首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antisense properties of duplex- and triplex-forming PNAs.   总被引:12,自引:3,他引:9       下载免费PDF全文
The potential of peptide nucleic acids (PNAs) as specific inhibitors of translation has been studied. PNAs with a mixed purine/pyrimidine sequence form duplexes, while homopyrimidine PNAs form (PNA)2/RNA triplexes with complementary sequences on RNA. We show here that neither of these PNA/RNA structures are substrates for RNase H. Translation experiments in cell-free extracts showed that a 15mer duplex-forming PNA blocked translation in a dose-dependent manner when the target was 5'-proximal to the AUG start codon on the RNA, whereas similar 10-, 15- or 20mer PNAs had no effect when targeted towards sequences in the coding region. Triplex-forming 10mer PNAs were efficient and specific antisense agents with a target overlapping the AUG start codon and caused arrest of ribosome elongation with a target positioned in the coding region of the mRNA. Furthermore, translation could be blocked with a 6mer bisPNA or with a clamp PNA, forming partly a triplex, partly a duplex, with its target sequence in the coding region of the mRNA.  相似文献   

2.
We have previously described the rational design of mutation-selective antisense oligonucleotides targeted to codon 12 of oncogenic Ha-ras mRNA. In order to further improve the biological efficacy of these unmodified oligonucleotides, we have studied three different classes of modifications: peptide nucleic acid backbone (PNA), sugar modification (2'-O-methyl) and phosphoramidate linkage (PN). We show that PNA is unique among the investigated steric blocking agents in its ability to specifically inhibit the translation of Ha-ras mRNA in vitro. The PNA-RNA hybrid (Tm=86 degrees C), which is not dissociated by cellular proteins and resists phenol extraction and urea denaturing conditions, specifically blocks the translation of mutated Ha-ras mRNA. A PNA tridecamer which forms with wild-type Ha-ras mRNA a duplex with a central mismatch had little effect on mRNA translation. Codon 12 is located close to the translation initiation site and hybridization of the PNA at this position may interfere with the assembly of the translation initiation complex. To test whether polypeptide chain elongation can also be blocked, we have targeted PNA tridecamers to codons in the 74, 128 and 149 regions. These PNAs form equally stable duplexes as that formed by the PNA targeted to the codon 12 region (ten G.C base-pairs out of 13). We show that PNA-RNA duplexes block the progression of the 80 S ribosome. Therefore, it is possible to arrest translation with concomitant production of a truncated protein by using duplex-forming PNA oligonucleotides targeted to a G+C-rich sequences. Our data demonstrate for the first time that a non-covalent duplex can arrest the translation machinery and polypeptide chain elongation.  相似文献   

3.
Recently, we have shown that peptide nucleic acid (PNA) tridecamers targeted to the codon 74, 128 and 149 regions of Ha-ras mRNA arrested translation elongation in vitro. Our data demonstrated for the first time that PNAs with mixed base sequence targeted to the coding region of a messenger RNA could arrest the translation machinery and polypeptide chain elongation. The peculiarity of the complexes formed with PNA tridecamers and Ha-ras mRNA rests upon the stability of PNA-mRNA hybrids, which are not dissociated by cellular proteins or multiple denaturing conditions. In the present study, we show that shorter PNAs such as a dodecamer or an undecamer targeted to the codon 74 region arrest translation elongation in vitro. The 13, 12, and 11-mer PNAs contain eight and the 10-mer PNA seven contiguous pyrimidine residues. Upon binding with parallel Hoogsteen base-pairing to the PNA-RNA duplex, six of the cytosine bases and one thymine base of a second PNA can form C.G*C(+) and T.A*T triplets. Melting experiments show two well-resolved transitions corresponding to the dissociation of the third strand from the core duplex and to melting of duplex at higher temperature. The enzymatic structure mapping of a target 27-mer RNA revealed a hairpin structure that is disrupted upon binding of tri-, dodeca-, undeca- and decamer PNAs. We show that the non-bonded nucleobase overhangs on the RNA stabilize the PNA-RNA hybrids and probably assist the PNA in overcoming the stable secondary structure of the RNA target. The great stability of PNA-RNA duplex and triplex structures allowed us to identify both 1:1 and 2:1 PNA-RNA complexes using matrix-assisted laser desorption/ionization time-of -flight mass spectrometry. Therefore, it is possible to successfully target mixed sequences in structured regions of messenger RNA with short PNA oligonucleotides that form duplex and triplex structures that can arrest elongating ribosomes.  相似文献   

