首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transgenic Tsukuba hypertensive mouse (THM), which expresses the human renin and angiotensinogen genes, develops hypertension secondary to increased renin-angiotensin system activity. The aim of the present study was to assess expression of the renin, cyclooxygenase-2 (COX-2), and neuronal nitric oxide synthase (nNOS) proteins in THM kidneys by immunohistochemical stainings. Renin expression was decreased in the THM kidneys when compared to kidneys from heterozygotes or control mice. Although no differences were observed in nNOS expression, overexpression of the COX-2 protein was observed in the macula densa cells in THM kidneys.  相似文献   

2.
Annexin A1 (ANXA1) exerts anti-inflammatory effects through multiple mechanisms including inhibition of prostaglandin synthesis. Once secreted, ANXA1 can bind to G protein-coupled formyl peptide receptors (Fpr) and activate diverse cellular signaling pathways. ANXA1 is known to be expressed in cells of the juxtaglomerular apparatus, but its relation to the expression of cyclooxygenase 2 (COX-2) in thick ascending limb and macula densa cells has not been elucidated. We hypothesized that ANXA1 regulates the biosynthesis of COX-2. ANXA1 abundance in rat kidney macula densa was extensively colocalized with COX-2 (95%). Furosemide, an established stimulus for COX-2 induction, caused enhanced expression of both ANXA1 and COX-2 with maintained colocalization (99%). In ANXA1-deficient mice, COX-2-positive cells were more numerous than in control mice (+107%; normalized to glomerular number; P < 0.05) and renin expression was increased (+566%; normalized to glomerular number; P < 0.05). Cultured macula densa cells transfected with full-length rat ANXA1 revealed downregulation of COX-2 mRNA (-59%; P < 0.05). Similarly, treatment with dexamethasone suppressed COX-2 mRNA in the cells (-49%; P < 0.05), while inducing ANXA1 mRNA (+56%; P < 0.05) and ANXA1 protein secretion. Inhibition of the ANXA-1 receptor Fpr1 with cyclosporin H blunted the effect of dexamethasone on COX-2 expression. These data show that ANXA1 exerts an inhibitory effect on COX-2 expression in the macula densa. ANXA1 may be a novel intrinsic modulator of renal juxtaglomerular regulation by inhibition of PGE(2) synthesis.  相似文献   

3.
We previously found that deletion of connexin 40 (Cx40) causes a misdirection of renin-expressing cells from the media layer of afferent arterioles to the perivascular tissue, extraglomerular mesangium, and periglomerular and peritubular interstitium. The mechanisms underlying this aberrant renin expression are unknown. Here, we questioned the relevance of cyclooxygenase-2 (COX-2) activity for aberrant renin expression in Cx40-deficient kidneys. We found that COX-2 mRNA levels were increased three-fold in the renal cortex of Cx40-deficient kidneys relative to wild-type (wt) kidneys. In wt kidneys, COX-2 immunoreactivity was minimally detected in the juxtaglomerular region, but renin expression was frequently associated with COX-2 immunoreactivity in Cx40-deficient kidneys. Treatment with COX-2 inhibitors for 1 wk lowered renin mRNA levels in wt kidneys by about 40%. In Cx40-deficient kidneys, basal renin mRNA levels were increased two-fold relative to wt kidneys, and these elevated mRNA levels were reduced to levels of untreated wt mice by COX-2 inhibitors. In parallel, renin immunoreactive areas were clearly reduced by COX-2 inhibitors such that renin expression vanished and decreased significantly in the periglomerular and peritubular extensions. Notably, COX-2 inhibitor treatment lowered plasma renin concentration (PRC) in wt kidneys by about 40% but did not affect the highly elevated PRC levels in Cx40-deficient mice. These findings suggest that aberrant renin-producing cells in Cx40-deficient kidneys express significant amounts of COX-2, which contribute to renin expression in these cells, in particular, those in the periglomerular and peritubular position. Apparently, these disseminated cells do not contribute to the enhanced renin secretion rates of Cx40-deficient kidneys.  相似文献   

