首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Population viability analysis (PVA) is a valuable tool for rare plant conservation, but PVA for plants with persistent seed banks is difficult without reliable information on seed bank processes. We modeled the population dynamics of the Snake River Plains ephemeral Lepidium papilliferum using data from an 11-yr artificial seed bank experiment to estimate age-specific vital rates for viability loss and germination. We related variation in postgermination demographic parameters to annual variation in precipitation patterns and used these relationships to construct a stochastic population model using precipitation driver variables. This enabled us to incorporate realistic levels of environmental variability into the model. A model incorporating best estimates for parameter values resulted in a mean trajectory for seed bank size that remained essentially stable through time, although there was a measurable risk of extinction over a 100-yr period for the study population under this scenario. Doubling the annual seed viability loss rate resulted in near-certain extinction, as did increasing first-year germination to 100%, showing the importance of the persistent seed bank. Interestingly, increasing environmental variance substantially decreased the risk of extinction, presumably because this plant relies on extremely good years to restock the persistent seed bank, while extremely bad years have little impact. If every year were average in this desert environment, the species could not persist. Simulated effects of livestock trampling resulted in greatly increased extinction risk, even over time frames as short as 15 years.  相似文献   

2.
Rice  Kevin J.  Dyer  Andrew R. 《Plant Ecology》2001,155(2):237-243
In annual plants, increased competitive advantage has often been attributed to rapid germination and early establishment. In contrast, many annual species exhibit some degree of delayed germination (i.e., seed dormancy) that results in the formation of age structure within the seed population. Delayed germination can be an effective bet-hedging strategy in variable or unpredictable environments as a seed bank can buffer against years with reproductive failures and reduce the probability of local extinction. However, there has been little consideration of the direct effects of aging within the seed pool although the potential demographic costs of such a strategy (e.g., mortality in the seed bank or delayed reproduction) are well known. We used aged (4 year-old) and freshly produced seed from meadow steppe and sagebrush steppe populations of an annual grass (Bromus tectorum)to investigate the importance of seed age on seedling vigor and competitive ability. Aged seed from the meadow steppe population exhibited delays in germination that reduced plant growth and final biomass when the plants were grown with competition. Aged seed from the sagebrush steppe population did not exhibit delays in germination. By including a treatment that experimentally delayed the germination of freshly produced meadow steppe seed, we also examined the effects of delayed germination alone. A comparison of results from this delay treatment with those from the aged seed treatment suggested that the reduced competitive ability of meadow steppe plants produced from aged seed, although largely a result of the temporal delay in germination, was partly due to reduced seed vigor. Together these results indicate that physiological costs associated with seed age may affect aboveground competitive interactions and, in turn, the relative fitness of older cohorts in the soil seed bank.  相似文献   

3.
We explored models explaining population cycling in the annual Warea carteri. We modeled the life cycle of W. carteri and compared projected trajectories to independently observed trajectories (up to 16 years) of plants in 74 patches in three populations. We built matrix models with an annual time step for two populations, including four stages, (recently produced seeds, seeds in the seed bank, seedlings, and adults) and five vital rates, summarized in seven transitions. Fluctuations of both observed and modeled populations were evaluated using power spectra, autocorrelation, amplitude, and damping. Observed populations had two point cycling. Observed amplitude was higher in frequently burned populations, reached its maximum 1 year after fire, and then dampened. Asymptotic transition and vital rate elasticities showed that seedling survival was the most important factor for long-term population growth, but transient elasticities showed that recruitment from the seed bank was important during the first years post-fire. Deterministic modeling and elasticity analyses indicated that delayed germination (for 1 year) may explain biennial population cycling. Stochastic models created similar cycling with slower damping than deterministic models, but still had lower amplitudes (especially 1–3 years post-fire) than observed populations. The biennial cycle in W. carteri is likely caused by the delay in seed germination, which creates two overlapping cohorts of plants, much like a strict biennial. Fire initiates the cycle by killing aboveground individuals and promoting seedling recruitment in the first post-fire year.  相似文献   

4.
Annual plants are the main vegetation in arid and semi-arid desert regions.Because of their unique traits,they are the optimal experimental subjects for eco-logical studies.In this article,we summarize annual plants' seed germination strategies,seedling adaptability mechanism to environments,seed dispersal,and soil seed banks.We also discuss the biotic and abiotic factors affecting the composition and dynamics of annual plant populations and communities.Because annual plants have important ecological functions in desert vegetation systems,this study on annual plants will be of great bene-fit to the conservation and restoration of desert ecosys-tems,the rational utilization of resources,and the sustainable development of desert regions.  相似文献   