4.
DNA and RNA oligomers that contain stretches of guanines can associate to form stable secondary structures including G-quadruplexes. Our study shows that the (UUAAAAGAAAAGGGGGGAU) RNA sequence, from the human immunodeficiency virus type 1 (HIV-1 polypurine tract or PPT sequence) forms in vitro a stable folded structure involving the G-run. We have investigated the ability of pyrimidine peptide nucleic acid (PNA) oligomers targeted to the PPT sequence to invade the folded RNA and exhibit biological activity at the translation level in vitro and in cells. We find that PNAs can form stable complexes even with the structured PPT RNA target at neutral pH. We show that T-rich PNAs, namely the tridecamer-I PNA (C4T4CT4) forms triplex structures whereas the C-rich tridecamer-II PNA (TC6T4CT) likely forms a duplex with the target RNA. Interestingly, we find that both C-rich and T-rich PNAs arrested in vitro translation elongation specifically at the PPT target site. Finally, we show that T-rich and C-rich tridecamer PNAs that have been identified as efficient and specific blockers of translation elongation in vitro, specifically inhibit translation in streptolysin-O permeabilized cells where the PPT target sequence has been introduced upstream the reporter luciferase gene.  相似文献   

5.
Antisense peptide nucleic acid (PNA) can be used to control cell growth, gene expression and growth phenotypes in the bacteria Escherichia coli. PNAs targeted to the RNA components of the ribosome can inhibit translation and cell growth, and PNAs targeted to mRNA can limit gene expression with gene and sequence specificity. In an E. coli cell extract, efficient inhibition is observed when using PNA concentrations in the nanomolar range, whereas micromolar concentrations are required for inhibition in growing cells. A mutant strain of E. coli that is more permeable to antibiotics also is more susceptible to antisense PNAs than the wild type. This chapter details methods for testing the antisense activities of PNA in E. coli. As an example of the specific antisense inhibition possible, we show the effects of an anti-beta-galactosidase PNA in comparison to control PNAs. With improvements in cell uptake, antisense PNAs may find applications as antimicrobial agents and as tools for microbial functional genomics.  相似文献   

6.
7.
Peptide nucleic acids (PNAs) have been developed for applications in biotechnology and therapeutics. There is great potential in the development of chemically modified PNAs or other triplex-forming ligands that selectively bind to RNA duplexes, but not single-stranded regions, at near-physiological conditions. Here, we report on a convenient synthesis route to a modified PNA monomer, thio-pseudoisocytosine (L), and binding studies of PNAs incorporating the monomer L. Thermal melting and gel electrophoresis studies reveal that L-incorporated 8-mer PNAs have superior affinity and specificity in recognizing the duplex region of a model RNA hairpin to form a pyrimidine motif major-groove RNA2–PNA triplex, without appreciable binding to single-stranded regions to form an RNA–PNA duplex or, via strand invasion, forming an RNA–PNA2 triplex at near-physiological buffer condition. In addition, an L-incorporated 8-mer PNA shows essentially no binding to single-stranded or double-stranded DNA. Furthermore, an L-modified 6-mer PNA, but not pseudoisocytosine (J) modified or unmodified PNA, binds to the HIV-1 programmed −1 ribosomal frameshift stimulatory RNA hairpin at near-physiological buffer conditions. The stabilization of an RNA2–PNA triplex by L modification is facilitated by enhanced van der Waals contacts, base stacking, hydrogen bonding and reduced dehydration energy. The destabilization of RNA–PNA and DNA–PNA duplexes by L modification is due to the steric clash and loss of two hydrogen bonds in a Watson–Crick-like G–L pair. An RNA2–PNA triplex is significantly more stable than a DNA2–PNA triplex, probably because the RNA duplex major groove provides geometry compatibility and favorable backbone–backbone interactions with PNA. Thus, L-modified triplex-forming PNAs may be utilized for sequence-specifically targeting duplex regions in RNAs for biological and therapeutic applications.  相似文献   

