulse caused intracellular pH to fall to about 6.5. Intracellular non-HCO 3 buffer capacity was about 13.4 slykes. Rapid recovery of intracellular pH from intracellular acidosis induced by ammonia prepulse was inhibited more than 80% in Na+-free conditions or in the presence of amiloride (0.2 mmol·l–1). Neither bafilomycin A1 (3 mol·l–1) nor Cl removal altered the intracellular pH recovery rate. The K m for Na+ of the intracellular pH recovery mechanism was 8.3 mmol·l–1, and the rate constant at V max was 0.008·s–1 (equivalent to 5.60 mmol H+·l–1 cell water·min–1), which was achieved at external Na+ levels from 25 to 140 mmol·l–1. We conclude that intracellular pH in cultured gill pavement cells in HEPES-buffered, HCO 3 -free media, both at rest and during acidosis, is regulated by a Na+/H+ antiport and not by anion-dependent mechanisms or a vacuolar H+-ATPase.Abbreviations BCECF 2,7-bis(2-carboxyethyl)-5(6)-carboxy-fluorescein - BCECF/AM 2,7-bis(2-carboxyethyl)-5(6)-carboxy-fluorescein, acetoxymethylester - Cholin-Cl choline chloride - DMSO dimethyl sulfoxide - EDTA ethylene diamine tetra-acetic acid - FBS foetal bovine serum - H + -ATPase Proton-dependent adenosine triphosphatase - HEPES N-[2-hydroxyethyl]piperazine-N[2-ethanesulfonic acid] - pH i intracellular pH - pH e extracellular pH - PBS phosphate-buffered saline - SITS 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid  相似文献   

15.
Elongation of the primer 32pdA(pdA)8pA proceeds by thereaction of the 5-phosphorimidazolides of adenosine and uridine in the presence of montmorillonite clay. Daily addition of the activated nucleotides for up to 14 days results in theformation of 40–50 mers using the 5-phosphorimidazolide of adenosine (ImpA) and 25–30 mers using the 5-phosphorimidazolide of uridine (ImpU). The limitation on thelengths of the chains formed is not due to the inhibitors formedsince the same chain lengths were formed using 2–3 times the amount of montmorillonite catalyst. The shorter oligomers formedby the addition of U monomers is not due to its greater rate ofdecomposition since it was found that both the A and the U adducts decompose at about the same rates. Alkaline phosphatase hydrolysis studies revealed that some of the oligomers are cappedat the 5-end to form, with ImpA,Ap32pdA(pdA)8pA(pA)n. The extent of capping depends on the reaction time and the purine or pyrimidine base inthe activated mononucleotide. Hydrolysis with ribonuclease T2 followed by alkaline phosphatase determined the sites ofthe 3, 5- and 2, 5-phosphodiester bonding to the primer. The potential significance of the mineral catalyzed formation of 50 mer oligonucleotides to the origin of life basedon RNA (the RNA world scenario) is discussed.  相似文献   

16.
Structural analogues of the NADP+ were studied as potential coenzymes and inhibitors for NADP+ dependent malic enzyme from Zea mays L. leaves. Results showed that 1, N6-etheno-nicotinamide adenine dinucleotide phosphate ( NADP+), 3-acetylpyridine-adenine dinucleotide phosphate (APADP+), nicotinamide-hypoxanthine dinucleotide phosphate (NHDP+) and -nicotinamide adenine dinucleotide 2: 3-cyclic monophosphate (23NADPc+) act as alternate coenzymes for the enzyme and that there is little variation in the values of the Michaelis constants and only a threefold variation in Vmax for the five nucleotides. On the other hand, thionicotinamide-adenine dinucleotide phosphate (SNADP+), 3-aminopyridine-adenine dinucleotide phosphate (AADP+), adenosine 2-monophosphate (2AMP) and adenosine 2: 3-cyclic monophosphate (23AMPc) were competitive inhibitors with respect to NADP+, while -nicotinamide adenine dinucleotide 3-phosphate (3NADP+), NAD+, adenosine 3-monophosphate (3AMP), adenosine 2: 5-cyclic monophosphate (25AMPc), 5AMP, 5ADP, 5ATP and adenosine act as non-competitive inhibitors. These results, together with results of semiempirical self-consistent field-molecular orbitals calculations, suggest that the 2-phosphate group is crucial for the nucleotide binding to the enzyme, whereas the charge density on the C4 atom of the pyridine ring is the major factor that governs the coenzyme activity.Abbreviations NADP+ 1, N6-etheno-nicotinamide adenine dinucleotide phosphate - NHDP+ nicotinamide-hypoxanthine dinucleotide phosphate - APADP+ 3-acetylpyridine-adenine dinucleotide phosphate - SNADP+ thionicotinamide-adenine dinucleotide phosphate - AADP+ 3-aminopyridine-adenine dinucleotide phosphate - 23NADPc+ -nicotinamide adenine dinucleotide 2: 3-cyclic monophosphate - 3NADP+ -nicotinamide adenine dinucleotide 3-phosphate - 2AMP adenosine 2-monophosphate - 3AMP adenosine 3-monophosphate - 23AMPc adenosine 2: 3 monophosphate cyclic - A adenosine - RuBP ribulose 1,5-bisphosphate - SCF-MO Self-Consistent Field-Molecular Orbitals (method)  相似文献   