5.
Summary This article presents some statistical methods for estimating the parameters of a population dynamics model for annual plants. The model takes account of reproduction, immigration, seed survival in a seed bank, and plant growth. The data consist of the number of plants in several developmental stages that were measured in a number of populations for a few consecutive years; they are incomplete since seeds could not be counted. It is assumed that there are no measurement errors or that measurement errors are binomial and not frequent. Some statistical methods are developed within the framework of estimating equations or Bayesian inference. These methods are applied to oilseed rape data.  相似文献   

6.
Continuous progress in empirical population genetics based on the whole‐genome polymorphism data requires the theoretical analysis of refined models in order to interpret the evolutionary history of populations with adequate accuracy. Recent studies focus prevalently on the aspects of demography and adaptation, whereas age structure (for example, in plants via the maintenance of seed banks) has attracted less attention. Germ banking, that is, seed or egg dormancy, is a prevalent and important life‐history trait in plants and invertebrates, which buffers against environmental variability and modulates species extinction in fragmented habitats. Within this study, we investigate the combined effect of germ banking and time‐varying population size on the neutral coalescent and particularly derive the allele frequency spectrum under some simplifying assumptions. We then perform an ABC analysis using two simple demographic scenarios—a population expansion and an instantaneous decline. We demonstrate the appreciable influence of seed banks on the estimation of demographic parameters depending on the germination rate with biases scaled by the square of the germination rate. In the more complex case of a population bottleneck, which comprises an instantaneous decline and an expansion phase, ignoring information on the germination rate denies reliable estimates of the bottleneck parameters via the allelic spectrum. In particular, when seeds remain in the bank over several generations, recent expansions may remain invisible in the frequency spectrum, whereas ancient declines leave signatures much longer than in the absence of seed bank.  相似文献   

7.
Froelichia floridana (cottonweed) occurs as a disjunct population along the Ohio River in southeastern Ohio. The anomalous occurrence of F. floridana in this area has led to its designation as a state endangered species and a management regime to maintain the habitat conditions in which it occurs. As part of this effort, a restoration site was established on public lands in 1984 from seed collected in areas threatened by development. This study seeks to determine the demographic characteristics of this species in the restored and non‐restored managed sites to provide basic ecological information regarding life history parameters and to judge the effectiveness of the restoration. For two years (1997–1998) we collected information on seed bank abundance, field seed germination, plant survivorship, and seed production to create a stage‐based transition matrix model. The model suggests that population growth and abundance as assayed by λ (rate of increase) are stable to declining and are similar between the restoration and natural sites. A reduction in competition had a positive effect on population growth. Elasticity analysis showed that plants germinating earlier in the spring and becoming established as an early cohort contributed a greater level of reproductive output than plants germinating in late spring. Lowered population growth for 1997 is attributed to a cooler and dryer than average early spring that delayed germination and subsequent seed production. Elasticity analysis also suggested that the presence of a persistent seed bank was crucial for long‐term population maintenance and may allow for recovery in areas of low aboveground abundance through soil manipulation.  相似文献   

8.
Annual plants are the main vegetation in arid and semi-arid desert regions. Because of their unique traits, they are the optimal experimental subjects for ecological studies. In this article, we summarize annual plants’ seed germination strategies, seedling adaptability mechanism to environments, seed dispersal, and soil seed banks. We also discuss the biotic and abiotic factors affecting the composition and dynamics of annual plant populations and communities. Because annual plants have important ecological functions in desert vegetation systems, this study on annual plants will be of great benefit to the conservation and restoration of desert ecosystems, the rational utilization of resources, and the sustainable development of desert regions. __________ Translated from Chinese Journal of Ecology, 2006, 25(7): 851–856 [译自: 生态学杂志]  相似文献   

