首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Previous work has suggested that a group of alpha/beta-type small, acid-soluble spore proteins (SASP) is involved in the resistance of Clostridium perfringens spores to moist heat. However, this suggestion is based on the analysis of C. perfringens spores lacking only one of the three genes encoding alpha/beta-type SASP in this organism. We have now used antisense RNA to decrease levels of alpha/beta-type SASP in C. perfringens spores by approximately 90%. These spores had significantly reduced resistance to both moist heat and UV radiation but not to dry heat. These results clearly demonstrate the important role of alpha/beta-type SASP in the resistance of C. perfringens spores.  相似文献   

2.
Populations of Bacillus subtilis spores in which 90 to 99.9% of the spores had been killed by moist heat gave only two fractions on equilibrium density gradient centrifugation: a fraction comprised of less dense spores that had lost their dipicolinic acid (DPA), undergone significant protein denaturation, and were all dead and a fraction with the same higher density as that of unheated spores. The latter fraction from heat-killed spore populations retained all of its DPA, but ≥98% of the spores could be dead. The dead spores that retained DPA germinated relatively normally with nutrient and nonnutrient germinants, but the outgrowth of these germinated spores was significantly compromised, perhaps because they had suffered damage to some proteins such that metabolic activity during outgrowth was greatly decreased. These results indicate that DPA release takes place well after spore killing by moist heat and that DPA release during moist-heat treatment is an all-or-nothing phenomenon; these findings also suggest that damage to one or more key spore proteins causes spore killing by moist heat.  相似文献   

3.
D L Popham  S Sengupta    P Setlow 《Applied microbiology》1995,61(10):3633-3638
Spores of a Bacillus subtilis strain with an insertion mutation in the dacB gene, which codes for an enzyme involved in spore cortex biosynthesis, have a higher core water content than wild-type spores. Spores lacking the two major alpha/beta-type small, acid-soluble proteins (SASP) (termed alpha-beta- spores) have the same core water content as do wild-type spores, but alpha-beta- dacB spores had more core water than did dacB spores. The resistance of alpha-beta-, alpha-beta- dacB, dacB, and wild-type spores to dry and moist heat, hydrogen peroxide, and UV radiation has been determined, as has the role of DNA damage in spore killing by moist heat and hydrogen peroxide. These data (i) suggest that core water content has little if any role in spore UV resistance and are consistent with binding of alpha/beta-type SASP to DNA being the major mechanism providing protection to spores from UV radiation; (ii) suggest that binding of alpha/beta-type SASP to DNA is the major mechanism unique to spores providing protection from dry heat; (iii) suggest that spore resistance to moist heat and hydrogen peroxide is affected to a large degree by the core water content, as increased core water resulted in large decreases in spore resistance to these agents; and (iv) indicate that since this decreased resistance (i.e., in dacB spores) is not associated with increased spore killing by DNA damage, spore DNA must normally be extremely well protected against such damage, presumably by the saturation of spore DNA by alpha/beta-type SASP.  相似文献   

4.
The resistance to destruction of spores of Bacillus subtilis var. niger occluded in crystals of calcium carbonate and exposed to ethylene oxide and moist and dry heat was determined and compared with the destruction of unoccluded spores. Occluded spores could not be inactivated with ethylene oxide. Resistance to inactivation was approximately 900 and 9 times higher for occluded than for unoccluded spores subjected to moist and dry heat, respectively, at 121 C. The protective effect may be due either to the unavailability of oxygen for destruction by oxidation or to inhibition of the loss of essential cell constituents by vaporization. Evidence also implicates the crystal structure as a thermal conductivity barrier. Occluded spores retained viability over a 3-year period compared with unoccluded spores which decreased over 90% during this period. Occluded spores in insoluble materials are seldom encountered in the technology of sterilization, but could be the most critical factor in the sterilization of interplanetary vehicles. Entrapped spores in insoluble materials are usually difficult to detect, and are very stable as well as extremely resistant to destruction by heat and ethylene oxide.  相似文献   