4.
Reducing luminal NaCl concentration in the macula densa region of the nephron stimulates renin secretion, and this response is blocked by a specific inhibitor of cyclooxygenase-2 (COX-2) (Traynor, T. R., Smart, A., Briggs, J. P., and Schnermann, J. (1999) Am. J. Physiol. Renal Physiol. 277, F706-710). To study whether low NaCl activates COX-2 activity or expression we clonally derived a macula densa cell line (MMDD1 cells) from SV-40 transgenic mice using fluorescence-activated cell sorting of renal tubular cells labeled with segment-specific fluorescent lectins. MMDD1 cells express COX-2, bNOS, NKCC2, and ROMK, but not Tamm-Horsfall protein, and showed rapid (86)Rb(+) uptake that was inhibited by a reduction in NaCl concentration and by bumetanide or furosemide. Isosmotic exposure of MMDD1 cells to low NaCl (60 mm) caused a prompt and time-dependent stimulation of prostaglandin E(2) (PGE(2)) release that was prevented by the COX-2 specific inhibitor NS-398 (10 microm). Reducing NaCl to 60 and 6 mm for 16 h increased COX-2 expression in a chloride-dependent fashion. Low NaCl phosphorylated p38 kinase within 30 min and ERK1/2 kinases within 15 min without changing total MAP kinase levels. Low NaCl-stimulated PGE(2) release and COX-2 expression was inhibited by SB 203580 and PD 98059 (10 microm), inhibitors of p38 and ERK kinase pathways. We conclude that low chloride stimulates PGE(2) release and COX-2 expression in MMDD1 cells through activation of MAP kinases.  相似文献   

5.
Dietary n-3 fatty acids generally attenuate elevated cyclooxygenase-2 (COX-2) levels in disease states. However, models of renal cystic disease (RCD) exhibit reduced renal COX-2 expression. Therefore, the in vivo regulation of COX-2 expression by dietary n-3 fatty acids was examined. In archived tissues from dietary studies, COX-2 protein and gene expression was up-regulated in diseased pcy mouse and Han:SPRD-cy rat kidneys when given diets containing eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA), but not those containing -linolenic acid (ALA), compared to control diets with linoleic acid (LA). The presence of disease was necessary to elicit these effects as COX-2 expression was unaltered by diet in normal kidneys. The effects were specific for COX-2, since COX-1 levels were unaltered by these dietary manipulations in either model. Thus, in RCD, diets containing EPA and DHA but not ALA appear to specifically up-regulate renal COX-2 gene and protein levels in vivo.  相似文献   

6.
Increased prostaglandins (PGs) are associated with many inflammatory pathophysiological conditions; and are synthesized from arachidonic acid by either of 2 enzymes, cyclooxygenase-1 (COX-1) or -2 (COX-2). Recent epidemiologic, expression, and pharmacologic studies suggest COX-2 derived metabolites also play a functional role in the maintenance of tumor viability, growth and metastasis. Archival and/or prospectively collected human tissues were prepared for immunohistochemistry, and representative cases assayed via Western blot, RT-PCR, or TAQman analysis. Consistent overexpression of COX-2 was observed in a broad range of premalignant, malignant, and metastatic human epithelial cancers. COX-2 was detected in ca. 85% of the hyperproliferating, dysplastic, and neoplastic epithelial cells, and in the existing and angiogenic vasculature within and adjacent to hyperplastic/neoplastic lesions. These data collectively imply COX-2 may play an important role during premalignant hyperproliferation, as well as the later stages of invasive carcinoma and metastasis in various human epithelial cancers.  相似文献   

7.
The renin-angiotensin system (RAS) and tubuloglomerular feedback (TGF) are central to the maintenance of blood pressure and body fluid composition. Renin, NO synthase-1 (NOS-1), and cyclooxygenase-2 (COX-2) are key regulators of the RAS and TGF. In the present study, to investigate species-specific differences in the RAS and TGF, we immunohistochemically and morphometrically investigated the localization of renin, NOS-1, and COX-2 in the kidneys of various laboratory rodents and comparing males with females (DBA/2Cr mice, F344/N rats, Syrian hamsters, MON/JmsGbs gerbils and Hartley guinea pigs). In all animals, renin-positive immunoreactions were observed in the vascular walls of afferent arterioles. Renin immunoreactions appeared to be more widely distributed in mice. Mice had a greater number of renin-positive arterioles than other species. NOS-1-positive reactions were detected in the macula densa (MD) of all animals. Mice had the greatest number of NOS-1-positive MD cells. In addition to NOS-1-positive reactions, COX-2-positive reactions were observed in the MD of mice, rats, hamsters and gerbils. Interestingly, guinea pigs had no COX-2-positive MD cells. Rats had the greatest number of COX-2-positive MD cells. In nephron segments excluding the MD, the immunohistochemical localization of NOS-1 and COX-2 differed markedly among not only species but also sexes within the same species. In conclusion, we determined that localization of renin, NOS-1, and COX-2 showed large species- and sex-related differences. These data suggest that the regulation mechanisms of the RAS and TGF via renin, NOS-1, and COX-2 differ among rodents.  相似文献   

