首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transgenic tomato plants expressing antisense RNA to a ripening-related cDNA clone (pTOM5) had yellow ripening fruit and pale coloured flowers. Carotenoid levels in fruit of these plants were reduced by up to 97%. In order to determine the step of carotenoid biosynthesis which was blocked, a cell-free system active in the synthesis of carotenoid intermediates was prepared. Incubations with radiolabelled carotenoid precursors led to the identification of the block between GGDP and phytoene. Analysis of carotenoids in different tissues of transgenic and control plants indicated that although ripe fruit and flower carotenoid levels were reduced in the modified plants, leaf carotenoid levels were not decreased. This implies that the pTOM5 gene product is not involved in carotenoid synthesis in the leaf.  相似文献   

2.
Plant carotenoids are essential for photosynthesis and photoprotection and provide colors in the yellow to red range to non-photosynthetic organs such as petals and ripe fruits. They are also the precursors of biologically active molecules not only in plants (including hormones and retrograde signals) but also in animals (including retinoids such as vitamin A). A carotenoid-rich diet has been associated with improved health and cognitive capacity in humans, whereas the use of carotenoids as natural pigments is widespread in the agrofood and cosmetic industries. The nutritional and economic relevance of carotenoids has spurred a large number of biotechnological strategies to enrich plant tissues with carotenoids. Most of such approaches to alter carotenoid contents in plants have been focused on manipulating their biosynthesis or degradation, whereas improving carotenoid sink capacity in plant tissues has received much less attention. Our knowledge on the molecular mechanisms influencing carotenoid storage in plants has substantially grown in the last years, opening new opportunities for carotenoid biofortification. Here we will review these advances with a particular focus on those creating extra room for carotenoids in plant cells either by promoting the differentiation of carotenoid-sequestering structures within plastids or by transferring carotenoid production to the cytosol.  相似文献   

3.
类胡萝卜素合成的相关基因及其基因工程   总被引:43,自引:0,他引:43  
类胡萝卜素具有多种生物功能,尤其在保护人类健康方面起着重要的作用,如它们是合成维生素A的前体,能够增强人体免疫力和具有防癌抗癌的功效。人体自身不能合成类胡萝卜素,必须通过外界摄入;但类胡萝卜素在许多植物中含量较低,并且很难用化学方法合成。随着类胡萝卜素生物合成途径的阐明及其相关基因的克隆,运用基因工程手段调控类胡萝卜素的生物合成已成为可能。本文综述了微生物和高等植物类胡萝卜素生物合成途径中相关基因的克隆,以及运用这些基因通过异源微生物生产类胡萝卜素和提高作物类胡萝卜素含量的基因工程研究进展。  相似文献   

4.
Abstract

This study was carried out to evaluate the effects of salicylic acid on chlorophyll, carotenoid and antioxidant enzymes in potato plants infected with Rhizoctonia solani under greenhouse conditions. Results showed that with increase in SA amount of chlorophyll, carotenoid contents and also activity of polyphenoloxidase increased in both control and infected plants while increases in infected plants were higher. However, activities of peroxidase and catalase enzymes decreased under the same conditions. Hence, it seems that increase in carotenoid content in infected plants treated with SA is acting as an anti-oxidant against fungi infection. The decrease in catalase and peroxidase activities in response to SA treatment will result in reactive oxygen species produced be less oxidized. The remaining ROS in plants treated with SA is probably acting as anti-fungal agents. The increase in polyphenoloxidase activity will increase the root cells walls lignifications process acting as mechanical barrier against fungal infection.  相似文献   

5.
植物类胡萝卜素生物合成及其相关基因在基因工程中的应用   总被引:29,自引:0,他引:29  
近年来类胡萝卜素生物合成基因的分离与功能鉴定,为应用基因工程技术改变植物体内类胡萝卜素成份和提高类胡萝卜素含量提供了新的基因资源.有关类胡萝卜素合成的生物化学及其在体内调控研究的新进展,使通过遗传操作调控植物体内类胡萝卜素生物合成途径成为可能.该文综述了类胡萝卜素生物合成途径及其相关基因的研究现状,并结合作者的工作介绍了应用转基因技术改变植物体内类胡萝卜素成份与含量的最新成功的事例.  相似文献   