8.
G M Hashem  J D Wen  Q Do    D M Gray 《Nucleic acids research》1999,27(16):3371-3379
The pyr*pur.pyr type of nucleic acid triplex has a purine strand that is Hoogsteen-paired with a parallel pyrimidine strand (pyr*pur pair) and that is Watson-Crick-paired with an antiparallel pyrimidine strand (pur.pyr pair). In most cases, the Watson-Crick pair is more stable than the Hoogsteen pair, although stable formation of DNA Hoogsteen-paired duplexes has been reported. Using oligomer triplexes of repeating d(AG)12 and d(CT)12 or r(CU)12 sequences that were 24 nt long, we found that hybrid RNA*DNA as well as DNA*DNA Hoogsteen-paired strands of triplexes can be more stable than the Watson-Crick-paired strands at low pH. The structures and relative stabilities of these duplexes and triplexes were evaluated by circular dichroism (CD) spectroscopy and UV absorption melting studies of triplexes as a function of pH. The CD contributions of Hoogsteen-paired RNA*DNA and DNA*DNA duplexes were found to dominate the CD spectra of the corresponding pyr*pur.pyr triplexes.  相似文献   

9.
Sequence-selective recognition of double-stranded (ds) DNA by homopyrimidine peptide nucleic acid (PNA) oligomers can occur by major groove triplex binding or by helix invasion via triplex P-loop formation. We have compared the binding of a decamer, a dodecamer and a pentadecamer thymine–cytosine homopyrimidine PNA oligomer to a sequence complementary homopurine target in duplex DNA using gel-shift and chemical probing analyses. We find that all three PNAs form stable triplex invasion complexes, and also conventional triplexes with the dsDNA target. Triplexes form with much faster kinetics than invasion complexes and prevail at lower PNA concentrations and at shorter incubation times. Furthermore, increasing the ionic strength strongly favour triplex formation over invasion as the latter is severely inhibited by cations. Whereas a single triplex invasion complex is formed with the decameric PNA, two structurally different target-specific invasion complexes were characterized for the dodecameric PNA and more than five for the pentadecameric PNA. Finally, it is shown that isolated triplex complexes can be converted to specific invasion complexes without dissociation of the Hoogsteen base-paired triplex PNA. These result demonstrate a clear example of a ‘triplex first’ mechanism for PNA helix invasion.  相似文献   

10.
11.
12.
13.
14.
Abstract

We studied the influence of different 2′-OMe-RNA and DNA strand combinations on single strand targeted foldback triplex formation in the Py.Pu:Py motif using ultraviolet (UV) and circular dichroism (CD) spectroscopy, and molecular modeling. The study of eight combinations of triplexes (D D:D, R* D:D, D D:R*, R* D:R*, D R:D, R* R:D, DR:R*, and R*-R:R*; where the first, middle, and last letters stand for the Hoogsteen Pyrimidine, Watson-Crick [WC] purine and WC pyrimidine strands, respectively, and D, R and R* stand for DNA, RNA and 2′-OMe-RNA strands, respectively) indicate more stable foldback triplex formation with a DNA purine strand than with an RNA purine strand. Of the four possible WC duplexes with RNA/DNA combinations, the duplex with a DNA purine strand and a 2′-O-Me-RNA pyrimidine strand forms the most thermally stable triplex, although its thermal stability is the lowest of all four duplexes. Irrespective of the duplex combination, a 2′-OMe-RNA Hoogsteen pyrimidine strand forms a stable foldback triplex over a DNA Hoogsteen pyrimidine strand confirming the earlier reports with conventional and circular triplexes. The CD studies suggest a B-type conformation for an all DNA homo-foldback triplex (D.D.D), while hetero-foldback triplex spectra suggest intermediate conformation to both Atype and B-type structures. A novel molecular modeling study has been carried out to understand the stereochemical feasibility of all the combinations of foldback triplexes using a geometric approach. The new approach allows use of different combinations of chain geometries depending on the nature of the chain (RNA vs. DNA).  相似文献   

