首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
How animals manage their oxygen stores during diving and other breath-hold activities has been a topic of debate among physiologists for decades. Specifically, while the behavior of free-ranging diving animals suggests that metabolism during submersion must be primarily aerobic in nature, no studies have been able to determine their rate of oxygen consumption during submersion (Vo(2)d) and hence prove that this is the case. In the present study, we combine two previously used techniques and develop a new model to estimate Vo(2)d accurately and plausibly in a free-ranging animal and apply it to data for macaroni penguins (Eudyptes chrysolophus) as an example. For macaroni penguins at least, Vo(2)d can be predicted by measuring heart rate during the dive cycle and the subsequent surface interval duration. Including maximum depth of the dive improves the accuracy of these predictions. This suggests that energetically demanding locomotion events within the dive combine with the differing buoyancy and locomotion costs associated with traveling to depth to influence its cost in terms of oxygen use. This will in turn effect the duration of the dive and the duration of the subsequent recovery period. In the present study, Vo(2)d ranged from 4 to 28 ml.min(-1).kg(-1), indicating that, at least as far as aerobic metabolism was concerned, macaroni penguins were often hypometabolic, with rates of oxygen consumption usually below that for this species resting in water (25.6 ml.min(-1).kg(-1)) and occasionally lower than that while resting in air (10.3 ml.min(-1).kg(-1)).  相似文献   

2.
The energetic costs of swimming at the surface (swimming) and swimming underwater (diving) are compared in tufted ducks (Aythya fuligula) and three species of penguins, the gentoo (Pygoscelis papua), the king (Aptenodytes patagonicus), and the emperor (Aythya forsteri). Ducks swim on the surface and use their webbed feet as paddles, whereas penguins tend to swim just below the surface and use their flippers as hydrofoils, the latter being much more efficient. Penguins are more streamlined in shape. Thus, the amount of energy required to transport a given mass of bird a given distance (known as the cost of transport) is some two to three times greater in ducks than in penguins. Ducks are also very buoyant, and overcoming the force of buoyancy accounts for 60% and 85% of the cost of descent and remaining on the bottom, respectively, in these birds. The energy cost of a tufted duck diving to about 1.7 m is similar to that when it is swimming at its maximum sustainable speed at the surface (i.e., approximately 3.5 times the value when resting on water). Nonetheless, because of the relatively short duration of its dives, the tufted duck dives well within its calculated aerobic dive limit (cADL, usable O(2) stores per rate of O(2) usage when underwater). However, these three species of penguins have maximum dive durations ranging from 5 min to almost 16 min and maximum dive depths from 155 to 530 m. When these birds dive, they have to metabolise at no more than when resting in water in order for cADL to encompass the duration of most of their natural dives. In gentoo and king penguins, there is a fall in abdominal temperature during bouts of diving; this may reduce the oxygen requirements in the abdominal region, thus enabling dive duration to be extended further than would otherwise be the case.  相似文献   

3.
Good estimates of metabolic rate in free-ranging animals are essential for understanding behavior, distribution, and abundance. For the critically endangered leatherback turtle (Dermochelys coriacea), one of the world's largest reptiles, there has been a long-standing debate over whether this species demonstrates any metabolic endothermy. In short, do leatherbacks have a purely ectothermic reptilian metabolic rate or one that is elevated as a result of regional endothermy? Recent measurements have provided the first estimates of field metabolic rate (FMR) in leatherback turtles using doubly labeled water; however, the technique is prohibitively expensive and logistically difficult and produces estimates that are highly variable across individuals in this species. We therefore examined dive duration and depth data collected for nine free-swimming leatherback turtles over long periods (up to 431 d) to infer aerobic dive limits (ADLs) based on the asymptotic increase in maximum dive duration with depth. From this index of ADL and the known mass-specific oxygen storage capacity (To(2)) of leatherbacks, we inferred diving metabolic rate (DMR) as To2/ADL. We predicted that if leatherbacks conform to the purely ectothermic reptilian model of oxygen consumption, these inferred estimates of DMR should fall between predicted and measured values of reptilian resting and field metabolic rates, as well as being substantially lower than the FMR predicted for an endotherm of equivalent mass. Indeed, our behaviorally derived DMR estimates (mean=0.73+/-0.11 mL O(2) min(-1) kg(-1)) were 3.00+/-0.54 times the resting metabolic rate measured in unrestrained leatherbacks and 0.50+/-0.08 times the average FMR for a reptile of equivalent mass. These DMRs were also nearly one order of magnitude lower than the FMR predicted for an endotherm of equivalent mass. Thus, our findings lend support to the notion that diving leatherback turtles are indeed ectothermic and do not demonstrate elevated metabolic rates that might be expected due to regional endothermy. Their capacity to have a warm body core even in cold water therefore seems to derive from their large size, heat exchangers, thermal inertia, and insulating fat layers and not from an elevated metabolic rate.  相似文献   

