首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel 3-(arylsulfonyl)-1-(azacyclyl)-1H-indoles 6 were synthesized as potential 5-HT6 receptor ligands, based on constraining a basic side chain as either a piperidine or a pyrrolidine. Many of these compounds had good 5-HT6 binding affinity with Ki values <10 nM. Depending on substitution, both agonists (e.g., 6o: EC50 = 60 nM, Emax = 70%) and antagonists (6y: IC50 = 17 nM, Imax = 86%) were identified in a 5-HT6 adenylyl cyclase assay.  相似文献   

2.
A series of 3-(4-piperidinyl)- and 3-(8-aza-bicyclo[3.2.l]oct-3-yl)-2-phenyl-1H-indoles have been prepared and evaluated as ligands for the h5-HT2A receptor. 3-(8-Phenethyl-8-aza-bicyclo[3.2.l]oct-3-yI)-2-phenyl-1H-indole is a high-affinity (1.2 nM), selective (>800 fold over h5-HT2C and hD2 receptors) antagonist at the h5-HT2A receptor with oral bioavailability in rats.  相似文献   

3.
The new series of 5-(2-phenoxybenzyl)-4H-1,2,4-triazoles, possessing C-3 thio, alkylthio and ethoxy substituents, and 2-amino-5-(2-phenoxybenzyl)-1,3,4-oxadiazoles were designed and synthesized as novel benzodiazepine analogues. Most of them revealed similar to superior binding affinity to the GABAA/benzodiazepine receptor complex, relative to diazepam as the reference drug. Among them, 5-(4-chloro-2-(2-fluorophenoxy)benzyl)-3-benzylthio-4H-1,2,4-triazole (8l) showed the highest affinity (IC50 = 0.892 nM) relative to diazepam (IC50 = 2.857 nM) and also showed the most increase in pentylenetetrazole-induced seizure threshold relative to diazepam as the reference drug.  相似文献   

4.
The 14-3-3 family of proteins are multifunctional proteins that interact with many of their cellular targets in a phosphorylation-dependent manner. Here, we determined that 14-3-3 proteins interact with phosphorylated forms of the water channel aquaporin-2 (AQP2) and modulate its function. With the exception of σ, all 14-3-3 isoforms were abundantly expressed in mouse kidney and mouse kidney collecting duct cells (mpkCCD14). Long-term treatment of mpkCCD14 cells with the type 2 vasopressin receptor agonist dDAVP increased mRNA and protein levels of AQP2 alongside 14-3-3β and -ζ, whereas levels of 14-3-3η and -θ were decreased. Co-immunoprecipitation (co-IP) studies in mpkCCD14 cells uncovered an AQP2/14-3-3 interaction that was modulated by acute dDAVP treatment. Additional co-IP studies in HEK293 cells determined that AQP2 interacts selectively with 14-3-3ζ and -θ. Use of phosphatase inhibitors in mpkCCD14 cells, co-IP with phosphorylation deficient forms of AQP2 expressed in HEK293 cells, or surface plasmon resonance studies determined that the AQP2/14-3-3 interaction was modulated by phosphorylation of AQP2 at various sites in its carboxyl terminus, with Ser-256 phosphorylation critical for the interactions. shRNA-mediated knockdown of 14-3-3ζ in mpkCCD14 cells resulted in increased AQP2 ubiquitylation, decreased AQP2 protein half-life, and reduced AQP2 levels. In contrast, knockdown of 14-3-3θ resulted in increased AQP2 half-life and increased AQP2 levels. In conclusion, this study demonstrates phosphorylation-dependent interactions of AQP2 with 14-3-3θ and -ζ. These interactions play divergent roles in modulating AQP2 trafficking, phosphorylation, ubiquitylation, and degradation.  相似文献   

5.
1-(2-Aminoethyl)-3-(arylsulfonyl)-1H-pyrrolopyridines were prepared. Binding assays indicated they are 5-HT6 receptor ligands, among which 6f and 6g showed high affinity for 5-HT6 receptors with Ki = 3.9 and 1.7 nM, respectively.  相似文献   