5.
A comparative study was made of the heat resistance of spores of putrefactive anaerobe 3679 grown in two different sporulation media and of the recovery pattern of these spores in several subculturing media after treatment with moist and dry heat. The heat resistance of the spores was characterized in the form of D and z values. The D values were determined by the modified Schmidt method. The z values were established by the graphic method. The results revealed significant differences in D and z values, depending on the type of heat and sporulation and subculture media. Spores grown in beef heart infusion showed higher heat resistance than those grown in Trypticase. Among the seven subculture media used, the largest number of spores was recovered in beef infusion. The magnitude of the D values at 121.1 C obtained with spores heated in moist heat decreased, depending on the subculture medium used, in the following order: beef infusion, pea infusion, yeast extract, liver infusion, Eugonbroth, Trypticase, synthetic medium. With spores subjected to dry heat, D values at 148.9 C decreased with the subculture medium in the following order: beef infusion, yeast extract, pea infusion and liver infusion, Trypticase, Eugonbroth, synthetic medium. The z values obtained with spores subjected to dry heat were approximately double those obtained with moist heat. Their relative magnitude varied slightly, depending on the type of subculture medium used. However, the relative magnitudes of the D values and z values with reference to the subculture media used were different with moist heat from those obtained with dry heat. Two theories are discussed as possible explanations for the logarithmic order of death of bacterial spores. The results obtained in these experiments, together with the findings of other workers, are most compatible with the theory that heat treatment of spores results in an increased rate of random injury to the genetic material of the spores.  相似文献   

6.
Clostridium perfringens food poisoning is caused mainly by enterotoxigenic type A isolates that typically possess high spore heat resistance. Previous studies have shown that alpha/beta-type small, acid-soluble proteins (SASP) play a major role in the resistance of Bacillus subtilis and C. perfringens spores to moist heat, UV radiation, and some chemicals. Additional major factors in B. subtilis spore resistance are the spore's core water content and cortex peptidoglycan (PG) structure, with the latter properties modulated by the spm and dacB gene products and the sporulation temperature. In the current work, we have shown that the spm and dacB genes are expressed only during C. perfringens sporulation and have examined the effects of spm and dacB mutations and sporulation temperature on spore core water content and spore resistance to moist heat, UV radiation, and a number of chemicals. The results of these analyses indicate that for C. perfringens SM101 (i) core water content and, probably, cortex PG structure have little if any role in spore resistance to UV and formaldehyde, presumably because these spores' DNA is saturated with alpha/beta-type SASP; (ii) spore resistance to moist heat and nitrous acid is determined to a large extent by core water content and, probably, cortex structure; (iii) core water content and cortex PG cross-linking play little or no role in spore resistance to hydrogen peroxide; (iv) spore core water content decreases with higher sporulation temperatures, resulting in spores that are more resistant to moist heat; and (v) factors in addition to SpmAB, DacB, and sporulation temperature play roles in determining spore core water content and thus, spore resistance to moist heat.  相似文献   

7.
Choice of a biological indicator depends upon selecting a strain with the optimum balance of desirable properties. Screening 20 strains of Bacillus spp. for sporulation on three defined media has shown the wide variation that occurs in requirements for sporulation and properties of the resultant spores. Comparison of germination index and moist heat resistance of resultant spores suggest that a combination of high germination index, high heat resistance and linear inactivation may not be possible.  相似文献   

8.
Choice of a biological indicator depends upon selecting a strain with the optimum balance of desirable properties. Screening 20 strains of Bacillus spp. for sporulation on three defined media has shown the wide variation that occurs in requirements for sporulation and properties of the resultant spores. Comparison of germination index and moist heat resistance of resultant spores suggest that a combination of high germination index, high heat resistance and linear inactivation may not be possible.  相似文献   

9.
Previous work has suggested that a group of α/β-type small, acid-soluble spore proteins (SASP) is involved in the resistance of Clostridium perfringens spores to moist heat. However, this suggestion is based on the analysis of C. perfringens spores lacking only one of the three genes encoding α/β-type SASP in this organism. We have now used antisense RNA to decrease levels of α/β-type SASP in C. perfringens spores by ~90%. These spores had significantly reduced resistance to both moist heat and UV radiation but not to dry heat. These results clearly demonstrate the important role of α/β-type SASP in the resistance of C. perfringens spores.  相似文献   