4.
Temperatures were recorded at several body sites in emperor penguins (Aptenodytes forsteri) diving at an isolated dive hole in order to document temperature profiles during diving and to evaluate the role of hypothermia in this well-studied model of penguin diving physiology. Grand mean temperatures (+/-S.E.) in central body sites during dives were: stomach: 37.1+/-0.2 degrees C (n=101 dives in five birds), pectoral muscle: 37.8+/-0.1 degrees C (n=71 dives in three birds) and axillary/brachial veins: 37.9+/-0.1 degrees C (n=97 dives in three birds). Mean diving temperature and duration correlated negatively at only one site in one bird (femoral vein, r=-0.59, P<0.05; range <1 degrees C). In contrast, grand mean temperatures in the wing vein, foot vein and lumbar subcutaneous tissue during dives were 7.6+/-0.7 degrees C (n=157 dives in three birds), 20.2+/-1.2 degrees C (n=69 in three birds) and 35.2+/-0.2 degrees C (n=261 in six birds), respectively. Mean limb temperature during dives negatively correlated with diving duration in all six birds (r=-0.29 to -0.60, P<0.05). In two of six birds, mean diving subcutaneous temperature negatively correlated with diving duration (r=-0.49 and -0.78, P<0.05). Sub-feather temperatures decreased from 31 to 35 degrees C during rest periods to a grand mean of 15.0+/-0.7 degrees C during 68 dives of three birds; mean diving temperature and duration correlated negatively in one bird (r=-0.42, P<0.05). In general, pectoral, deep venous and even stomach temperatures during diving reflected previously measured vena caval temperatures of 37-39 degrees C more closely than the anterior abdominal temperatures (19-30 degrees C) recently recorded in diving emperors. Although prey ingestion can result in cooling in the stomach, these findings and the lack of negative correlations between internal temperatures and diving duration do not support a role for hypothermia-induced metabolic suppression of the abdominal organs as a mechanism of extension of aerobic dive time in emperor penguins diving at the isolated dive hole. Such high temperatures within the body and the observed decreases in limb, anterior abdomen, subcutaneous and sub-feather temperatures are consistent with preservation of core temperature and cooling of an outer body shell secondary to peripheral vasoconstriction, decreased insulation of the feather layer, and conductive/convective heat loss to the water environment during the diving of these emperor penguins.  相似文献   

5.
Aquatic birds have access to limited amounts of usable oxygen when they forage (dive) underwater, so the major physiological constraint to their behaviour is the need to periodically visit the water surface to replenish these stores and remove accumulated carbon dioxide. The size of the oxygen stores and the rate at which they are used (V dot o2) or carbon dioxide accumulates are the ultimate determinants of the duration that aquatic birds can remain feeding underwater. However, the assumption that the decision to terminate a dive is governed solely by the level of the respiratory stores is not always valid. Quantification of an optimal diving model for tufted ducks (Aythya fuligula) shows that while they dive efficiently by spending a minimum amount of time on the surface to replenish the oxygen used during a dive, they dive with nearly full oxygen stores and surface well before these stores are exhausted. The rates of carbon dioxide production during dives and removal during surface intervals are likely to be at least as important a constraint as oxygen; thus, further developments of optimal diving models should account for their effects. In the field, diving birds will adapt to changing environmental conditions and often maximise the time spent submerged during diving bouts. However, other factors influence the diving depths and durations of aquatic birds, and in some circumstances they are unable to forage sufficiently well to provide food for their offspring. The latest developments in telemetry have demonstrated how diving birds can make physiological decisions based on complex environmental factors. Diving penguins can control their inhaled air volume to match the expected depth, likely prey encounter rate, and buoyancy challenges of the following dive.  相似文献   