9.
Some aspects of the population biology of halophytes are considered in this review. Persistent seed banks have been reported for a number of inland- and coastal-salt marsh plant communities. Seeds of perennial grasses are often under-represented, while annuals and some perennial forbs may be over-represented in the seed bank. The persistent seed bank of annual halophytes appears adaptive, and provides multiple seed germination opportunities which may prevent local extinction when environmental stress increases. Somatic seed polymorphism provides a mechanism by which parent plants can respond to changing environments by partitioning their resources into reproductive units which have distinct germination responses. Parental effects may influence either seed morphology and/or physiological requirements of seeds when they are exposed to environmental stress. A prolonged germination period can provide plant populations with numerous opportunities to establish seedling cohorts. Early cohorts will have a selective advantage under moderate conditions because mortality will be low and plants will survive until maturity. However, fluctuations in salinity levels and tidal activity can cause high mortality in early cohorts in salt marsh habitats, providing later cohorts with an opportunity for establishment. Resource allocation to reproductive structures is related to plant size, which itself can be affected by both abiotic and biotic factors. Larger plants were found to produce more seeds than smaller plants in a population, but the mean seed weight was greater in small plants.  相似文献   

10.
一年生盐生植物耐盐机制研究进展   总被引:5,自引:0,他引:5       下载免费PDF全文
盐生植物是一类能够在盐土上完成生活史的天然植物, 在与盐土协同演化过程中形成了一系列适应盐生环境的特殊生存策略。其中一年生盐生植物因其生活史短、方便培养和观察、易于基因转化和后代繁殖, 已成为耐盐机制研究的主要对象。一年生盐生植物面临多变的生境胁迫, 具有更大的生存风险, 所以具有不同于多年生盐生植物的更稳妥的适应机制, 主要体现在种子的高盐休眠、复水速萌、形态和萌发的多态性、存在持久种子库及调节资源分配等方面。种子萌发后的生长、发育和繁殖等生活史的各阶段都要经受严峻的盐生胁迫环境。通常所说的耐盐机理是指成株对盐分的调控, 按照植物种类不同而分为稀盐、泌盐和拒盐3种耐盐形式。该文在对国内外相关文献进行分析归纳的基础上, 首先介绍了一年生盐生植物的常见类型, 然后分别从种子特征、形态结构、生理生化和生态习性等方面综述了一年生盐生植物的耐盐机制。  相似文献   

11.
Predicting the population dynamics of annual plants is a challenge due to their hidden seed banks in the field. However, such predictions are highly valuable for determining management strategies, specifically in agricultural landscapes. In agroecosystems, most weed seeds survive during unfavourable seasons and persist for several years in the seed bank. This causes difficulties in making accurate predictions of weed population dynamics and life history traits (LHT). Consequently, it is very difficult to identify management strategies that limit both weed populations and species diversity. In this article, we present a method of assessing weed population dynamics from both standing plant time series data and an unknown seed bank. We use a Hidden Markov Model (HMM) to obtain estimates of over 3,080 botanical records for three major LHT: seed survival in the soil, plant establishment (including post-emergence mortality), and seed production of 18 common weed species. Maximum likelihood and Bayesian approaches were complementarily used to estimate LHT values. The results showed that the LHT provided by the HMM enabled fairly accurate estimates of weed populations in different crops. There was a positive correlation between estimated germination rates and an index of the specialisation to the crop type (IndVal). The relationships between estimated LHTs and that between the estimated LHTs and the ecological characteristics of weeds provided insights into weed strategies. For example, a common strategy to cope with agricultural practices in several weeds was to produce less seeds and increase germination rates. This knowledge, especially of LHT for each type of crop, should provide valuable information for developing sustainable weed management strategies.  相似文献   

12.
Diversity and Coexistence of Sonoran Desert Winter Annuals   总被引:3,自引:0,他引:3  
Abstract Annual plants make up ca. 50% of local floras in the Sonoran Desert. As with most plant communities, there is no shortage of potential coexistence generating mechanisms, and several mechanisms are likely contributors to coexistence at different spatial scales in the Sonoran Desert, e.g. spatial heterogeneity and the behaviors of predators and grazers. We explore one mechanism of likely importance for desert annuals: temporal environmental variation. It is widely recognized that coexistence is promoted by temporal variation if species such as desert annuals have "temporal niches" in the sense that each has years in which it out-performs the others. It is usually suggested that some resistent life-history stage, such as a seed bank, is also necessary to buffer each species from the negative population dynamic impact of unfavorable years. Using ten years of demographic data, we document the large year-to-year variation in population dynamics of desert annuals and show that ten species respond differently to temporal variation. Competition experiments document reversals in competitive superiority. Also, all species have a between-year seed bank, such that only a proportion of the seed bank germinates in any given year. Thus this system meets our intuitive requirements for variance-based coexistence. Dynamic models of this system demonstrate that subtle aspects of the species biology determine whether coexistence criteria are actually met. Specifically, variable germination fractions are required and coexistence is most readily favored with "predictive" germination. Germination fractions in this system do vary among years in a species specific fashion. Also, for the three years of available data, germination was predictive, in that each species had greater germination fractions in year of greater demographic success. Thus all of the population dynamic elements necessary for temporal variance mediated coexistence seem to be present in this system.  相似文献   