10.
Aims:  To determine conditions for generation and recovery of Bacillus subtilis spore populations heavily damaged by moist heat treatment.
Methods and Results:  Bacillus subtilis spores were treated with moist heat and spore viability was assessed on different media. A rich medium and several minimal media gave similar spore recoveries after moist heat treatment, but lack of glucose in minimal media greatly decreased spore recovery. High NaCl levels also greatly decreased the recovery of moist heat-treated spores on minimal media, and addition of good osmoprotectants reversed this effect. Moist heat treatment did not decrease spore recovery on minimal media with high salt through DNA damage or by eliminating spore germination, but by affecting spore outgrowth.
Conclusions:  Conditions for generating B. subtilis spore populations with high levels of conditional moist heat damage have been determined. The major conditional damage appears to be in spore outgrowth, perhaps because of damage to one or more important metabolic enzymes.
Significance and Impact of the Study:  This work has provided new insight into the mechanism of B. subtilis spore killing by moist heat.  相似文献   

11.
Alpha/beta-type small, acid-soluble spore proteins (SASP) are essential for the resistance of DNA in spores of Bacillus species to damage. An alpha/beta-type SASP, Ssp2, from Clostridium perfringens was expressed at significant levels in B. subtilis spores lacking one or both major alpha/beta-type SASP (alpha- and alpha- beta- strains, respectively). Ssp2 restored some of the resistance of alpha- beta- spores to UV and nitrous acid and of alpha- spores to dry heat. Ssp2 also restored much of the resistance of alpha- spores to nitrous acid and restored full resistance of alpha- spores to UV and moist heat. These results further indicate the interchangeability of alpha/beta-type SASP in DNA protection in spores.  相似文献   

12.
Resistance of Bacillus Spores to Combined Sporicidal Treatments   总被引:1,自引:1,他引:0  
S ummary . Moist heat at 82° (100° for Bacillus stearothermophilus ) and solutions of 0.2% w/v chlorocresol or 0.01% w/v benzalkonium chloride at 24° separately showed no sporicidal activity against B. pumilis, B. stearothermophilus, B. subtilis and B. subtilis var. niger . Spores of the last organism were the most sensitive to γ radiation, the D value being 0.16 Mrad. Prior irradiation with a dose of 0.16 Mrad brought about only a slight increase in the sensitivity of the spores to moist heat. The presence of bactericide during irradiation did not affect radiation resistance. Inactivation rates were greater when the spores were heated in the presence of a bactericide than in aqueous suspension and benzalkonium chloride was more active than chlorocresol. Chlorocresol enhanced the heat activation of B. stearothermophilus at 100°. Irradiation in the presence of 0.2% w/v chlorocresol or 0.01% w/v benzalkonium chloride had no effect on the subsequent resistance of the spores when heated in the presence of these bactericides. It is concluded that it is unlikely that combinations of moist heat, radiation and bactericides, each less severe than when used in an accepted sterilization process, will lead to an alternative process which, while less damaging to the materials being sterilized, would still maintain the accepted standards of freedom from contamination.  相似文献   

13.
Spores of Clostridium perfringens possess high heat resistance, and when these spores germinate and return to active growth, they can cause gastrointestinal disease. Work with Bacillus subtilis has shown that the spore's dipicolinic acid (DPA) level can markedly influence both spore germination and resistance and that the proteins encoded by the spoVA operon are essential for DPA uptake by the developing spore during sporulation. We now find that proteins encoded by the spoVA operon are also essential for the uptake of Ca(2+) and DPA into the developing spore during C. perfringens sporulation. Spores of a spoVA mutant had little, if any, Ca(2+) and DPA, and their core water content was approximately twofold higher than that of wild-type spores. These DPA-less spores did not germinate spontaneously, as DPA-less B. subtilis spores do. Indeed, wild-type and spoVA C. perfringens spores germinated similarly with a mixture of l-asparagine and KCl (AK), KCl alone, or a 1:1 chelate of Ca(2+) and DPA (Ca-DPA). However, the viability of C. perfringens spoVA spores was 20-fold lower than the viability of wild-type spores. Decoated wild-type and spoVA spores exhibited little, if any, germination with AK, KCl, or exogenous Ca-DPA, and their colony-forming efficiency was 10(3)- to 10(4)-fold lower than that of intact spores. However, lysozyme treatment rescued these decoated spores. Although the levels of DNA-protective alpha/beta-type, small, acid-soluble spore proteins in spoVA spores were similar to those in wild-type spores, spoVA spores exhibited markedly lower resistance to moist heat, formaldehyde, HCl, hydrogen peroxide, nitrous acid, and UV radiation than wild-type spores did. In sum, these results suggest the following. (i) SpoVA proteins are essential for Ca-DPA uptake by developing spores during C. perfringens sporulation. (ii) SpoVA proteins and Ca-DPA release are not required for C. perfringens spore germination. (iii) A low spore core water content is essential for full resistance of C. perfringens spores to moist heat, UV radiation, and chemicals.  相似文献   