6.
The diving capabilities of the Procellariformes remain the least understood component of avian diving physiology. Due to their relatively small size, shearwaters may have high oxygen consumption rates during diving relative to their available oxygen stores. Dive performance in this group should be strongly limited by the trade‐off between oxygen consumption and oxygen stores, and shearwaters could be a good model group for testing predictions of dive theory. Many earlier measurements of shearwater dive behaviour relied on observations from the surface or potentially biased technology, and it is only recently that diving behaviour has been observed using electronic recorders for many of the clades within the family. The diving behaviour of Manx Shearwaters Puffinus puffinus breeding in Wales, UK, was studied on a large sample of birds using time–depth–temperature recorders deployed on chick‐rearing shearwaters in July and August over 3 years (2009–2011). Light availability apparently limited diving as dives only occurred between 04:00 and 19:00 h GMT. All individuals routinely dived deeper than traditionally assumed, to a mean maximum depth of 31 m and occasionally down to nearly 55 m. We compiled all available data for a comparison of the dive depth across shearwater species. There was a positive allometric relationship between maximum dive depth and body mass across Puffinus and Ardenna shearwater species, as expected, but only if samples of fewer than two individuals were excluded. The large intra‐specific range in maximum dive depth in our study illustrates that apparent diversity in diving performance across species must be interpreted cautiously.  相似文献   

7.
The oxygen store/usage hypothesis suggests that larger animals are able to dive for longer and hence deeper because oxygen storage scales isometrically with body mass, whereas oxygen usage scales allometrically with an exponent <1 (typically 0.67-0.75). Previous tests of the allometry of diving tend to reject this hypothesis, but they are based on restricted data sets or invalid statistical analyses (which assume that every species provides independent information). Here we apply information-theoretic statistical methods that are phylogenetically informed to a large data set on diving variables for birds and mammals to describe the allometry of diving. Body mass is strongly related to all dive variables except dive:pause ratio. We demonstrate that many diving variables covary strongly with body mass and that they have allometric exponents close to 0.33. Thus, our results fail to falsify the oxygen store/usage hypothesis. The allometric relationships for most diving variables are statistically indistinguishable for birds and mammals, but birds tend to dive deeper than mammals of equivalent mass. The allometric relationships for all diving variables except mean dive duration are also statistically indistinguishable for all major taxonomic groups of divers within birds and mammals, with the exception of the procellariiforms, which, strictly speaking, are not true divers.  相似文献   

8.
Tufted ducks Aythya fuligula do not control buoyancy during diving   总被引:1,自引:0,他引:1  
Work against buoyancy during submergence is a large component of the energy costs for shallow diving ducks. For penguins, buoyancy is less of a problem, however they still seem to trade‐off levels of oxygen stores against the costs and benefits of buoyant force during descent and ascent. This trade‐off is presumably achieved by increasing air sac volume and hence pre‐dive buoyancy (Bpre) when diving deeper. Tufted ducks, Aythya fuligula, almost always dive with nearly full oxygen stores so these cannot be increased. However, the high natural buoyancy of tufted ducks guarantees a passive ascent, so they might be expected to decrease Bpre before particularly deep, long dives to reduce the energy costs of diving. Body heat lost to the water can also be a cause of substantial energy expenditure during a dive, both through dissipation to the ambient environment and through the heating of ingested food and water. Thus dive depth (dd), duration and food type can influence how much heat energy is lost during a dive. The present study investigated the relationship between certain physiological and behavioural adjustments by tufted ducks to dd and food type. Changes in Bpre, deep body temperature (Tb) and dive time budgeting of four ducks were measured when diving to two different depths (1.5 and 5.7 m), and for two types of food (mussels and mealworms). The hypothesis was that in tufted ducks, Bpre decreases as dd increases. The ducks did not change Bpre in response to different diving depths, and thus the hypothesis was rejected. Tb was largely unaffected by dives to either depth. However, diving behaviour changed at the greater dd, including an increase in dive duration and vertical descent speed. Behaviour also changed depending on the food type, including an increase in foraging duration and vertical descent speed when mussels were present. Behavioural changes seem to represent the major adjustment made by tufted ducks in response to changes in their diving environment.  相似文献   