13.
In many plant species dormant seeds can persist in the soil for one to several years. The formation of these seed banks is especially important for disturbance specialist plants, as seeds of these species germinate only in disturbed soil. Seed movement caused by disturbances affects the survival and germination probability of seeds in the seed bank, which subsequently affect population dynamics. In this paper, we develop a stochastic integral projection model for a general disturbance specialist plant-seed bank population that takes into account both the frequency and intensity of random disturbances, as well as vertical seed movement and density-dependent seedling establishment. We show that the probability measures associated with the plant-seed bank population converge weakly to a unique measure, independent of initial population. We also show that the population either persists with probability one or goes extinct with probability one, and provides a sharp criteria for this dichotomy. We apply our results to an example motivated by wild sunflower (Helianthus annuus) populations, and explore how the presence or absence of a “storage effect” impacts how a population responds to different disturbance scenarios.  相似文献   

14.
Transgenes introduced into crops can escape in time, as well as space, via the seed bank. For annual plants, especially ruderals, seed bank behaviour may be the most important factor determining population persistence. Crop seeds may exhibit some dormancy and germination cueing in the soil but are expected to be less able to persist than their wild relatives, which often have considerable dormancy and longevity, as well as effective germination cueing responses. Crop-wild hybrids may have seed bank characteristics more suited to persistence, and maternal effects may favour persistence of hybrids having wild plants for their female parent. Escape of transgenes via crop-wild hybrids presents unique concerns not present for crops. Hybrids can undergo natural selection and may back-cross with wild plants. We suggest methods that can be used in conjunction with evaluation of the relative fitness of crop-wild hybrids that will determine the likelihood of back-crossing. Accurate assessment of escape in time and transgene persistence via crop-wild hybrids requires proper plant materials. We emphasize the use of null segregants as controls for transgenic crops and for generating crop-wild hybrid controls for transgenic hybrids. Since good empirical and theoretical understanding of how individual genes influence the fate of plants in different environments is lacking, evaluation of escape in time and the persistence of transgenes via crop-wild hybrids should be on a case-by-case basis.  相似文献   

15.
In bet hedging, organisms sacrifice short‐term success to reduce the long‐term variance in success. Delayed germination is the classic example of bet hedging, in which a fraction of seeds remain dormant as a hedge against the risk of complete reproductive failure. Here, we investigate the adaptive nature of delayed germination as a bet hedging strategy using long‐term demographic data on Sonoran Desert winter annual plants. Using stochastic population models, we estimate fitness as a function of delayed germination and identify evolutionarily stable strategies for 12 abundant species in the community. Results indicate that delayed germination meets the criteria as a bet hedging strategy for all species. Density‐dependent models, but not density‐independent ones, predicted optimal germination strategies that correspond remarkably well with observed patterns. By incorporating naturally occurring variation in seed and seedling dynamics, our results present a rigorous test of bet hedging theory within the relevant environmental context.  相似文献   

16.
准噶尔盆地梭梭土壤种子库基本特征   总被引:1,自引:0,他引:1  
土壤种子库是种子的安全岛,是干旱荒漠区植被更新与恢复的基础。以梭梭为主的荒漠植被是准噶尔盆地绿洲区重要的生态屏障,但是,对于与梭梭种群自然更新紧密联系的土壤种子库特征的研究却相对缺乏。本研究通过野外采样、物理筛分并结合室内实验分析,对准噶尔盆地梭梭土壤种子库基本特征进行了研究。结果表明:(1)梭梭种群平均土壤种子库密度从71~696 粒·m-2,局部小环境甚至达到7 534 粒·m-2;(2)变异系数分析表明,各种群土壤种子库密度变异系数均大于1,说明梭梭土壤种子库的数量分布是非常不均匀的;(3)梭梭种群土壤种子库中种子萌发率从2.08%到47.62%不等,平均约18%;(4)变异函数分析表明,梭梭土壤种子库中种子分布的空间变异较大。综上,准噶尔盆地梭梭土壤种子库密度大且种子萌发能力强,同时其时空分布差异明显,这些特征均将影响梭梭种群的分布格局和种群更新。  相似文献   