6.
We have previously shown that whereas (RS)-2-amino-3-(3-hydroxy-5-phenylisoxazol-4-yl)propionic acid (APPA) shows the characteristics of a partial agonist at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, (S)-APPA is a full AMPA receptor agonist and (R)-APPA a weak competitive AMPA receptor antagonist. This observation led us to introduce the new pharmacological concept, functional partial agonism. Recently we have shown that the 2-pyridyl analogue of APPA, (RS)-2-amino-3-[3-hydroxy-5-(2-pyridyl)isoxazol-4-yl]propionic acid (2-Py-AMPA), is a potent and apparently full AMPA receptor agonist, and this compound has now been resolved into (+)- and (-)-2-Py-AMPA (ee ≥ 99.0%) by chiral HPLC using a Chirobiotic T column. The absolute stereochemistry of the enantiomers of APPA has previously been established by X-ray analysis, and on the basis of comparative studies of the circular dichroism spectra of the enantiomers of APPA and 2-Py-AMPA, (+)- and (-)-2-Py-AMPA were assigned the (S)- and (R)-configuration, respectively. In a series of receptor binding studies, neither enantiomer of 2-Py-AMPA showed detectable affinity for kainic acid receptor sites or different sites at the N-methyl-D-aspartic acid (NMDA) receptor complex. (+)-(S)-2-Py-AMPA was an effective inhibitor of [3H]AMPA binding (IC50 = 0.19 ± 0.06 μM) and a potent AMPA receptor agonist in the rat cortical wedge preparation (EC50 = 4.5 ± 0.3 μM) comparable with AMPA (IC50 = 0.040 ± 0.01 μM; EC50 = 3.5 ± 0.2 μM), but much more potent than (+)-(S)-APPA (IC50 = 5.5 ± 2.2 μM; EC50 = 230 ± 12 μM). Like (-)-(R)-APPA (IC50 > 100 μM), (-)-(R)-2-Py-AMPA (IC50 > 100 μM) did not significantly affect [3H]AMPA binding, and both compounds were week AMPA receptor antagonists (Ki = 270 ± 50 and 290 ± 20 μM, respectively). Chirality 9:274–280, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
The 2-(aminomethyl)-2-decarboxy analogs of prostaglandin F2α (PGF2α), (15S)-15-methyl-PGF2α, 16-phenoxy-ω-tetranor-PGF2α and 16,16-dimethyl-PGF2α were synthesized. The amino analogs closely resemble the parent PGF2α compounds as antifertility agents in the hamster.  相似文献   

8.
An in vitro study of effects of vitamin C-palmitate on the metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in rat microsomes was performed. A sensitive assay method has been developed for the detection of metabolites of NNK in microsomes. Only the reduced metabolite of NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-butanol (NNAL), was detected and measured in a time-course study. Vitamin C-palmitate enhanced the reduction of NNK in a concentration-dependent manner. The results indicate a significant increase in Vmax and Km in the presence of vitamin C. However, the rate of formation of NNAL at low substrate concentration varied. The ratio of Vmax to Km decreases. The results suggest that the kinetics are accounted for best by an uncompetitive activator binding model at low concentration of vitamin C. The uncompetitive binding model becomes sketchy at higher concentration of vitamin C. These observations infer that vitamin C loosely binds to the substrate-enzyme complex. Furthermore, the nature of the binding would facilitate the modulation of NNK biotransformation leading to the formation of NNAL. The results also show that vitamin C-palmitate is a potent activator of NNK reduction in rat liver microsomes. Thus, vitamin C-palmitate would mediate the metabolism of NNK through reduction. The resulting NNAL-glucuronide is more readily eliminated in urine.  相似文献   

9.
(E)-2-(2-(2-hydroxyphenyl)hydrazono)-1-phenylbutane-1,3-dione (H2L) was synthesized by azocoupling of diazonium salt of 2-hydroxyaniline with 1-phenylbutane-1,3-dione and characterized by IR, 1H and 13C NMR spectroscopies and X-ray diffraction analysis. In solution, H2L exists as a mixture of the enol-azo and hydrazone tautomeric forms and a decrease of temperature and of solvent polarity shifts the tautomeric balance to the hydrazone form. In the solid state, H2L crystallizes from ethanol-water in the monohydrate hydrazone form, as shown by X-ray analysis. The dissociation constants of H2L (pK1 = 5.98 ± 0.04, pK2 = 9.72 ± 0.03) and the stability constants of its copper(II) complex (log β1 = 11.01 ± 0.07, log β2 = 20.19 ± 0.08) were determined by the potentiometric method in aqueous-ethanol solution. The copper(II) complex [Cu2(μ-L)2]n was isolated in the solid state and found by X-rays to be a coordination polymer of a binuclear core with a distorted square pyramidal metal coordination geometry.  相似文献   

