首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study analyses the spatial and temporal variability of N2O emissions from the agricultural soils of Belgium. Annual N2O emission rates are estimated with two statistical models, MCROPS and MGRASS, which take account of the impact of changes in land use, climate, and nitrogen‐fertilization rate. The models are used to simulate the temporal trend of N2O emissions between 1990 and 2050 for a 10′ latitude and longitude grid. The results are also aggregated to the regional and national scale to facilitate comparison with other studies and national inventories. Changes in climate and land use are derived from the quantitative scenarios developed by the ATEAM project based on the Intergovernmental Panel on Climate Change‐Special Report on Emissions Scenarios (IPCC‐SRES) storylines. The average N2O flux for Belgium was estimated to be 8.6 × 106 kg N2O‐N yr−1 (STD = 2.1 × 106 kg N2O‐N yr−1) for the period 1990–2000. Fluxes estimated for a single year (1996) give a reasonable agreement with published results at the national and regional scales for the same year. The scenario‐based simulations of future N2O emissions show the strong influence of land‐use change. The scenarios A1FI, B1 and B2 produce similar results between 2001 and 2050 with a national emission rate in 2050 of 11.9 × 106 kg N2O‐N yr−1. The A2 scenario, however, is very sensitive to the reduction in agricultural land areas (−14% compared with the 1990 baseline), which results in a reduced emission rate in 2050 of 8.3 × 106 kg N2O‐N yr−1. Neither the climatic change scenarios nor the reduction in nitrogen fertilization rate could explain these results leading to the conclusion that N2O emissions from Belgian agricultural soils will be more markedly affected by changes in agricultural land areas.  相似文献   

2.
An empirical model of nitrous oxide emission from agricultural soils has been developed. It is based on the relationship between N2O and three soil parameters – soil mineral N (ammonium plus nitrate) content in the topsoil, soil water‐filled pore space and soil temperature – determined in a study on a fertilized grassland in 1992 and 1993. The model gave a satisfactory prediction of seasonal fluxes in other seasons when fluxes were much higher, and also from other grassland sites and from cereal and oilseed rape crops, over a wide flux range (< 1 to > 20 kg N2O‐N ha?1 y?1). However, the model underestimated emissions from potato and broccoli crops; possible reasons for this are discussed. This modelling approach, based as it is on well‐established and widely used soil measurements, has the potential to provide flux estimates from a much wider range of agricultural sites than would be possible by direct measurement of N2O emissions.  相似文献   

3.
There is uncertainty in the estimates of indirect nitrous oxide (N2O) emissions as defined by the Intergovernmental Panel on Climate Change (IPCC). The uncertainty is due to the challenge and dearth of in situ measurements. Recent work in a subtropical stream system has shown the potential for diurnal variability to influence the downstream N transfer, N form, and estimates of in‐stream N2O production. Studies in temperate stream systems have also shown diurnal changes in stream chemistry. The objectives of this study were to measure N2O fluxes and dissolved N2O concentrations from a spring‐fed temperate river to determine if diurnal cycles were occurring. The study was performed during a 72 h period, over a 180 m reach, using headspace chamber methodology. Significant diurnal cycles were observed in radiation, river temperature and chemistry including dissolved N2O‐N concentrations. These data were used to further assess the IPCC methodology and experimental methodology used. River NO3‐N and N2O‐N concentrations averaged 3.0 mg L−1 and 1.6 μg L−1, respectively, with N2O saturation reaching a maximum of 664%. The N2O‐N fluxes, measured using chamber methodology, ranged from 52 to 140 μg m−2 h−1 while fluxes predicted using the dissolved N2O concentration ranged from 13 to 25 μg m−2 h−1. The headspace chamber methodology may have enhanced the measured N2O flux and this is discussed. Diurnal cycles in N2O% saturation were not large enough to influence downstream N transfer or N form with variability in measured N2O fluxes greater and more significant than diurnal variability in N2O% saturation. The measured N2O fluxes, extrapolated over the study reach area, represented only 6 × 10−4% of the NO3‐N that passed through the study reach over a 72 h period. This is only 0.1% of the IPCC calculated flux.  相似文献   