15.
Abstract

Peptide nucleic acid (PNA) is an oligonucleotide mimic in which the backbone of DNA has been replaced by a pseudopeptide. We here show that there are distinct variations as to how PNA oligomers interact with double-stranded DNA depending on choice of nucleobases. Thymine-rich homopyrimidine PNA oligomers recognise double-stranded polynucleotides by forming PNA2-DNA triplexes with the DNA purine strand. By contrast, cytosine-rich homopyrimidine PNAs add to double-stranded polynucleotides as Hoogsteen strands, forming PNA-DNA2 triplexes, while homopurine, or alternating thymine-guanine, PNA oligomers invade DNA to form PNA-DNA duplexes.  相似文献   

16.
17.
G,A-containing purine oligonucleotides of various lengths form extremely stable and specific triplexes with the purine-pyrimidine stretch of the vpx gene [Svinarchuk,F., Monnot,M., Merle,A., Malvy,C. and Fermandjian,S. (1995) Nucleic Acids Res., 22, 3742--3747]. The potential application of triple-helix-forming oligonucleotides (TFO) in gene-targeted therapy has prompted us to study triplex formation mimicking potassium concentrations and temperatures in cells. Triplex formation was tested by dimethyl sulphate (DMS) footprinting, gel-retardation, UV melting studies and electron microscopy. In the presence of 10 mM MgCl2, KCl concentrations up to 150 mM significantly lowered both efficiency (triplex : initial duplex) and rate constants of triplex formation. The KCl effect was more pronounced for 11mer and 20mer TFOs than for 14mer TFO. Since the dissociation half-life for the 11mer TFO decreases from 420 min in the absence of monovalent cations to 40 min in the presence of 150 mM KCI, we suggest that the negative effect could be explained by a decrease in triplex stability. In contrast, for the 20mer TFO no dissociation of the triplex was observed during 24 h of incubation either in the absence of monovalent cations or in the presence of 150 mM KCl. We suppose that in the case of the 20mer TFO the negative effect of KCI on triplex formation is probably due to the self-association of the oligonucleotide in competitive structures such as parallel duplexes and/or tetraplexes. This negative effect may be overcome by the prior formation of a short duplex either on the 3'- or 5'-end of the 20mer TFO. We refer to these partial duplexes as 'zipper' TFOs. It was demonstrated that a 'zipper' TFO can form a triplex over the full length of the target, thus unzipping the short complementary strand. The minimal single-stranded part of the 'zipper' oligonucleotide which is sufficient to initiate triplex formation can be as short as three nucleotides at the 3'-end and six nucleotides at the 5'-end. We suggest that this type of structure may prove useful for in vivo applications.  相似文献   

18.
19.
The potential use of peptide nucleic acid (PNA) as a sequence-specific inhibitor of RNA translation is investigated in this report. Three different regions of the PML/RARalpha oncogene, including two AUG potential start codons, were studied as targets of translation inhibition by antisense PNA in a cell-free system. A PNA targeted to the second AUG start codon, which was shown previously to be able to suppress in vitro translation from that site completely, was used alone or in combination with another PNA directed to the first AUG, and a third PNA within the 5'-untranslated region (5'-UTR) of mRNA. When used alone, no PNA was able to completely block the synthesis of the PML/RARalpha protein. The 5'-UTR PNA was the most potent translation inhibitor when used as single agent. However, a near complete (>/=90%) specific inhibition of the PML/RARalpha gene was obtained when the three PNAs were used in combination, thus obtaining an additive antisense effect.  相似文献   

20.
Peptide nucleic acids (PNAs) are effective antisense reagents that bind specific mRNAs preventing their translation. However, PNAs cannot cross cell membranes, hampering delivery to cells. To overcome this problem we made PNAs membrane-permeant by conjugation to the lipophilic triphenylphosphonium (TPP) cation through a disulphide bond. The TPP cation led to efficient PNA uptake into the cytoplasm where the disulphide bond was reduced, releasing the antisense PNA to block expression of its target gene. This method of directing PNAs into cells is a significant improvement on current procedures and will facilitate in vitro and pharmacological applications of PNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号