10.
In an attempt to investigate the role of histone H2B in Cu(II) induced toxicity and carcinogenesis, we synthesized the terminally blocked peptides H2B32-62 (SRKESYSVYVYKVLKQVH48PDTGISSKAMGIM) and Η2Β94-125 (IQTAVRLLLPGELAKH110AVSEGTKAVTKYTSS), mimicking the N-terminal histone-fold domain and C-terminal tail of histone H2B, respectively and studied their interaction with Cu(II) ions by means of potentiometric titrations and spectroscopic techniques (UV-visible, CD and EPR). Both peptides, H2B32-62 and H2B94-125, interacted efficiently with Cu(II) ions, forming several species from pH 4 to 11, with His48 and His110 serving as anchors for metal binding. In H2B32-62, the effective Cu(II) binding is emphasized by the formation of a soluble Cu(II)-H2B32-62 complex, unlike the unbound peptide that precipitated over pH 7.9. At physiological pH, both peptides form tetragonal 3N species with a {NIm, 2N} coordination mode. At this pH, H2B32-62 presented the formation of coordination isomers, differentiated by the presence in one of them, of an axial coordination of the carboxylate group of Asp50. Copper binding with both H2B32-62 and H2B94-125 may induce a conformational change in the peptides' original structure. At physiological conditions, this effect may interfere with nucleosome's structure and dynamics, including the ubiquitination of Lys120 which is linked to gene silencing.  相似文献   

11.
The 2-(4-methoxybenzyl)-1-cyclohexanols and 2-(4-methoxybenzyl)-1-cyclopentanols are the basic structure of a series of juvenile hormone analogs which act as insect growth regulators. Their enantioselective transesterification with the lipase B from Candida antarctica produced pure enantiomers of R-cyclohexyl and R-cyclopentyl acetates (i.e. eep > 99%). Differences observed in the resolution of the four racemic compounds are in accordance with model structure of secondary alcohols suitable for catalysis.  相似文献   

12.
A series of substituted 3-(benzylthio)-5-(1H-indol-3-yl)-4H-1,2,4-triazol-4-amines has been synthesised and tested in vitro as potential pro-apoptotic Bcl-2-inhibitory anticancer agents. Synthesis of the target compounds was readily accomplished in good yields through a cyclisation reaction between indole-3-carboxylic acid hydrazide and carbon disulfide under basic conditions, followed by S-benzylation. Active compounds, such as the nitrobenzyl analogue 6c, were found to exhibit sub-micromolar IC50 values in Bcl-2 expressing human cancer cell lines. Molecular modelling and ELISA studies further implicated anti-apoptotic Bcl-2 as a candidate molecular target underpinning anticancer activity.  相似文献   

13.
The role of all-trans-retinoic acid (ATRA) in the development and maintenance of many epithelial and neural tissues has raised great interest in the potential of ATRA and related compounds (retinoids) as pharmacological agents, particularly for the treatment of cancer, skin, neurodegenerative and autoimmune diseases. The use of ATRA or prodrugs as pharmacological agents is limited by a short half-life in vivo resulting from the activity of specific ATRA hydroxylases, CYP26 enzymes, induced by ATRA in liver and target tissues. For this reason retinoic acid metabolism blocking agents (RAMBAs) have been developed for treating cancer and a wide range of other diseases.The synthesis, CYP26A1 inhibitory activity and molecular modeling studies of novel methyl 3-[4-(arylamino)phenyl]-3-(azole)-2,2-dimethylpropanoates are presented. From this series of compounds clear SAR can be derived for 4-substitution of the phenyl ring with electron-donating groups more favourable for inhibitory activity. Both the methylenedioxyphenyl imidazole (17, IC50 = 8 nM) and triazole (18, IC50 = 6.7 nM) derivatives were potent inhibitors with additional binding interactions between the methylenedioxy moiety and the CYP26 active site likely to be the main factor. The 6-bromo-3-pyridine imidazole 15 (IC50 = 5.7 nM) was the most active from this series compared with the standards liarozole (IC50 = 540 nM) and R116010 (IC50 = 10 nM).  相似文献   