6.
Plants and microbes produce multiple carotenoid pigments with important nutritional roles in animals. By unraveling the basis of carotenoid biosynthesis it has become possible to modulate the key metabolic steps in plants and thus increase the nutritional value of staple crops, such as rice (Oryza sativa), maize (Zea mays) and potato (Solanum tuberosum). Multigene engineering has been used to modify three different metabolic pathways simultaneously, producing maize seeds with higher levels of carotenoids, folate and ascorbate. This strategy may allow the development of nutritionally enhanced staples providing adequate amounts of several unrelated nutrients. By focusing on different steps in the carotenoid biosynthesis pathway, it is also possible to generate plants with enhanced levels of several nutritionally-beneficial carotenoid molecules simultaneously.  相似文献   

7.
Lu S  Li L 《植物学报(英文版)》2008,50(7):778-785
Carotenoids are Indispensable to plants and play a critical role in human nutrition and health. Significant progress has been made in our understanding of carotenoid metabolism in plants. The biosynthetic pathway has been extensively studied.Nearly all the genes encoding the biosynthetic enzymes have been isolated and characterized from various organisms. In recent years, there is an increasing body of work on the signaling pathways and plastid development, which might provide global control of carotenoid biosynthesis and accumulation. Herein, we will highlight recent progress on the biosynthesis,regulation, and metabolic engineering of carotenoids in plants, as well as the future research towards elucidating the regulatory mechanisms and metabolic network that control carotenoid metabolism.  相似文献   

8.
Carotenoids, some of which are provitamin A, have a range of diverse biological functions and actions, especially in relation to human health. For example, carotenoids are known to be crucial for normal vision and have been associated with reducing the risk of several degenerative diseases including cancer. The putative advantage of modifying and engineering the carotenoid biosynthetic pathways is obvious: to provide sources for the isolation of desired carotenoids or to generate food plants with increased carotenoid content. This article reviews the studies of carotenoid production in heterologous microorganisms and the engineering of crop plants using manipulated carotenoid biosynthesis.  相似文献   

9.
As a proof of concept, the qualitative and quantitative engineering of carotenoid formation has been achieved in crop plants. Successful reports in tomato, potato, rice, and canola all describe the enhancement of carotenoid with nutritional value, while in model systems such as tobacco and Arabidopsis the engineering of carotenoid to confer abiotic stress has been described. For all the successful applications there have been many examples of unintended/unpredicted phenotypes and results. Typically this has resided from our lack of understanding of carotenoid formation and its regulation. In the present article, we will review advances in carotenoid formation and its regulation to illustrate how metabolic engineering experiments have shed light on regulatory mechanisms.  相似文献   

10.
Carotenoids synthesized in plants but not animals are essential for human nutrition. Therefore, ongoing efforts to metabolically engineer plants for improved carotenoid content benefit from the identification of genes that affect carotenoid accumulation, possibly highlighting potential challenges when pyramiding traits represented by multiple biosynthetic pathways. We employed a heterologous bacterial system to screen for maize cDNAs encoding products that alter carotenoid accumulation either positively or negatively. Genes encoding carotenoid biosynthetic enzymes from the bacterium Erwinia uredovora were introduced into Escherichia coli cells that were subsequently transfected with a maize endosperm cDNA expression library; and these doubly transformed cells were then screened for altered carotenoid accumulation. DNA sequencing and characterization of one cDNA class conferring increased carotenoid content led to the identification of maize cDNAs encoding isopentenyl diphosphate isomerase. A cDNA that caused a reduced carotenoid content in E. coli was also identified. Based on DNA sequence analysis, DNA hybridization, and further functional testing, this latter cDNA was found to encode the small subunit of ADP-glucose pyrophosphorylase, a rate-controlling enzyme in starch biosynthesis that has been of interest for enhancing plant starch content.  相似文献   

11.
Carotenoids are organic pigments that are produced predominantly by photosynthetic organisms and provide antioxidant activity to a wide variety of plants, animals, bacteria, and fungi. The carotenoid biosynthetic pathway is highly conserved in plants and occurs mostly in chromoplasts and chloroplasts. Leaf carotenoids play important photoprotective roles and targeted selection for leaf carotenoids may offer avenues to improve abiotic stress tolerance. A collection of 332 soybean [Glycine max (L.) Merr.] genotypes was grown in two years and total leaf carotenoid content was determined using three different methods. The first method was based on extraction and spectrophotometric determination of carotenoid content (eCaro) in leaf tissue, whereas the other two methods were derived from high-throughput canopy spectral reflectance measurements using wavelet transformed reflectance spectra (tCaro) and a spectral reflectance index (iCaro). An association mapping approach was employed using 31,253 single nucleotide polymorphisms (SNPs) to identify SNPs associated with total carotenoid content using a mixed linear model based on data from two growing seasons. A total of 28 SNPs showed a significant association with total carotenoid content in at least one of the three approaches. These 28 SNPs likely tagged 14 putative loci for carotenoid content. Six putative loci were identified using eCaro, five loci with tCaro, and nine loci with iCaro. Three of these putative loci were detected by all three carotenoid determination methods. All but four putative loci were located near a known carotenoid-related gene. These results showed that carotenoid markers can be identified in soybean using extract-based as well as by high-throughput canopy spectral reflectance-based approaches, demonstrating the utility of field-based canopy spectral reflectance phenotypes for association mapping.  相似文献   