8.
Prostaglandin (PG)F2alpha is one of the major prostanoids produced by the kidney, and its renal synthesis is regulated by sodium depletion, potassium depletion, and adrenal steroids. PGF synthase activity is detected in kidney of various mammals. Herein, we demonstrated immunochemically that PGF synthase was localized in proximal tubule of human kidney, together with cyclooxygenase (COX)-1, and that it was localized in human renal cell carcinoma, together with COX-2. These results suggest that PGF synthesized through COX-1 and PGF synthase plays an important physiological role in the kidney and that the expression of COX-2 in kidney is a useful maker for tumorigenesis of the renal call carcinoma in vivo.  相似文献   

9.
We have reported that the renal hemodynamic effects of norepinephrine (NE) are modulated by cyclooxygenase-2 (COX-2)-derived metabolites. Our main objective was to examine whether there is an interaction between nitric oxide (NO) and COX-2 in modulating the renal hemodynamic effects of NE. NE was infused at three doses to anesthetized dogs pretreated with vehicle (n = 8), a selective COX-2 inhibitor (nimesulide) (n = 6), an NO synthesis inhibitor [NG-nitro-l-arginine methyl ester; l-NAME] (n = 8), or with nimesulide and l-NAME (n = 5). During NE infusion, PGE2 excretion increased (125%) in the control group and did not change in the l-NAME-treated dogs. The simultaneous inhibition of NO and COX-2 potentiated to a greater extent the NE-induced renal vasoconstriction than inhibition of either NO or COX-2. The NE-induced renal vasoconstriction during NO and COX-2 inhibition was reduced (P < 0.05) by infusing an AT1 receptor antagonist (n = 6). These results suggest that there is an interaction between NO and COX-2 in protecting the renal vasculature from the NE effects and that angiotensin II partly mediates the NE-induced renal vasoconstriction when NO synthesis and COX-2 activity are reduced.  相似文献   

10.
Human urotensin-II (U-II) is a cyclic 11-amino-acid residue peptide with a wide range of vasoactive properties dependent on the anatomic site and the species studied. The purpose of this study was to determine the localization of human U-II in normal human kidneys and in renal carcinoma. Normal human kidneys (n=11) and eight cases of clear-cell carcinoma were immunostained with a polyclonal antibody to human U-II. In normal human kidneys, U-II was mostly present in the epithelial cells of tubules and ducts, with greater intensity in the distal convoluted tubules. Moderate U-II immunoreactivity was seen in the endothelial cells of renal capillaries, but only focal immunoreactivity was found in the endothelial cells of the glomeruli. No staining was found in the veins. All tumors expressed moderate U-II immunoreactivity in the cancer cells and vasculature. Here we demonstrate abundant expression of U-II in normal human kidneys and renal carcinoma. These findings suggest that the vasoactive and growth-mediator peptide U-II may contribute to the pathophysiology of the human renal system.  相似文献   

11.
Peripheral vascular resistance and sensitivity to circulating pressor and vasoconstrictor agents are blunted during pregnancy. This has been mainly attributed to an increased production of endothelium-derived mediators. The objective of this work was to evaluate if pregnancy changes the relative participation of nitric oxide (NO) and prostaglandins (PG) in respect to the modulation of the increases in renal perfusion pressure induced by phenylephrine (Phe). Dose-response curves were made with gradually increasing doses of Phe using an isolated kidney preparation in the presence of a NO synthase (NOS) inhibitor (L-NAME, 1 microM), a PG-synthesis inhibitor (indomethacin, 1 microM), both, or neither. Also, renal cyclooxygenase (COX-1 and COX-2) and endothelial NOS (eNOS) expression was determined using PCR. The experiments were done in kidneys from nonpregnant and pregnant rats. Our results showed that the relative participation of renal vasoactive mediators seems to change during pregnancy. We found the presence of a COX-1-dependent vasoconstrictor in the middle of pregnancy that was not found in nonpregnant rats. Our results also suggest that there is increased participation of another renal vasodilator substance, the effect of which is observed when NO or PG synthesis is inhibited during late pregnancy. In addition, an apparent interaction between renal eNOS and COX-1 expression was observed: eNOS expression was diminished, while COX-1 was increased during the 2nd week of pregnancy. In contrast, in kidneys from the 3rd week of pregnancy, the expression of these two enzymes was similar.  相似文献   