9.
J. Baldwin 《Hydrobiologia》1988,165(1):255-261
Energy metabolism in the pectoralis and supracoracoideus muscles of seven species of penguins was investigated by determining muscle fibre diameter, myoglobin content, pH buffering capacity and the distribution and properties of lactate dehydrogenase isoenzymes.The penguins can be arranged as follows in order of increasing anaerobic capabilities of the muscles: little < rockhopper and royal < gentoo < Adelie, emperor and king.As a good correlation exists between muscle biochemistry and known diving behaviour of emperor, king, gentoo and little penguins, predictions can be made about the behaviour of species for which only the biochemical data are available.  相似文献   

10.
We present data on the diving behaviour and the energetics of breeding little penguins in Tasmania, Australia. Using an 18 m long still water canal in conjunction with respirometry, we determined the energy requirements while diving. Using electronic devices measuring dive depth or swimming speed, we investigated the foraging behaviour at sea. Cost of Transport was calculated to be minimal at the speed the birds prefer at sea (1.8 m/s) and averaged 11.1 J/kg/m (power requirements at that speed: 20.0 W/kg). Metabolic rate of little penguins resting in water was found to be 8.5 W/kg. The externally-attached devices had no significant influence on the energy expenditure.
Foraging trips can be divided into four distinct phases with different diving behaviours. A mean of 500 dives was executed per foraging trip lasting about 18 hours with 60% of this time being spent swimming. The total distance travelled averaged 73 km per day, although foraging range was about 12km. Mean swimming speed of little penguins at sea was 1.8 m/s, maximum swimming speed was 3.3 m/s. More than 50% of all dives had maxima not exceeding 2 m. Maximum depth reached was 27 m. Mean dive duration was 21 s. There were inter-sex differences in diving behaviour as well as changes in foraging behaviour over the breeding period. Aerobic dive limits (ADL) in the wild were estimated between 42 and 50 s. From the swim canal experiments we derived an ADL of 44 s. Total oxygen stores were calculated to be 45 ml O2/kg. Only 2% of all dives exceeded the ADL. FMRs at sea were calculated to be between 1280 and 1500 kJ/kg/d according to chick size. The yearly food requirements of a breeding little penguin amount to 114 kg.  相似文献   

11.
When aquatic reptiles, birds and mammals submerge, they typically exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues is reduced. The profound dive response that occurs during forced submergence sequesters blood oxygen for the brain and heart while allowing peripheral tissues to become anaerobic, thus protecting the animal from immediate asphyxiation. However, the decrease in peripheral blood flow is in direct conflict with the exercise response necessary for supporting muscle metabolism during submerged swimming. In free diving animals, a dive response still occurs, but it is less intense than during forced submergence, and whole-body metabolism remains aerobic. If blood oxygen is not sequestered for brain and heart metabolism during normal diving, then what is the purpose of the dive response? Here, we show that its primary role may be to regulate the degree of hypoxia in skeletal muscle so that blood and muscle oxygen stores can be efficiently used. Paradoxically, the muscles of diving vertebrates must become hypoxic to maximize aerobic dive duration. At the same time, morphological and enzymatic adaptations enhance intracellular oxygen diffusion at low partial pressures of oxygen. Optimizing the use of blood and muscle oxygen stores allows aquatic, air-breathing vertebrates to exercise for prolonged periods while holding their breath.  相似文献   

12.
Age-related changes in breeding performance are likely to be mediated through changes in parental foraging performance. We investigated the relationship of foraging performance with age in female little penguins at Phillip Island, Australia, during the guard phase of the 2005 breeding season. Foraging parameters were recorded with accelerometers for birds grouped into three age-classes: (1) young, (2) middle age and (3) old females. We found the diving behaviour of middle-aged birds differed from young and old birds. The dive duration of middle age females was shorter than that of young and old birds while their dive effort (measure for dive and post-dive duration relation) was lower than that of young ones, suggesting middle-aged birds were in better physical condition than other ones. There was no difference in prey pursuit frequency or duration between age classes, but in the hunting tactic. Females pursued more prey around and after reaching the maximum depth of dives the more experienced they were (old > middle age > young), an energy saving hunting tactic by probably taking advantage of up-thrust momentum. We suggest middle age penguins forage better than young or old ones because good physical condition and foraging experience could act simultaneously.  相似文献   