14.
(R,S)-trans-8-Hydroxy-2-[N-n-propyl-N-(3′-iodo-2′-propenyl)amino]tetralin 7 , a new radioiodinated ligand based on 8-OH-DPAT, was reported as a potential ligand for 5-HT1A receptors. The optically active (+)-(R)- and (?)-(S)- 7 were prepared to investigate the stereoselectivity of (R,S)- 7 . Racemic intermediate 8-methoxy-2-N-n-propyltetralin was reacted with the acyl chloride of (?)-(R)-O-methylmandelic acid to form a mixture of (S,R)- and (R,R)-diastereoisomers, which were separated by flash column chromatography. After removing the N-acyl group from the diastereoisomers, the desired (+)-(R)-or (?)-(S)- 7 was obtained by adding an N-iodopropenyl group. In vitro homogenate binding studies showed the stereoselectivity of this new compound for 5-HT1A receptors. (+)-(R)- 7 isomer displayed 100-fold higher affinity than the (?)-(S)- 7 isomer. Biochemical study indicated that (+)-(R)- 7 potently inhibited forskolin-stimulated adenylyl cyclase activity in hippocampal membranes (Emax and EC50 were 24.5% and 5.4 nM, respectively), while (?)-(S)- 7 showed no effect at 1 μM. The radioiodinated (+)-(R)- and (?)-(S)-[125I] 7 were confirmed by coelution with the resolved unlabeled compound on HPLC (reverse phase column PRP-1, acetonitrile/pH 7.0 buffer, 80/20). The active isomer, (+)-(R)-[125I] 7 , displayed high binding affinity to 5-HT1A receptors (Kd = 0.09 ± 0.02 nM). In contrast, the (?)-(S)- 7 isomer displayed a significantly lower affinity to the 5-HT1A receptor (Kd > 10 nM). Thus, (+)-(R)-[125I]trans-8-OH-PIPAT, (+)-(R)- 7 , an iodinated stereoselective 5-HT1A receptor agonist, is potentially useful for study of in vivo and in vitro function and pharmacology of 5-HT1A receptors in the central nervous system. © 1995 Wiley-Liss, Inc.  相似文献   

15.
Two mutants, EA3-867 and N2-78, with high cellulase yields were obtained from wild strains of Trichoderma pseudokoningii Rifai, 1096 and Mo3, respectively, by mutagenic treatments with a linear accelerator, 60Co, u.v., nitrosoguanidine (NTG) and diethylsulphate (DTS). The mutants grew slowly to produce small colonies on agar plates with synthetic medium. On agar plates of peptone-yeast extract, the small colonies were as large as those of wild strains. The cellulase activities of these mutants in Koji extracts, shake flask culture filtrates, and enzyme preparations were markedly higher than those of their parents. The mutant N2-78 reached quite high cellulase activity level when cultured for 60 h in shake flasks in a simple medium containing milled straw, wheat bran, mineral salts plus waste glucose molasses. The cellulase saccharifying activities on CMC, filter paper and cotton, were 255, 8.2 and 13.4 mg glucose/ml enzyme, respectively, or 11, 4.3 and 6 times more than those of its parent Mo3.The cellulase synthesis of EA3-867 and N2-78 was strongly induced by sophorose, isolated from pods of Sophora japonica L., and was inhibited by glucose, sugar phosphates, glycerol and organic acids. We conclude that cellulase synthesis of the mutants is regulated by catabolite repression as well as by induction. The increase in cellulase production by both mutants results from changes in the regulatory systems for cellulase synthesis, i.e. the mutants showed higher sensitivity to inducer and lower susceptibility to catabolite repression than did the wild types.A cellulase preparation of Trichoderma pseudokoningii Rifai N2-78 induced by sophorose was fractionated by DEAE-Sephadex A-50 and Sephadex G-100 column chromatography, selective inactivation and polyacrylamide gel electrophoresis. The components C1(exo-β1,4-glucanase), Cx(endo-β1,4-glucanase) and β-glucosidase were separated, and their molecular weights were estimated to be 67 000, 62 000 and 42 000 respectively. The homogeneity of C1 was verified by polyacrylamide gel electrophoresis, immunoelectrophoresis and ultracentrifugal analysis. It is a glycoprotein and is rich in glycine, aspartic acid, threonine, serine and glutamic acid. The C1 showed a strong synergistic action with Cx in the degradation of cotton, Avicel and Walseth cellulose.A poly(A)-RNA, induced by sophorose in N2-78 mycelium, was isolated by oligo(dT)-cellulose affinity chromatography.  相似文献   

16.
Carbonic anhydrases (CAs, EC 4.2.1.1) belonging to α-, β-, γ- and ζ-classes and from various organisms, ranging from the bacteria, archaea to eukarya domains, were investigated for their esterase/phosphatase activity with 4-nitrophenyl acetate, 4-nitrophenyl phosphate and paraoxon as substrates. Only α-CAs showed esterase/phosphatase activity, whereas enzymes belonging to the β-, γ- and ζ-classes were completely devoid of such activity. Paraoxon, the metabolite of the organophosphorus insecticide parathione, was a much better substrate for several human/murine α-CA isoforms (CA I, II and XIII), with kcat/KM in the range of 2681.6–4474.9 M?1 s?1, compared to 4-nitrophenyl phosphate (kcat/KM of 14.9–1374.4 M?1 s?1).  相似文献   