17.
Yeast PAPS reductase: properties and requirements of the purified enzyme   总被引:5,自引:0,他引:5  
The enzymatic mechanism of sulphite formation in Saccharomyces cerevisiae was investigated using a purified 3-phosphoadenylsulphate (PAPS) reductase and thioredoxin. The functionally active protein (MR 80–85 k) is represented by a dimer which reduces 3-phosphoadenylyl sulphate to adenosine-3,5-bisphosphate and free sulphite at a stoichiometry of 1:1. Reduced thioredoxin is required as cosubstrate. Examination of the reaction products showed that free anionic sulphite is formed with no evidence for bound-sulphite(s) as intermediate. V max of the enriched enzyme was 4–7 nmol sulphite · min-1 · mg-1 using the homologous thioredoxin from yeast. The velocity of reaction decreased to 0.4 nmol sulphite · min-1 · mg-1 when heterologous thioredoxin (from Escherichia coli) was used instead. The K m of homologous thioredoxin was 0.6 · 10-6 M, for the heterologous cosubstrate it increased to 1.4 · 10-6 M. The affinity for PAPS remained practically unaffected (K m PAPS: 19 · 10-6 M in the homologous, and 21 · 10-6 M in the heterologous system). From the kinetic data it is concluded that the enzyme followed an ordered mechanism with thioredoxin as first substrate followed by PAPS as the second. Parallel lines in the reciprocal and a common intersect in the Hanes-plots for thioredoxin were seen as indication of a ping-pong (with respect to thioredoxin) uni-bi (with respect to PAPS) mechanism.Abbreviations APS adenylyl sulphate - DTE dithioerythritol - DTT dithiothreitol - HPLC high performance liquid chromatography - IEF isoelectric focusing - LSC liquid scintillation counting - 3,5-PAP adenosine-3,5-bisphosphate - PAPS 3-phosphoadenylyl sulphate - PEP phospho-(enol)pyruvate - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - Tris 2-amino-2-hydroxymethyl-1,3-propanediol  相似文献   

18.
Summary The self-condensation of 2(3)-O-glycyl esters of adenosine, adenosine-5-(O-methylphosphate) and P1, P2-diadenosine-5-pyrophosphate in 6.2 mM solutions at pH 8.0 and -5°C in the presence of 12.5 mM poly(U) yields approximately 3 times as much diketopiperazine as reactions without poly(U). As the concentration of 2(3)-O-(glycyl)-P1, P2-diadenosine-5-pyrophosphate is decreased from 6.2 mM to 1.5 mM the yield of diketopiperazine in the presence of poly(U) decreases slightly from 6.6% to 5.2%, whereas, in the absence of poly(U) the yield of diketopiperazine decreases substantially from 2.4% to 0.75%. The enhanced yield of diketopiperazine that is attributed to the template action of poly(U) is temperature dependent and is observed only at temperatures below 10°C (5°C to -5°C) for 6.2 mM 2(3)-O-(glycyl)-adenosine-5-(O-methylphosphate) and below 23°C (15°C to -5°C) for 6.2 mM 2(3)-O-(glycyl)-P1, P2-diadenosine-5-pyrophosphate. The absence of a template effect at high temperatures is attributed to the melting of the organized helices. The hydrolysis half-lives at pH 8.0 and -5°C of 2(3)-O-(glycyl)-adenosine, 2(3)-O-(glycyl)-adenosine-5-(O-methylphosphate), 2(3)-O-(glycyl)-P1, P2-diadenosine-5-pyrophosphate, and 5-O-(glycyl)-adenosine in the presence of poly(U) are substantially larger than their half-lives in the absence of poly(U). The condensation of 2(3)-O-(glycyl)-adenosine yields 5% of 5-O-(glycyl)-adenosine in the presence of poly(U) compared to 0.7% in the absence of poly(U).Abbreviations DKP diketopiperazine - (gly)2 glycylglycine - (gly)3 glycylglycylglycine - AppA-gly 2(3)-O-(glycyl)-P1, P2-diadenosine-5-pyrophosphate - MepA-gly 2(3)-O-(glycyl)-adenosine-5-(O-methylphosphate) - Ado-2(3)-gly 2(3)-O-(glycyl)-adenosine - Ado-5-gly 5-O-(glycyl)-adenosine - Boc-gly N-tert-butyloxycarbonylglycine - AppA P1, P2-diadenosine-5-pyrophosphate - MepA adenosine-5-(O-methylphosphate) - AppA-Boc-gly 2(3)-O-(Boc-glycyl)-P1, P2-diadenosine-5-pyrophosphate - Ado-5-Boc-gly 5-O-(Boc-glycyl)-adenosine - Ado-2(3)-Boc-gly 2(3)-O-(Boc-glycyl)-adenosine  相似文献   

19.
The oligomerization of deoxyguanosine 5-phosphoro-2-methylimidazolide on a polycytidylate template is much less efficient than the oligomerization of the corresponding activated ribonucleotide. Nonetheless oligomers containing up to eight nucleotide residues are detected. The products are 3–5-linked oligodeoxyribonucleotides capped at the 5-terminus with a pyrophosphate-linked monomer.  相似文献   

20.
The carotenoid pigments of a Rhizobium strain isolated from Lotononis bainesii were found to be diglucosyl-4,4-diapocarotene-4,4-dioate and glucosyl-4,4-diapocarotene-4-oate-4-oic acid.5th publication in the series Carotenoids of Rhizobia [4th publication: Helv. chim. Acta 62: 2551–2557 (1979)]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号