13.
We measured the effects of exposure to hypoxia (15% and 11% oxygen) and hypercapnia (up to 4.5% carbon dioxide) on rates of respiratory gas exchange both between and during dives in tufted ducks, Aythya fuligula, to investigate to what extent these may explain changes in diving behaviour. As found in previous studies, the ducks decreased dive duration (t(d)) and increased surface duration when diving from a hypoxic or hypercapnic gas mix. In the hypercapnic conditions, oxygen consumption during the dive cycle was not affected. Oxygen uptake between dives was reduced by only 17% when breathing a hypoxic gas mix of 11% oxygen. However, estimates of the rate of oxygen metabolism during the foraging periods of dives decreased nearly threefold in 11% oxygen. Given that tufted ducks normally dive well within their aerobic dive limits and that they significantly reduced their t(d) during hypoxia, it is not at all clear why they make this physiological adjustment.  相似文献   

14.
Although theoretical models predict that the quality of foraging patches has little effect on optimal dive time with increasing depth, many empirical studies show that dive time at a given depth may vary. We developed a model that incorporated patch quality as a parameter of energy intake as a nonlinear function of time, and applied it to the diving behaviour of Brünnich's guillemots, Uria lomvia. The model indicated that optimal dive time can vary widely depending on the parameter. It also explained the convergence of observed dive times with travel time. Assuming the birds dived optimally, this parameter can be estimated from travel time and dive time for each dive. Foraging patches with larger estimated parameter values were favoured by the birds, suggesting that the parameter indicated patch quality. We used this parameter to test an optimal patch use model in divers. The results indicate that Brünnich's guillemots adjust their diving behaviour adaptively depending on patch quality, and that the optimal diving model is valid for prediction of observed dive patterns if patch quality is incorporated appropriately. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

15.

Background

Because they have air stored in many body compartments, diving seabirds are expected to exhibit efficient behavioural strategies for reducing costs related to buoyancy control. We study the underwater locomotor activity of a deep-diving species from the Cormorant family (Kerguelen shag) and report locomotor adjustments to the change of buoyancy with depth.

Methodology/Principal Findings

Using accelerometers, we show that during both the descent and ascent phases of dives, shags modelled their acceleration and stroking activity on the natural variation of buoyancy with depth. For example, during the descent phase, birds increased swim speed with depth. But in parallel, and with a decay constant similar to the one in the equation explaining the decrease of buoyancy with depth, they decreased foot-stroke frequency exponentially, a behaviour that enables birds to reduce oxygen consumption. During ascent, birds also reduced locomotor cost by ascending passively. We considered the depth at which they started gliding as a proxy to their depth of neutral buoyancy. This depth increased with maximum dive depth. As an explanation for this, we propose that shags adjust their buoyancy to depth by varying the amount of respiratory air they dive with.

Conclusions/Significance

Calculations based on known values of stored body oxygen volumes and on deep-diving metabolic rates in avian divers suggest that the variations of volume of respiratory oxygen associated with a respiration mediated buoyancy control only influence aerobic dive duration moderately. Therefore, we propose that an advantage in cormorants - as in other families of diving seabirds - of respiratory air volume adjustment upon diving could be related less to increasing time of submergence, through an increased volume of body oxygen stores, than to reducing the locomotor costs of buoyancy control.  相似文献   

16.
Myoglobin is an important oxygen store for supporting aerobic diving in endotherms, yet little is known about its role during postnatal development. Therefore, we compared the postnatal development of myoglobin in marine endotherms that develop at sea (cetaceans) to those that develop on land (penguins and pinnipeds). We measured myoglobin concentrations in the major locomotor muscles of mature and immature bottlenose dolphins (Tursiops truncatus) and king penguins (Aptenodytes patagonicus) and compared the data to previously reported values for northern elephant seals (Mirounga angustirostris). Neonatal dolphins, penguins, and seals lack the myoglobin concentrations required for prolonged dive durations, having 10%, 9%, and 31% of adult values, respectively. Myoglobin contents increased significantly during subsequent development. The increases in myoglobin content with age may correspond to increases in activity levels, thermal demands, and time spent in apnea during swimming and diving. Across these phylogenetically diverse taxa (cetaceans, penguins, and pinnipeds), the final stage of postnatal development of myoglobin occurs during the initiation of independent foraging, regardless of whether development takes place at sea or on land.  相似文献   