12.
The hydronephrotic rabbit kidney exhibits elevated basal prostaglandin synthesis and supersensitivity to peptide stimulation of vascular prostaglandin and thromboxane formation. In this study the distribution of the prostaglandin-forming cyclooxygenase in hydronephrotic and contralateral rabbit kidneys following one and four day ureteral obstructions was compared using immunohistofluorescence. No alterations were detected in the distribution or intensity of cyclooxygenase-positive fluorescence in the renal vasculature in response to ureteral obstructions. However, two significant differences were noted between hydronephrotic and contralateral kidneys in the staining of renal tubules: (a) the intensity of fluorescent staining in cortical and medullary collecting tubules of the hydronephrotic kidney was increased and (b) cyclooxygenase antigenicity appeared in the thin limbs of Henle's loop in the hydronephrotic organ. Although alterations in prostaglandin formation by the renal vasculature have been documented previously, our results indicate that ureteral obstruction also causes increased prostaglandin synthesis by renal tubules.  相似文献   

13.
Abstract

We investigated the renal protective effects of phophodiesterase type 5 (PDE5) inhibitors in mice with cyclosporine A (CyA; a calcineurin phosphatase inhibitor) induced nephrotoxicity. Fifty male mice were divided into five groups of 10. Group 1 received no treatment, group 2 received only saline orally, group 3 received 30 mg/kg/day CyA by subcutaneous injection, group 4 received only 30 mg/kg/day vardenafil orally, and group 5 received 30 mg/kg/day CyA by subcutaneous injection and 30 mg/kg/day vardenafil orally. At 28 days, platelet-derived growth factor A (PDGF-A) and C (PDGF-C), transforming growth factor-beta 1 (TGF-β1), cyclo-oxygenase 1 and 2 (COX-1 and COX-2), and P glycoprotein (Pgp) expression levels were measured in the renal tissues. In addition, expressions of COX-1 and COX-2 genes were determined using real-time PCR. PDE5 inhibitor administration ameliorated decreased PDGF-A and C, TGF-β1, COX-1 and -2, and Pgp expression levels by modulation of cyclic guanosine monophosphate (cGMP) activity in kidneys. The relative expressions of COX-1 and COX-2 genes to GAPDH revealed that the maximum increase was obtained in the group treated with CyA and vardenafil for both COX-1 and COX-2 genes. Our study revealed that long term oral treatment with vardenafil protects kidneys from CyA induced nephrotoxicity. We showed that long term oral treatment with PDE5 prevents pathological kidney changes caused by CyA induced nephrotoxicity.  相似文献   

14.
The hydronephrotic rabbit kidney exhibits elevated basal prostaglandin synthesis and supersensitivity to peptide stimulation of vascular prostaglandin and thromboxane formation. In this study the distribution of the prostaglandin-forming cyclooxygenase in hydronephrotic and contralateral rabbit kidneys following one and four day ureteral obstructions was compared using immunohistofluorescence. No alterasions were detected in the distribution or intensity of cyclooxygenase-positive fluorescence in the renal vasculature in response to ureteral obstructions. However, two significant differences were noted between hydronephrotic and contralateral kidneys in the staining of renal tubules: (a) the intensity of fluorescent staining in cortical and medullary collecting tubules of the hydronephrotic kidney was increased and (b) cyclooxygenase antigenicity appeared in the thin limbs of Henle's loop in the hydronephrotic organ. Although alterations in prostaglandin formation by the renal vasculature have been documented previously, our results indicate that ureteral obstruction also causes increased prostaglandin synthesis by renal tubules.  相似文献   

15.

Aims

Hypertension is associated with the impairment of renal cyclooxygenase (COX) activity, which regulates vascular tone, salt and water balance and renin release. We aimed to evaluate the functional role of COX isoforms in kidneys isolated from spontaneously hypertensive rats (SHR) after α1-adrenoceptor (α1-AR) stimulation.

Main methods

Male six-month-old SHR and normotensive Wistar-Kyoto rats (WKY) were used. The kidneys were isolated to measure perfusion pressure and COX-1- or COX-2-derived prostanoids in response to α1-AR activation.