14.
Electron-microscopic cytological observations ofBacillus stearothermophilus (FS 7954) spore death during moist heat exposure partially elucidated the physical behaviour of cells predicted by a previously suggested kinetic model of death. This model consisted of two consecutive reaction states prior to death and accounted for the nonlogarithmic behaviour. Morphology of spores during the early heat exposure, where the majority of spores are still viable, remain unchanged from the initial state. Some changes were recognized in the spore laminated inner-coat layer. There are indications that this layer consists of keratin fibrils. These fibrils contract upon heating. It is believed that this contraction causes, either directly or indirectly, some water to be expelled from the spore protoplast. This belief is supported by previous observation of a minimum in the free deuterium oxide content of the spore given similar heat exposure. It is suggested that this contraction is the reason for enhanced thermal resistance during the nonlogarthmic death process. On prolonged heating the integrity of the spore coat integuments and protoplast envelopes become lost. This is concomitant with the death of spores and onset of increase in free deuterium oxide content. These cytological observations, together with changes in free water content and the kinetic behaviour of the sequential model for the death process, are discussed from the viewpoint of cellular membrane stability.  相似文献   

15.
Analysis of numerous air samples has indicated that dormant, viable fungal spores are highly present, which suggests that aerial dispersion is important for fungi. Whereas the majority of the spores may travel only very short distances, there is indication that a notable number of them cover much longer distances. Harmomegathy is a terminology coined by Wodehouse (1935) describing the natural folding of pollen to accommodate controlled and reversible water loss. Here, we discuss evidence that this concept may also apply to airborne fungal spores that face similar challenges and have to survive periods of drought and low temperatures while retaining viability to germinate after deposition upon a suitable moist substrate. In fact, (air)dried conidia, appear collapsed, survive for much longer times compared to spores in liquid, that deteriorate in time. This indicates that for some types of fungal spores, true dormancy is reached in the desiccated state. For these airborne spores this might be regarded as a pre-adaptation that supports long-distance transport of viable cells through air. We state that spores are naturally folded during transport in air if the humidity is low enough. We hypothesize that this is a pre-adaptation supporting release, dispersal and survival of airborne spores. Moreover, the smaller size of dry naturally-folded spores may also be relevant, e.g. for the opportunistic pathogenic fungus Aspergillus fumigatus reduced spore size supports deposition within the alveoli in the lung.  相似文献   

16.
Clostridium difficile spores can survive extended heating at 71°C (160°F), a minimum temperature commonly recommended for adequate cooking of meats. To determine the extent to which higher temperatures would be more effective at killing C. difficile, we quantified (D values) the effect of moist heat at 85°C (145°F, for 0 to 30 min) on C. difficile spores and compared it to the effects at 71 and 63°C. Fresh (1-week-old) and aged (≥20-week-old) C. difficile spores from food and food animals were tested in multiple experiments. Heating at 85°C markedly reduced spore recovery in all experiments (5 to 6 log(10) within 15 min of heating; P < 0.001), regardless of spore age. In ground beef, the inhibitory effect of 85°C was also reproducible (P < 0.001), but heating at 96°C reduced 6 log(10) within 1 to 2 min. Mechanistically, optical density and enumeration experiments indicated that 85°C inhibits cell division but not germination, but the inhibitory effect was reversible in some spores. Heating at 63°C reduced counts for fresh spores (1 log(10), 30 min; P < 0.04) but increased counts of 20-week-old spores by 30% (15 min; P < 0.02), indicating that sublethal heat treatment reactivates superdormant spores. Superdormancy is an increasingly recognized characteristic in Bacillus spp., and it is likely to occur in C. difficile as spores age. The potential for reactivation of (super)dormant spores with sublethal temperatures may be a food safety concern, but it also has potential diagnostic value. Ensuring that food is heated to >85°C would be a simple and important intervention to reduce the risk of inadvertent ingestion of C. difficile spores.  相似文献   