17.
The original definition of aerobic dive limit (ADL) was the dive duration after which there is an increase in post-dive concentration of lactate in the blood of Weddell seals freely diving in the field. The only other species in which such measurements have been made is the emperor penguin. For all other species, aerobic dive limit has been calculated (cADL) by dividing usable oxygen stores with an estimation of the rate of oxygen consumption during diving. Unfortunately, cADL is often referred to as the aerobic dive limit, implying that it is equivalent to that determined from the measurement of post-dive blood lactate concentration. However, this is not so, as at cADL all of the usable oxygen would have been consumed, whereas Weddell seals and emperor penguins can dive for at least 2-3 times longer than their ADL. Thus, at ADL, there is still some usable oxygen remaining in the stores. It is suggested that to avoid continued confusion between these two terms, the former is called diving lactate threshold (DLT), as it is somewhat analogous to the lactate threshold in exercising terrestrial vertebrates. Possible explanations of how some species routinely dive beyond their cADL are also discussed.  相似文献   

18.
Marine turtle lungs have multiple functions including respiration, oxygen storage and buoyancy regulation, so lung size is an important indicator of dive performance. We determined maximum lung volumes (V(L)) for 30 individuals from three species (Caretta caretta n=13; Eretmochelys imbricata n=12; Natator depressus n=5) across a range of body masses (M(b)): 0.9 to 46 kg. V(L) was 114 ml kg(-1) and increased with M(b) with a scaling factor of 0.92. Based on these values for V(L) we demonstrated that diving capacities (assessed via aerobic dive limits) of marine turtles were potentially over-estimated when the V(L)-body mass effect was not considered (by 10 to 20% for 5 to 25 kg turtles and by >20% for turtles > or =25 kg). While aerobic dive limits scale with an exponent of 0.6, an analysis of average dive durations in free-ranging chelonian marine turtles revealed that dive duration increases with a mass exponent of 0.51, although there was considerable scatter around the regression line. While this highlights the need to determine more parameters that affect the duration-body mass relationship, our results provide a reference point for calculating oxygen storage capacities and air volumes available for buoyancy control.  相似文献   

19.
Neutral buoyancy at the stationary depth is advantageous for diving animals. The adjustment of the air inspiration before diving can be a mechanism of buoyancy control for diving animals with lungs. The stationary depth of neutral buoyancy becomes deeper with larger inspiration. Our aim was to examine whether the loggerhead sea turtle,Caretta caretta regulates the buoyancy to be neutral at the stationary depth of the dive. During an internesting period of the breeding season, we recorded the diving pattern of an adult female using a time-depth recorder and a time-swim distance recorder. The dives were classified into four types (Types 1 to 4) based on the time-depth profile. Types-3 and 4 (66% of the total dive duration) have three phases in each dive: (1) first descent, (2) gradual ascent (stationary period), and (3) final ascent. In the gradual ascent phase, the turtle stayed at a certain depth without swimming. This means that the turtle was neutrally buoyant during the gradual ascent phase. The depth of the gradual ascent phase was positively correlated with the dive duration, supporting the hypothesis that neutral buoyancy of the loggerhead turtle is achieved by the air in their lungs.  相似文献   

20.
Diving synchrony was examined for varying group sizes of African penguins (Spheniscus demersus) travelling to their foraging grounds from their breeding islands. Groups of fewer than 12 birds always dived synchronously, whereas groups of more than 17 birds always dived asynchronously. Since travelling penguins do not dive deeply, large groups of birds can remain together irrespective of diving synchronization. Observations from boats showed that foraging penguins rarely occurred in groups of more than 17 birds. We suggest that groups of penguins that do not have synchronized dives cannot forage effectively, because foraging penguins dive deeply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号