4.
In this study, we analyze the impact of fertilizer‐ and manure‐induced N2O emissions due to energy crop production on the reduction of greenhouse gas (GHG) emissions when conventional transportation fuels are replaced by first‐generation biofuels (also taking account of other GHG emissions during the entire life cycle). We calculate the nitrous oxide (N2O) emissions by applying a statistical model that uses spatial data on climate and soil. For the land use that is assumed to be replaced by energy crop production (the ‘reference land‐use system’), we explore a variety of options, the most important of which are cropland for food production, grassland, and natural vegetation. Calculations are also done in the case that emissions due to energy crop production are fully additional and thus no reference is considered. The results are combined with data on other emissions due to biofuels production that are derived from existing studies, resulting in total GHG emission reduction potentials for major biofuels compared with conventional fuels. The results show that N2O emissions can have an important impact on the overall GHG balance of biofuels, though there are large uncertainties. The most important ones are those in the statistical model and the GHG emissions not related to land use. Ethanol produced from sugar cane and sugar beet are relatively robust GHG savers: these biofuels change the GHG emissions by −103% to −60% (sugar cane) and −58% to −17% (sugar beet), compared with conventional transportation fuels and depending on the reference land‐use system that is considered. The use of diesel from palm fruit also results in a relatively constant and substantial change of the GHG emissions by −75% to −39%. For corn and wheat ethanol, the figures are −38% to 11% and −107% to 53%, respectively. Rapeseed diesel changes the GHG emissions by −81% to 72% and soybean diesel by −111% to 44%. Optimized crop management, which involves the use of state‐of‐the‐art agricultural technologies combined with an optimized fertilization regime and the use of nitrification inhibitors, can reduce N2O emissions substantially and change the GHG emissions by up to −135 percent points (pp) compared with conventional management. However, the uncertainties in the statistical N2O emission model and in the data on non‐land‐use GHG emissions due to biofuels production are large; they can change the GHG emission reduction by between −152 and 87 pp.  相似文献   

5.
Nitrogen fertilizer‐induced direct nitrous oxide (N2O) emissions depend on water regimes in paddy fields, such as seasonal continuous flooding (F), flooding–midseason drainage–reflooding (F‐D‐F), and flooding–midseason drainage–reflooding–moist intermittent irrigation but without water logging (F‐D‐F‐M). In order to estimate the changes in direct N2O emission from paddy fields during the rice‐growing season in Mainland of China between the 1950s and the 1990s, the country‐specific emission factors of N2O‐N under different water regimes combined with rice production data were adopted in the present study. Census statistics on rice production showed that water management and nitrogen input regimes have changed in rice paddies since the 1950s. During the 1950s–1970s, about 20–25% of the rice paddy was continuously waterlogged, and 75–80% under the water regime of F‐D‐F. Since the 1980s, about 12–16%, 77%, and 7–12% of paddy fields were under the water regimes of F, F‐D‐F, and F‐D‐F‐M, respectively. Total nitrogen input during the rice‐growing season has increased from 87.5 kg N ha−1 in the 1950s to 224.6 kg N ha−1 in the 1990s. The emission factors of N2O‐N were estimated to be 0.02%, 0.42%, and 0.73% for rice paddies under the F, F‐D‐F, and F‐D‐F‐M water regimes, respectively. Seasonal N2O emissions have increased from 9.6 Gg N2O‐N each year in the 1950s to 32.3 Gg N2O‐N in the 1990s, which is accompanied by the increase in rice yield over the period 1950s–1990s. The uncertainties in N2O estimate were estimated to be 59.8% in the 1950s and 37.5% in the 1990s. In the 1990s, N2O emissions during the rice‐growing season accounted for 8–11% of the reported annual total of N2O emissions from croplands in China, suggesting that paddy rice development could have contributed to mitigating agricultural N2O emissions in the past decades. However, seasonal N2O emissions would be increased, given that saving‐water irrigation and nitrogen inputs are increasingly adopted in rice paddies in China.  相似文献   