17.
Abstract Many populations of herbaceous perennial plants contain seeds stored in a soil seed bank. The contribution of seeds to population persistence is an important parameter in population models but germination rates of known‐age seeds are difficult to obtain because individual seeds cannot easily be followed. Although Trachymene incisa Rudge plants produce copious seeds that are dispersed into the soil, the existence of a seed bank has not been confirmed. To quantify the potential for a seed bank fresh seeds of T. incisa were sown into experimental seed banks in the eucalypt‐dominated Agnes Banks Woodland in western Sydney, NSW. A recent fire provided the opportunity to compare germination in the burnt and unburnt vegetation. Density of seed sowing and time of maturation/dispersal of seeds were manipulated in 75 seed cages. Emergence of seeds after 5 months was significantly higher for the earliest planting date but after 1 year, germination of seeds planted in the later weeks increased, and the final germination for all weeks was 28%. Density of sowing and the recent fire did not affect emergence. A second experiment planted over a broader time span (9 weeks instead of 3 weeks) confirmed the effect of planting date but also found significant spatial variation on a scale of tens of metres. Laboratory germination rates of over 70% confirmed that the seeds were viable and non‐dormant when sown in the field cages. The carry‐over of non‐germinated seed in the soil seed bank is estimated to be about 70% after 2 years, implying that a cohort of seeds would not be depleted through germination alone for up to 40 years. The potential for a long‐lived seed bank in this species is interesting because the plants are also capable of resprouting from their rootstock after fire, giving them characteristics of both resprouters and seeders.  相似文献   

18.
Annual plants in unpredictable environments maintain dormant seeds to avoid extinction. Here, we present results for four desert annual species suggesting that germination rates are variable even in the absence of abiotic cues. Namely, seeds produced in a copious year had lower germination rates than seeds produced in drought years. Inspired by our data, we have extended previous bet-hedging models by including a structured seed bank. With density-dependence, the ESS (environmental stable strategy) involved a negative relationship between seed yield and subsequent germination probability. We suggest that heterogeneous germination rates are selected for by competition among seedlings after years with high seed production. In summary, our findings are suggestive of an intriguingly simple and effective mechanism that may allow annual plants to partly predict their future success.  相似文献   

19.
1.  The probability of a transgenic crop establishing a feral population outside cultivated areas and possibly outcompeting naturally occurring species needs to be assessed to make an ecological risk assessment of the transgenic crop.
2.  The interaction between herbivory and competition is thought to determine the ecological success of insect-resistant plants, and this interaction was investigated in a competition experiment with transgenic insect-resistant Bt- Brassica napus , Brassica rapa , Lolium perenne , and herbivory from the large white butterfly Pieris brassicae .
3.  As expected, herbivory had a negative effect on the biomass of B. rapa at high plant densities. The competitive ability of L. perenne , when growing with B. rapa , increased significantly with the level of herbivory on B. rapa .
4.  To predict the effect of herbivory in a natural ecosystem, plant competition between the two annual Brassica species was analysed in a population ecological model. It was concluded that it is probable that transgenic Bt- B. napus plants may invade a natural habitat if herbivory is sufficiently high and the habitat is suitable for B. napus .
5.   Synthesis and applications . The results indicate that it is important to study the interaction between herbivory and competition when assessing the ecological risk of insect-resistant genetically modified crops. Furthermore, combining ecological data from manipulated experiments with population ecological modelling is a fruitful approach when conducting environmental risk assessments.  相似文献   

20.
干旱半干旱荒漠地区一年生植物研究综述   总被引:5,自引:0,他引:5  
1年生植物是干旱半干旱地区植被的重要组成部分,并以其独有的植物特性成为许多植物生态学关键问题研究的最佳试验材料。本文综述了干旱半干旱地区1年生植物的种子萌发对策、幼苗对环境的适应机制、种子传播和种子库等方面的研究成果,并探讨了影响1年生植物种群、群落组成和动态的生物与非生物因素。基于1年生植物类群在荒漠植被系统中重要的生态功能,有关1年生植物的研究成果将有利于荒漠生态系统的保护和恢复、资源的合理利用以及区域的可持续发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号