Key findings

The basal perfusion pressure was higher in SHR kidneys compared with WKY kidneys (95 ± 11 vs. 68 ± 6 mm Hg, P < 0.05). Phenylephrine induced a greater vasopressor response in SHR kidneys (EC50 of 1.89 ± 0.58 nmol) than WKY kidneys (EC50 of 3.30 ± 0.54 nmol, P < 0.05 vs. SHR). COX-1 inhibition decreased the α1-AR-induced vasoconstrictor response in WKY but did not affect SHR response, while COX-2 inhibition diminished the response in SHR. Both basal prostacyclin (PGI2) and thromboxane A2 (TxA2) values were higher in SHR kidney perfusates (P < 0.05) and were reduced by COX-1 and COX-2 inhibitors in both strains. Furthermore, phenylephrine increased PGI2 through COX-2 in WKY and through COX-1 in SHR, but the agonist did not significantly modify TxA2 in both strains.

Significance

The data suggest that COX-1contributes to vasoconstrictor effects in WKY kidneys and that COX-2 has the same effect in SHR kidneys. The results also suggest that basal release of COX-2-derived vasoconstrictor prostanoids is involved in renal vascular hypersensitivity in SHR.  相似文献   

16.
NO/cGMP signaling plays an important role in vascular relaxation and regulation of blood pressure. The key enzyme in the cascade, the NO-stimulated cGMP-forming guanylyl cyclase exists in two enzymatically indistinguishable isoforms (NO-GC1, NO-GC2) with NO-GC1 being the major NO-GC in the vasculature. Here, we studied the NO/cGMP pathway in renal resistance arteries of NO-GC1 KO mice and its role in renovascular hypertension induced by the 2-kidney-1-clip-operation (2K1C). In the NO-GC1 KOs, relaxation of renal vasculature as determined in isolated perfused kidneys was reduced in accordance with the marked reduction of cGMP-forming activity (80%). Noteworthy, increased eNOS-catalyzed NO formation was detected in kidneys of NO-GC1 KOs. Upon the 2K1C operation, NO-GC1 KO mice developed hypertension but the increase in blood pressures was not any higher than in WT. Conversely, operated WT mice showed a reduction of cGMP-dependent relaxation of renal vessels, which was not found in the NO-GC1 KOs. The reduced relaxation in operated WT mice was restored by sildenafil indicating that enhanced PDE5-catalyzed cGMP degradation most likely accounts for the attenuated vascular responsiveness. PDE5 activation depends on allosteric binding of cGMP. Because cGMP levels are lower, the 2K1C-induced vascular changes do not occur in the NO-GC1 KOs. In support of a higher PDE5 activity, sildenafil reduced blood pressure more efficiently in operated WT than NO-GC1 KO mice. All together our data suggest that within renovascular hypertension, cGMP-based PDE5 activation terminates NO/cGMP signaling thereby providing a new molecular basis for further pharmacological interventions.  相似文献   

17.
Acute renal failure (ARF) can be caused by injuries that induce tissue hypoxia, which in turn can trigger adaptive or inflammatory responses. We previously showed the participation of basic fibroblast growth factor (FGF-2) in renal repair. Based on this, the aim of this study was to analyze the effect of FGF-2 signaling pathway manipulation at hypoxia-induced protein levels, as well as in key proteins from the vasoactive systems of the kidney. We injected rat kidneys with FGF-2 recombinant protein (r-FGF) or FGF-2 receptor antisense oligonucleotide (FGFR2-ASO) after bilateral ischemia, and evaluated the presence of iNOS, EPO and HO-1, in representation of hypoxia-induced proteins, as well as COX-2, renin, kallikrein, and B2KR, in representation of the vasoactive systems of the kidney. A reduction in iNOS, HO-1, EPO, renin, kallikrein, B2KR, and in renal damage was observed in animals treated with r-FGF. The opposite effect was found with FGF-2 receptor down-regulation. In contrast, COX-2 protein levels were higher in kidneys treated with r-FGF and lower in those that received FGFR2-ASO, as compared to saline treated kidneys. These results suggest that the protective role of FGF-2 in the pathogenesis of ARF induced by I/R is a complex process, through which a differential regulation of metabolic pathways takes place.  相似文献   