12.
类胡萝卜素生物合成途径及其控制与遗传操作   总被引:11,自引:1,他引:10  
类胡萝卜素在真菌和植物细胞胞液/内质网上是由乙酰CoA经甲羟戊酸途径合成的,在细菌与植物质体中由磷酸甘油醛与丙酮酸经1-脱氧木酮糖-5-磷酸途径合成。形成的异戊烯基焦磷酸经多次缩合生成第一个类胡萝卜素八氢番茄红素,再经脱氢、环化、羟基化、环氧化等转变为其它类胡萝卜素。类胡萝卜素生物合成中涉及的酶都是膜结合的或整合入膜中的。类胡萝卜素合成是通过底物可利用性与环化分支方式进行控制的。白色体到叶绿体的转变以及花与果实成熟时类胡萝卜素合成增加是在基因转录水平调节的。进行类胡萝卜素合成酶基因的转化,可增加转化体类胡萝卜素的积累。  相似文献   

13.
The strigolactones are internal and rhizosphere signalling molecules in plants that are biosynthesised through carotenoid cleavage. They are secreted by host roots into the rhizosphere where they signal host-presence to the symbiotic arbuscular mycrorrhizal (AM) fungi and the parasitic plants of the Orobanche, Phelipanche and Striga genera. The seeds of these parasitic plants germinate after perceiving these signalling molecules. After attachment to the host root, the parasite negatively affects the host plant by withdrawing water, nutrients and assimilates through a direct connection with the host xylem. In many areas of the world these parasites are a threat to agriculture but so far very limited success has been achieved to minimize losses due to these parasitic weeds. Considering the carotenoid origin of the strigolactones, in the present study we investigated the possibilities to reduce strigolactone production in the roots of plants by blocking carotenoid biosynthesis using carotenoid inhibitors. Hereto the carotenoid inhibitors fluridone, norflurazon, clomazone and amitrole were applied to rice either through irrigation or through foliar spray. Irrigation application of all carotenoid inhibitors and spray application of amitrole significantly decreased strigolactone production, Striga hermonthica germination and Striga infection, also in concentrations too low to affect growth and development of the host plant. Hence, we demonstrate that the application of carotenoid inhibitors to plants can affect S. hermonthica germination and attachment indirectly by reducing the strigolactone concentration in the rhizosphere. This finding is useful for further studies on the relevance of the strigolactones in rhizosphere signalling. Since these inhibitors are available and accessible, they may represent an efficient technology for farmers, including poor subsistence farmers in the African continent, to control these harmful parasitic weeds.  相似文献   

14.
Russian wheat aphid, Diuraphis noxia (Mordvilko), feeding injury on 'Betta' wheat isolines with the Dn1 and Dn2 genes was compared by assessing chlorophyll and carotenoid concentrations, and aphid fecundity. The resistant Betta isolines (i.e., Betta-Dn1 and Betta-Dn2) supported similar numbers of aphids, but had significantly fewer than the susceptible Betta wheat, indicating these lines are resistant to aphid feeding. Diuraphis noxia feeding resulted in different responses in total chlorophyll and carotenoid concentrations among the Betta wheat isolines. The infested Betta-Dn2 plants had higher levels of chlorophylls and carotenoids in comparison with uninfested plants. In contrast, infested Betta-Dn1 plants had the same level of chlorophyll and carotenoid in comparison with uninfested plants. Our data provide essential information on the effect of D. noxia feeding on chlorophyll and carotenoid concentrations for Betta wheat and its isolines with D. noxia-resistant Dn1 and Dn2 genes.  相似文献   

15.
Metabolic engineering of astaxanthin production in tobacco flowers   总被引:28,自引:0,他引:28  
Using metabolic engineering, we have modified the carotenoid biosynthesis pathway in tobacco (Nicotiana tabacum) to produce astaxanthin, a red pigment of considerable economic value. To alter the carotenoid pathway in chromoplasts of higher plants, the cDNA of the gene CrtO from the alga Haematococcus pluvialis, encoding beta-carotene ketolase, was transferred to tobacco under the regulation of the tomato Pds (phytoene desaturase) promoter. The transit peptide of PDS from tomato was used to target the CRTO polypeptide to the plastids. Chromoplasts in the nectary tissue of transgenic plants accumulated (3S,3'S) astaxanthin and other ketocarotenoids, changing the color of the nectary from yellow to red. This accomplishment demonstrates that plants can be used as a source of novel carotenoid pigments such as astaxanthin. The procedures described in this work can serve as a platform technology for future genetic manipulations of pigmentation of fruits and flowers of horticultural and floricultural importance.  相似文献   