6.
An automated closed‐chamber system was developed to measure N2O fluxes in the field. It was deployed at two N‐fertilized grassland sites in two successive years, together with replicated manual chambers, to investigate the spatial and temporal variability in fluxes, and the likely impact of sampling frequency on cumulative flux values. The automated system provided flux data at 8‐h intervals, while manual sampling was conducted at intervals of 3–7 days. The autochambers showed fluctuations in emissions not detected by manual sampling. However, integrated flux values based on the more intensive measurements were on average no more than 14% greater than those based on data from the autochambers that were obtained at the same time as manual sampling. This difference was not significant and well within the spatial variability determined with manual chambers. If daily sampling intervals were used immediately after fertilization, the agreement was closer still, increasing the confidence that can be placed in manual procedures. Diurnal variations in temperature and flux were small, and results from sampling at mid‐day were not significantly different from those based on early morning or evening sampling. Where diurnal fluctuations in temperature and flux are likely to be much larger, the autochamber/sampler system could prove very useful to quantify the effect.  相似文献   

7.
The availability of O2 is believed to be one of the main factors regulating nitrification and denitrification and the release of NO and N2O. The availability of O2 in soil is controlled by the O2 partial pressure in the gas phase and by the moisture content in the soil. Therefore, we investigated the influence of O2 partial pressures and soil moisture contents on the NO and N2O release in a sandy and a loamy silt and differentiated between nitrification and denitrification by selective inhibition of nitrification with 10 Pa acetylene. At 60% whc (maximum water holding capacity) NO and N2O release by denitrification increased with decreasing O2 partial pressure and reached a maximum under anoxic conditions. Under anoxic conditions NO and N2O were only released by denitrification. NO and N2O release by nitrification also increased with decreasing O2 partial pressure, but reached a maximum at 0.1–0.5% O2 and then decreased again. Nitrification was the main source of NO and N2O at O2 partial pressures higher than 0.1–0.5% O2. At lower O2 partial pressures denitrification was the main source of NO and N2O. With decreasing O2 partial pressure N2O release increased more than NO release, indicating that the N2O release was more sensitive against O2 than the NO release. At ambient O2 partial pressure (20.5% O2) NO and N2O release by denitrification increased with increasing soil moisture content. The maximum NO and N2O release was observed at soil moisture contents of 65–80% whc and 100% whc, respectively. NO and N2O release by nitrification also increased with increasing soil moisture content with a maximum at 45–55% whc and 90% whc, respectively. Nitrification was the main source of NO and N2O at soil moisture contents lower than 90% whc and 80% whc, respectively. Higher soil moisture contents favoured NO and N2O release by denitrification. Soil texture had also an effect on the release of NO and N2O. The coarse-textured sandy silt released more NO than N2O compared with the fine-textured loamy silt. At high soil moisture contents (80–100% whc) the fine-textured soil showed a higher N2O release by denitrification than the coarse-textured soil. We assume that the fine-textured soil became anoxic at a lower soil moisture content than the coarse-textured soil. In conclusion, the effects of O2 partial pressure, soil moisture and soil texture were consistent with the theory that denitrification increasingly contributes to the release of NO and in particular N2O when conditions for soil microorganisms become increasingly anoxic.  相似文献   

8.
9.
Atmospheric concentrations of the greenhouse gas nitrous oxide (N2O) have continued to rise since the advent of the industrial era, largely because of the increase in agricultural land use. The urine deposited by grazing ruminant animals is a major global source of agricultural N2O. With the first commitment period for reducing greenhouse gas emissions under the Kyoto Protocol now underway, mitigation options for ruminant urine N2O emissions are urgently needed. Recent studies showed that increasing the urinary concentration of the minor urine constituent hippuric acid resulted in reduced emissions of N2O from a sandy soil treated with synthetic bovine urine, due to a reduction in denitrification. A similar effect was seen when benzoic acid, a product of hippuric acid hydrolysis, was used. This current laboratory experiment aimed to investigate these effects using real cow urine for the first time. Increased concentrations of hippuric acid or benzoic acid in the urine led to reduction of N2O emissions by 65% (from 17% to <6% N applied), with no difference between the two acid treatments. Ammonia volatilization did not increase significantly with increased hippuric acid or benzoic acid concentrations in the urine applied. Therefore, there was a net reduction in gaseous N loss from the soil with higher urinary concentrations of both hippuric acid and benzoic acid. The results show that elevating hippuric acid in the urine had a marked negative effect on both nitrification and denitrification rates and on subsequent N2O fluxes. This study indicates the potential for developing a novel mitigation strategy based on manipulation of urine composition through ruminant diet.  相似文献   