17.
We have synthesized 2- and 8-monosubstituted and 2,8-disubstituted derivatives of the cytokinin 6-(3-methyl-2-butenylamino)purine (N6-isopentenyladenine) and have shown the dependence of growth-promoting activity in the tobacco bioassay upon the position, number, and type of substituent. The representative substituent groups were MeS, Me, MeSO2, C6H5CH2S, HS and Cl. The 8-methyl derivative was exceptional in being more active than the unsubstituted parent compound. In general, substitution in the 8-position decreases activity less than substitution in the 2-position, with the exception of the electron-attracting methylsulfonyl. Substitution in both the 2- and 8-positions lowers the activity more than substitution at either single position on the adenine nucleus, with the exception of the 2,8-dimethyl derivative. The chloro and methylthio derivatives show activity in the same range as the methyl derivatives, and the mercapto compounds, which exist mainly as CS tautomers, show somewhat less activity than the corresponding methylthio compounds. Bulky (C6H5CH2S and MeSO2) and strongly electron-attracting (MeSO2) substituents cause relatively great reduction in cytokinin activity.  相似文献   

18.
New large-scale synthetic approach to antiretroviral agent 9-[2-(R)-(phosphonomethoxy)propyl]-2,6-diaminopurine, (R)-PMPDAP, was developed. Reaction of (R)-propanediol carbonate with 2,6-diaminopurine afforded exclusively (R)-9-(2-hydroxypropyl)-2,6-diaminopurine which was subsequently used for introduction of a phosphonomethyl residue using TsOCH2P(O)(OiPr)2 or BrCH2P(O)(OiPr)2 followed by deprotection of ester groups. All minor ingredients and by-products formed during the process were identified and further studied. The final product was obtained in high yield and its high enantiomeric purity (>99%) was confirmed by chiral capillary electrophoretic analysis using β-cyclodextrin as a chiral selector. Antiretroviral activity data of (R)-PMPDAP and its diverse prodrugs against HIV and FIV were investigated. Akin to (R)-PMPDAP, both prodrugs inhibit FIV replication in a selective manner. Compared to the parent molecule, the amidate prodrug was 10-fold less active against FIV in cell culture, whereas the alkoxyalkyl ester prodrug was 200-fold more potent in inhibiting FIV replication in vitro.  相似文献   

19.
A series blue phosphorescent emitting materials based on 2-(fluoro substituted phenyl)-4-methylpyridine as the cyclometalated ligands have been synthesized and characterized. The complexes have the general structure (C^N)2Ir(pic), where C^N is a monoanionic cyclometalating ligand (e.g., 2-(2,4-difluorophenyl)-4-methylpyridine (24f2pmpyH), 2-(3,4-difluorophenyl)-4-methylpyridine (34f2pmpyH), 2-(3,5-difluorophenyl)-4-methylpyridine (35f2pmpyH), and 2-(3,4,5-trifluorophenyl)-4-methyl-pyridine (345f3pmpyH)), pic is 2-picolinic acid. The absorption, emission, cyclic voltammetry and thermostability of the complexes were systematically investigated. The (46f2pmpy)2Ir(pic) has been characterized using X-ray crystallography and the electronic ground state calculated using B3LYP density functional theory. HOMO levels are a mixture of Ir and 2-(fluoro phenyl)-4-methylpyridine ligand orbitals, while the LUMO is predominantly pic ligand based. Introduction of fluorine atoms and methyl group into ppy ligand and changing in position of F substituents in phenyl ring can finely tune emission of the complexes, showing bright blue-to-green luminescence at a wavelength of 463-501 nm at room temperature in CH2Cl2.  相似文献   

20.
The reaction of the new bidirectional ligand 3-phenyl-5-(2-pyridyl)-4-(4-pyridyl)-4H-1,2,4-triazole (pyppt) with Cu(ClO4)2 · 6H2O in a 2:1 molar ratio in EtOH affords the complex [CuII(pyppt)2(ClO4)2] · H2O (1) as a microcrystalline turquoise solid. Recrystallisation of complex 1 from MeCN by vapour diffusion of Et2O gives blue crystals of the monomeric octahedral complex [CuII(pyppt)2(ClO4)2] · MeCN (2). In contrast, addition of EtOH to a solution of complex 1 in MeCN followed by slow evaporation yields blue crystals of the five-coordinate polymeric complex {[CuII(pyppt)2](ClO4)2 · EtOH} (3). The structures of both complexes have been determined by single crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号