18.
Prostaglandins have been implicated as paracrine regulators of renin secretion, but the specific pathways and receptor(s) carrying out these functions have not been fully elucidated. To examine the contributions of prostanoid synthetic pathways and receptors to regulation of renin in the intact animal, we used a panel of mice with targeted disruption of several key genes: cyclooxygenase-2 (COX-2), microsomal PGE synthases 1 and 2 (mPGES1, mPGES2), EP2 and EP4 receptors for PGE(2), and the IP receptor for PGI(2). To activate the macula densa signal for renin stimulation, mice were treated with furosemide over 5 days and renin mRNA levels were determined by real-time RT-PCR. At baseline, there were no differences in renin mRNA levels between wild-type and the various strains of mutant mice. Furosemide caused marked stimulation of renin mRNA expression across all groups of wild-type control mice. This response was completely abrogated in the absence of COX-2, but was unaffected in mice lacking mPGES1 or mPGES2. The absence of G(s)/cAMP-linked EP2 receptors had no effect on stimulation of renin by furosemide and there was only a modest, insignificant reduction in renin responses in mice lacking the IP receptor. By contrast, renin stimulation in EP4(-/-) mice was significantly reduced by ~70% compared with wild-type controls. These data suggest that stimulation of renin by the macula densa mechanism is mediated by PGE(2) through a pathway requiring COX-2 and the EP4 receptor, but not EP2 or IP receptors. Surprisingly, mPGES1 or mPGES2 are not required, suggesting other alternative mechanisms for generating PGE(2) in response to macula densa stimulation.  相似文献   

19.
Previous studies have shown that intrauterine growth restriction (IUGR) can impair nephrogenesis, but uncertainties remain about the importance of the gestational timing of the insult and the effects on the renal renin-angiotensin system (RAS). We therefore hypothesized that induction of IUGR during late gestation alters the RAS, and this is associated with a decrease in nephron endowment. Our aims were to determine the effects of IUGR induced during the later stages of nephrogenesis on 1) nephron number; 2) mRNA expression of angiotensin AT(1) and AT(2) receptors, angiotensinogen, and renin genes in the kidney; and 3) the size of maculae densae. IUGR was induced in fetal sheep (n = 7) by umbilical-placental embolization from 110 to 130 days of the approximately 147-day gestation; saline-infused fetuses served as controls (n = 7). Samples of cortex from the left kidney were frozen, and the right kidney was perfusion fixed. Total kidney volume, nephron number, renal corpuscle volume, total maculae densae volume, and the volume of macula densa per glomerulus were stereologically estimated. mRNA expression of AT(1) and AT(2) receptors, angiotensinogen, and renin in the renal cortex was determined. In IUGR fetuses at 130 days, body and kidney weights were significantly reduced and nephron number was reduced by 24%. There was no difference in renin, angiotensinogen, or AT(1) and AT(2) receptor mRNA expression levels in the IUGR kidneys compared with controls. We conclude that fetal growth restriction late in nephrogenesis can lead to a marked reduction in nephron endowment but does not affect renal corpuscle or macula densa size, or renal RAS gene expression.  相似文献   

20.
Androgens may provide protective effects in the vasculature under pathophysiological conditions. Our past studies have shown that dihydrotestosterone (DHT) decreases expression of cyclooxygenase-2 (COX-2) during cytokine, endotoxin, or hypoxic stimulation in human vascular smooth muscle cells, in an androgen receptor (AR)-independent fashion. Classically DHT is regarded as a pure AR agonist; however, it can be endogenously metabolized to 5α-androstane-3β, 17β-diol (3β-diol), which has recently been shown to be a selective estrogen receptor (ERβ) agonist. Therefore, we hypothesized that DHT's anti-inflammatory properties following cytokine stimulation are mediated through ERβ. Using primary human brain vascular smooth muscle cells (HBVSMC), we tested whether DHT's effect on IL-1β induced COX-2 expression was mediated via AR or ERβ. The metabolism of DHT to 3β-diol is a viable pathway in HBVSMC since mRNA for enzymes necessary for the synthesis and metabolism of 3β-diol [3alpha-hydroxysteroid dehydrogenase (HSD), 3β-HSD, 17β-HSD, CYP7B1] was detected. In addition, the expression of AR, ERα, and ERβ mRNA was detected. When applied to HBVSMC, DHT (10nM; 18 h) attenuated IL-1β-induced increases in COX-2 protein expression. The AR antagonist bicalutamide did not block DHT's ability to reduce COX-2. Both the non-selective estrogen receptor antagonist ICI 182,780 (1 μM) and the selective ERβ antagonist PHTPP (1 μM) inhibited the effect of DHT, suggesting that DHT actions are ERβ-mediated. In HBVSMC and in rat mesenteric arteries, 3β-diol, similar to DHT, reduced cytokine-induced COX-2 levels. In conclusion, DHT appears to be protective against the progression of vascular inflammation through metabolism to 3β-diol and activation of ERβ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号