首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cell differentiation is an orderly process that begins with modifications in gene expression. This process is regulated by the acetylation state of histones. Removal of the acetyl groups of histones by specific enzymes (histone deacetylases, HDAC) usually downregulates expression of genes that can cause cells to differentiate, and pharmacological inhibitors of these enzymes have been shown to induce differentiation in several colon cancer cell lines. Butyrate at high (mM) concentration is both a precursor for acetyl-CoA and a known HDAC inhibitor that induces cell differentiation in colon cells. The dual role of butyrate raises the question whether its effects on HT29 cell differentiation are due to butyrate metabolism or to its HDAC inhibitor activity. To distinguish between these two possibilities, we used a tracer-based metabolomics approach to compare the metabolic changes induced by two different types of HDAC inhibitors (butyrate and the non-metabolic agent trichostatin A) and those induced by other acetyl-CoA precursors that do not inhibit HDAC (caprylic and capric acids). [1,2-13C2]-d-glucose was used as a tracer and its redistribution among metabolic intermediates was measured to estimate the contribution of glycolysis, the pentose phosphate pathway and the Krebs cycle to the metabolic profile of HT29 cells under the different treatments. The results demonstrate that both HDAC inhibitors (trichostatin A and butyrate) induce a common metabolic profile that is associated with histone deacetylase inhibition and differentiation of HT29 cells whereas the metabolic effects of acetyl-CoA precursors are different from those of butyrate. The experimental findings support the concept of crosstalk between metabolic and cell signalling events, and provide an experimental approach for the rational design of new combined therapies that exploit the potential synergism between metabolic adaptation and cell differentiation processes through modification of HDAC activity.  相似文献   

4.
Quinidine inhibits proliferation and promotes cellular differentiation in human breast tumor epithelial cells. Previously we showed quinidine arrested MCF-7 cells in G(1) phase of the cell cycle and led to a G(1) to G(0) transition followed by apoptotic cell death. The present experiments demonstrated that MCF-7, MCF-7ras, T47D, MDA-MB-231, and MDA-MB-435 cells transiently differentiate before undergoing apoptosis in response to quinidine. The cells accumulated lipid droplets, and the cytokeratin 18 cytoskeleton was reorganized. Hyperacetylated histone H4 appeared within 2 h of the addition of quinidine to the medium, and levels were maximal by 24 h. Quinidine-treated MCF-7 cells showed elevated p21(WAF1), hypophosphorylation and suppression of retinoblastoma protein, and down-regulation of cyclin D1, similar to the cell cycle response observed with cells induced to differentiate by histone deacetylase inhibitors, trichostatin A, and trapoxin. Quinidine did not show evidence for direct inhibition of histone deacetylase enzymatic activity in vitro. HDAC1 was undetectable in MCF-7 cells 30 min after addition of quinidine to the growth medium. The proteasome inhibitors MG-132 and lactacystin completely protected HDAC1 from the action of quinidine. We conclude that quinidine is a breast tumor cell differentiating agent that causes the loss of HDAC1 via a proteasomal sensitive mechanism.  相似文献   

5.
6.
7.
Epigenetic silencing of the tumor suppressor gene, RARβ2, through histone deacetylation has been established as an important process of cervical carcinogenesis. This pivotal role has led to the suggestion that a combination of retinoids selective for RARβ2 with histone deacetylase (HDAC) inhibitors may have therapeutic potential. Valproic acid (VPA), a HDAC inhibitor, has a critical role in the regulation of gene expression through histone acetylation and causes transformed cells to undergo growth arrest, differentiation, and apoptosis. Therefore, we hypothesized that the combination of VPA and ATRA could restore RARβ2 expression, thus resulting in enhanced anti-neoplastic activity in cervical cancer. Here, we show that VPA combined with ATRA led to hyperacetylation of histone H3 and a significant alteration of gene expression in cervical cancer cells, including RARβ2 gene expression, which was upregulated 50- to 90-fold. The combination therapy effectively inhibited the growth of cervical cancer cells more than the single agent treatment both in vitro and in vivo. The additive effects were associated with a significant upregulation of p21(CIP1) and p53 as well as a pronounced decrease in p-Stat3. Furthermore, the combined treatment led to cell cycle arrest predominantly at the G1 phase, and it preferentially induced cell differentiation rather than apoptosis in cervical cancer cells. The differentiation program was determined by the presence of E-cadherinmediated adhesion and activation of the PI3K/Akt pathway. Taken together, these results provide new insight into the mechanisms of enhanced antitumor activity of the HDAC inhibitor and ATRA regimen, thus offering a new therapeutic strategy for cervical cancer patients.  相似文献   