16.
17.
Carotenoid biotechnology in plants for nutritionally improved foods   总被引:7,自引:1,他引:7  
Carotenoids participate in light harvesting and are essential for photoprotection in photosynthetic plant tissues. They also furnish non-photosynthetic flowers and fruits with yellow to red colors to attract animals for pollination and dispersal of seeds. Although animals can not synthesize carotenoids de novo , carotenoid-derived products such as retinoids (including vitamin A) are required as visual pigments and signaling molecules. Dietary carotenoids also provide health benefits based on their antioxidant properties. The main pathway for carotenoid biosynthesis in plants and microorganisms has been virtually elucidated in recent years, and some of the identified biosynthetic genes have been successfully used in metabolic engineering approaches to overproduce carotenoids of interest in plants. Alternative approaches that enhance the metabolic flux to carotenoids by upregulating the production of their isoprenoid precursors or interfere with light-mediated regulation of carotenogenesis have been recently shown to result in increased carotenoid levels. Despite spectacular achievements in the metabolic engineering of plant carotenogenesis, much work is still ahead to better understand the regulation of carotenoid biosynthesis and accumulation in plant cells. New genetic and genomic approaches are now in progress to identify regulatory factors that might significantly contribute to improve the nutritional value of plant-derived foods by increasing their carotenoid levels.  相似文献   

18.
The photoreceptor that mediates blue-light-induced phototropism in dark-grown seedlings of higher plants has not been identified, although the carotenoid zeaxanthin has recently been proposed as the putative chromophore. In the experiments described in this paper, we analyzed phototropism and a blue-light-induced protein phosphorylation that has been genetically and physiologically implicated in phototropism in wild-type maize (Zea mays L.) seedlings and compared the results with those from seedlings that are either carotenoid deficient through a genetic lesion or have been chemically treated to block carotenoid biosynthesis. The blue-light-dependent phototropism and phosphorylation responses of seedlings deficient in carotenoids are the same as those of seedlings containing normal levels of carotenoids. These results and those in the literature make it unlikely that zeaxanthin or any other carotenoid is the chromophore of the blue-light photoreceptor for phototropism or the blue-light-induced phosphorylation related to phototropism.  相似文献   

19.
Cytochrome P450 monooxygenases are involved in the biosynthesis of various compounds in plants such as phenylpropanoids, lipids and phytohormones. Hydroxylation of the carotenoid epsilon-ring is an essential reaction for the formation of lutein, the most abundant carotenoid in photosynthetic tissues. Recently, Li Tian and colleagues reported that a new P450 is responsible for this reaction. This discovery not only adds to the list of various functions of plant cytochrome P450s but also identifies one of the missing pieces of the puzzle of carotenoid biosynthesis.  相似文献   

20.
Carotenoids are isoprenoids with important biological roles both for plants and animals. The yellow flesh colour of potato (Solanum tuberosum L.) tubers is a quality trait dependent on the types and levels of carotenoids that accumulate. The carotenoid biosynthetic pathway is well characterised, facilitating the successful engineering of carotenoid content in numerous crops including potato. However, a clear understanding concerning the factors regulating carotenoid accumulation and localisation in plant storage organs, such as tubers, is lacking. In the present study, the localisation of key carotenoid biosynthetic enzymes was investigated, as one of the unexplored factors that could influence the accumulation of carotenoids in potato tubers. Stable transgenic potato plants were generated by over-expressing β-CAROTENE HYDROXYLASE 2 (CrtRb2) and PHYTOENE SYNTHASE 2 (PSY2) genes, fused to red fluorescent protein (RFP). Gene expression and carotenoid levels were both significantly increased, confirming functionality of the fluorescently tagged proteins. Confocal microscopy studies revealed different sub-organellar localisations of CrtRb2-RFP and PSY2-RFP within amyloplasts. CrtRb2 was detected in small vesicular structures, inside amyloplasts, whereas PSY2 was localised in the stroma of amyloplasts. We conclude that it is important to consider the location of biosynthetic enzymes when engineering the carotenoid metabolic pathway in storage organs such as tubers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号