17.
The first ~10% of spores released from sporangia (early spores) during Bacillus subtilis sporulation were isolated, and their properties were compared to those of the total spores produced from the same culture. The early spores had significantly lower resistance to wet heat and hypochlorite than the total spores but identical resistance to dry heat and UV radiation. Early and total spores also had the same levels of core water, dipicolinic acid, and Ca and germinated similarly with several nutrient germinants. The wet heat resistance of the early spores could be increased to that of total spores if early spores were incubated in conditioned sporulation medium for ~24 h at 37°C (maturation), and some hypochlorite resistance was also restored. The maturation of early spores took place in pH 8 buffer with Ca(2+) but was blocked by EDTA; maturation was also seen with early spores of strains lacking the CotE protein or the coat-associated transglutaminase, both of which are needed for normal coat structure. Nonetheless, it appears to be most likely that it is changes in coat structure that are responsible for the increased resistance to wet heat and hypochlorite upon early spore maturation.  相似文献   

18.
The effect of solute concentration on the sensitization of Clostridium perfringens spores to heat by ionizing radiation was investigated. As we have shown previously, spores of C. perfringens treated with gamma radiation are now sensitive to subsequent heat treatments than are spores that receive no radiation treatment. When gamma-irradiated spores were heated in the presence of increasing concentrations of glycerol or sucrose, the heat sensitivity induced by irradiation was progressively decreased. The magnitude of the increase in heat resistance induced by extracellular solutes was greater in gamma-irradiated spores than in nonirradiated spores. Based on these observations, it is proposed that the induction of heat sensitivity in spores by radiation is related to the loss of osmoregulatory or dehydrating mechanisms in irradiated spores.  相似文献   

19.
The effect of solute concentration on the sensitization of Clostridium perfringens spores to heat by ionizing radiation was investigated. As we have shown previously, spores of C. perfringens treated with gamma radiation are now sensitive to subsequent heat treatments than are spores that receive no radiation treatment. When gamma-irradiated spores were heated in the presence of increasing concentrations of glycerol or sucrose, the heat sensitivity induced by irradiation was progressively decreased. The magnitude of the increase in heat resistance induced by extracellular solutes was greater in gamma-irradiated spores than in nonirradiated spores. Based on these observations, it is proposed that the induction of heat sensitivity in spores by radiation is related to the loss of osmoregulatory or dehydrating mechanisms in irradiated spores.  相似文献   

20.
The survival of germinating spores of vesicular-arbuscular endophytes after treatments with oxidizing agents, antibiotics, moist heat, ultrasonic radiation, and ultraviolet radiation was compared with that of their contaminating microbes. Spores of three species were rapidly decontaminated by treatment with 0.42% (wt/vol) chlorine available from 5.0% (wt/vol) chloramine-T at 30°C for 20 to 40 min depending on the species and the soil from which they were extracted. This treatment did not change spore viability. The survival of spores was reduced by exposure for 20 min to 1.11% chlorine at 30°C for Glomus caledonius or at 35°C for Acaulospora laevis. Growth of any bacteria surviving treatment with oxidizing agents was inhibited by 100 μg of chloramphenicol per ml in agar; however, spore germination and germ tube growth were reduced only by concentrations greater than 200 μg/ml in agar. Spore germination was decreased by concentration of pimaracin, which controlled fungal growth. The spores survived moist heat at 40°C for 80 min, 55°C for 10 min, and 60°C for less than 1 min. The viability of spores was unaffected by ultrasonic irradiation for up to 4 min. Spores of G. caledonius and A. laevis were extremely resistant to ultraviolet radiation. Their viability was unaffected by exposure to 5 × 108 ergs cm−2 from an ultraviolet source of 253.7nm. The spores had very thick, pigmented walls, and the possibility that these provided some protection against the physical and chemical treatments is discussed. The degree of physiological damage to the spores caused by the treatments demonstrated some adverse effects of basic laboratory procedures. This information, together with that on the comparative sensitivity of contaminating microbes to the treatments, was used in the development of protocol for producing large numbers of uncontaminated spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号