8.
Sodium butyrate (butyrate), 5-azacytidine (5Aza-C), dimethyl sulfoxide (DMSO), and dimethyl formamide (DMF) were applied to a human melanoma cell line for the purpose of inducing pigmentation and terminal differentiation. The results are summarized as follows: 1) butyrate, DMSO, and DMF had a strong cytostatic effect, arresting cells in the G1 phase of the cycle; 2) butyrate caused a morphological change to spindle shape whereas DMSO and DMF produced rounded cells, without affecting the levels of vimentin and intermediate filaments; 3) tyrosinase activity and melanization were stimulated by DMSO and DMF but not by butyrate; 4) butyrate induced several membrane-bound enzyme activities (alkaline phosphatase and gamma-glutamyl transpeptidase); 5) changes in the expression of antigens related to tyrosinase activity (2B7 and 5C12) only partly corresponded to the changes in enzyme activity; 6) expression of the melanosomal B8G3 antigen was decreased by butyrate, DMSO, and DMF; and 7) the action of DMF resembled that of DMSO whereas 5Aza-C had little effect. The results indicate that these differentiating agents activate different sets of genes, the melanogenic pathway being activated independently of gamma-glutamyltranspeptidase. The down regulation of B8G3 antigen by these agents may provide a common focus for understanding the essential action of differentiation inducers in melanoma cells.  相似文献   

9.
Acetylation of histones leads to conformational changes of DNA. We have previously shown that the histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), induced cell cycle arrest, differentiation, and apoptosis. In addition to their antitumor effects as single agents, HDAC inhibitors may cause conformational changes in the chromatin, rendering the DNA more vulnerable to DNA damaging agents. We examined the effects of SAHA on cell death induced by topo II inhibitors in breast cancer cell lines. Topo II inhibitors stabilize the topo II-DNA complex, resulting in DNA damage. Treatment of cells with SAHA promoted chromatin decondensation associated with increased nuclear concentration and DNA binding of the topo II inhibitor and subsequent potentiation of DNA damage. While SAHA-induced histone hyperacetylation occurred as early as 4 h, chromatin decondensation was most profound at 48 h. SAHA-induced potentiation of topo II inhibitors was sequence-specific. Pre-exposure of cells to SAHA for 48 h was synergistic, whereas shorter pre-exposure periods abrogated synergy and exposure of cells to SAHA after the topo II inhibitor resulted in antagonistic effects. Synergy was not observed in cells with depleted topo II levels. These effects were not limited to specific types of topo II inhibitors. We propose that SAHA significantly potentiates the DNA damage induced by topo II inhibitors; however, synergy is dependent on the sequence of drug administration and the expression of the target. These findings may impact the clinical development of combining HDAC inhibitors with DNA damaging agents.  相似文献   

10.
Histone deacetylase (HDAC) inhibitors are a promising class of anticancer agents for the treatment of solid and hematological malignancies. The precise mechanism by which HDAC inhibitors mediate their effects on tumor cell growth, differentiation, and/or apoptosis is the subject of intense research. Previously we described a family of multiprotein complexes that contain histone deacetylase 1/2 (HDAC1/2) and the histone demethylase BHC110 (LSD1). Here we show that HDAC inhibitors diminish histone H3 lysine 4 (H3K4) demethylation by BHC110 in vitro. In vivo analysis revealed an increased H3K4 methylation concomitant with inhibition of nucleosomal deacetylation by HDAC inhibitors. Reconstitution of recombinant complexes revealed a functional connection between HDAC1 and BHC110 only when nucleosomal substrates were used. Importantly, while the enzymatic activity of BHC110 is required to achieve optimal deacetylation in vitro, in vivo analysis following ectopic expression of an enzymatically dead mutant of BHC110 (K661A) confirmed the functional cross talk between the demethylase and deacetylase enzymes. Our studies not only reveal an intimate link between the histone demethylase and deacetylase enzymes but also identify histone demethylation as a secondary target of HDAC inhibitors.  相似文献   

11.
Histone deacetylase (HDAC) inhibitors have emerged as a new class of anticancer agents, targeting the biological processes including cell cycle, apoptosis and differentiation. In the present study, a series of 1,3,4-thiadiazole based hydroxamic acids were developed as potent HDAC inhibitors. Some of them showed good inhibitory activity in HDAC enzyme assay and potent growth inhibition in some tumor cell lines. Among them, compound 6i (IC(50) = 0.089 μM), exhibited better inhibitory effect compared with SAHA (IC(50) = 0.15 μM).  相似文献   

12.
Anumber of proteins are recruited to nuclear foci upon exposure to double-strand DNA damage, including 53BP1 and Rad51, but the precise role of these DNA damage-induced foci remain unclear. Here we show in a variety of human cell lines that histone deacetylase (HDAC) 4 is recruited to foci with kinetics similar to, and colocalizes with, 53BP1 after exposure to agents causing double-stranded DNA breaks. HDAC4 foci gradually disappeared in repair-proficient cells but persisted in repair-deficient cell lines or cells irradiated with a lethal dose, suggesting that resolution of HDAC4 foci is linked to repair. Silencing of HDAC4 via RNA interference surprisingly also decreased levels of 53BP1 protein, abrogated the DNA damage-induced G2 delay, and radiosensitized HeLa cells. Our combined results suggest that HDAC4 is a critical component of the DNA damage response pathway that acts through 53BP1 and perhaps contributes in maintaining the G2 cell cycle checkpoint.  相似文献   

13.
14.
15.
《Epigenetics》2013,8(3):121-126
Histone deacetylase inhibitors are emerging as a new class of cancer chemotherapeutics and already are being heralded as the first anti-cancer drugs targeting the epigenome. Through histone hyperacetylation-mediated changes in chromatin conformation and gene expression, histone deacetylase inhibitors induce differentiation, cell cycle arrest, apoptosis, growth inhibition and cell death, which are more pronounced in transformed cell-lines than in normal cells. Additional anti-cancer effects of HDAC inhibitors include inhibition of migration, invasion and angiogenesis in vivo. Indeed, clinical anti-cancer activity has been observed using HDAC inhibitors as single agents or in combination with conventional chemotherapeutics, in phase I and II trials. Furthermore, numerous pre-clinical studies are suggesting a potential clinical role for HDAC inhibitors in radiotherapy either as radiation sensitizers or protectors. In this article the molecular basis for the clinical potential of HDAC inhibitors, either as stand alone cancer therapeutics or in combination with other chemotherapy agents or ionizing radiation will be overviewed.   相似文献   

16.
Previous studies have shown that histone deacetylase 6 (HDAC6) plays critical roles in many cellular processes related to cancer. However, its biological roles in the development of melanoma remain unexplored. Our aim was to investigate whether HDAC6 has a biological role in human melanoma development and to understand its underlying mechanism. In the present study, HDAC6 expression was up-regulated in melanoma tissues and cell lines. Knockdown of HDAC6 significantly inhibited the proliferation and colony formation ability of A375.S2 cells, promoted cell arrest at G0/G1 phase and apoptosis. Additionally, western blotting assay showed that HDAC6 silencing suppressed Bcl-2 level and enhanced Bax level, then activated caspase-9 and caspase-3, and further activated the release of cytochrome c from mitochondria to cytoplasm, finally induced cell apoptosis involving the mitochondrial pathway. Knockdown of HDAC6 triggered a significant generation of ROS and disruption of mitochondrial membrane potential (MMP). Furthermore, ROS inhibitor, NAC reduced HDAC6 siRNA-induced ROS production, and blocked HDAC6 siRNA-induced loss of MMP and apoptosis. NAC also significantly blocked HDAC6 siRNA-induced mtDNA copy number decrease and mitochondrial biogenesis and degradation imbalance. In conclusion, the results showed that knockdown of HDAC6 induced apoptosis in human melanoma A375.S2 cells through a ROS-dependent mitochondrial pathway.  相似文献   

17.
18.
Neuroblastoma is a childhood tumor with a poor survival in advanced stage disease despite intensive chemotherapeutic regimes. The new histone deacetylase (HDAC) inhibitor BL1521 has shown promising results in neuroblastoma. Inhibition of HDAC resulted in a decrease in proliferation and metabolic activity, induction of apoptosis and differentiation of neuroblastoma cells. In order to elucidate the mechanism mediating the effects of BL1521 on neuroblastoma cells, we investigated the gene expression profile of an MYCN single copy (SKNAS) and an MYCN amplified (IMR32) neuroblastoma cell line after treatment with BL1521 using the Affymetrix oligonucleotide array U133A. An altered expression of 255 genes was observed in both neuroblastoma cell lines. The majority of these genes were involved in gene expression, cellular metabolism, and cell signaling. We observed changes in the expression of vital genes belonging to the cell cycle (cyclin D1 and CDK4) and apoptosis (BNIP3, BID, and BCL2) pathway in response to BL1521. The expression of 37 genes was altered by both BL1521 and Trichostatin A, which could indicate a common gene set regulated by different HDAC inhibitors. BL1521 treatment changed the expression of a number of MYCN-associated genes. Several genes in the Wnt and the Delta/Notch pathways were changed in response to BL1521 treatment, suggesting that BL1521 is able to induce the differentiation of neuroblastoma cells into a more mature phenotype.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号