10.
Ecosystem CO2 and N2O exchanges between soils and the atmosphere play an important role in climate warming and global carbon and nitrogen cycling; however, it is still not clear whether the fluxes of these two greenhouse gases are correlated at the ecosystem scale. We collected 143 pairs of ecosystem CO2 and N2O exchanges between soils and the atmosphere measured simultaneously in eight ecosystems around the world and developed relationships between soil CO2 and N2O fluxes. Significant linear regressions of soil CO2 and N2O fluxes were found for all eight ecosystems; the highest slope occurred in rice paddies and the lowest in temperate grasslands. We also found the dominant role of growing season on the relationship of annual CO2 and N2O fluxes. No significant relationship between soil CO2 and N2O fluxes was found across all eight ecosystem types. The estimated annual global N2O emission based on our findings is 13.31 Tg N yr−1 with a range of 8.19–18.43 Tg N yr−1 for 1980–2000, of which cropland contributes nearly 30%. Our findings demonstrated that stoichiometric relationships may work on ecological functions at the ecosystem level. The relationship of soil N2O and CO2 fluxes developed here could be helpful in biogeochemical modeling and large-scale estimations of soil CO2 and N2O fluxes.  相似文献   

11.
This paper presents a new algorithm, Nitrous Oxide Emission (NOE) for simulating the emission of the greenhouse gas N2O from agricultural soils. N2O fluxes are calculated as the result of production through denitrification and nitrification and reduction through the last step of denitrification. Actual denitrification and nitrification rates are calculated from biological parameters and soil water‐filled pore space, temperature and mineral nitrogen contents. New suggestions in NOE consisted in introducing (1) biological site‐specific parameters of soil N2O reduction and (2) reduction of the N2O produced through nitrification to N2 through denitrification. This paper includes a database of 64 N2O fluxes measured on the field scale with corresponding environmental parameters collected from five agricultural situations in France. This database was used to test the validity of this algorithm. Site per site comparison of simulated N2O fluxes against observed data leads to mixed results. For 80% of the tested points, measured and simulated fluxes are in accordance whereas the others resulted in an important discrepancy. The origin of this discrepancy is discussed. On the other hand, mean annual fluxes measured on each site were strongly correlated to mean simulated annual fluxes. The biological site‐specific parameter of soil N2O reduction introduced into NOE appeared particularly useful to discriminate the general level of N2O emissions from site to site. Furthermore, the relevance of NOE was confirmed by comparing measured and simulated N2O fluxes using some data from the US TRAGNET database. We suggest the use of NOE on a regional scale in order to predict mean annual N2O emissions.  相似文献   

12.
The effect of the water table on nitrous oxide (N2O) fluxes from peat profiles representing boreal peatlands of differing nutrient status was studied in the laboratory. Lowering of the water table in peat monoliths taken from two natural waterlogged peatlands for 14 weeks in a greenhouse at 20 °C increased the fluxes of N2O, an effect that was enhanced further by incubation in the dark. Raising of the water table in monoliths from two drained and forested peatlands caused cessation of the N2O fluxes from the drained peats, which had previously been sources of N2O. It is known that N2O fluxes have increased in peatlands drained several decades ago. The results suggest that it is not necessary for the water table to be lowered for several years to change a boreal peatland from a N2O sink to a source of the gas. In addition to the draining of peatlands, climate change can be expected to lower ground water levels during the summertime in the boreal zone, and this could cause marked changes in N2O fluxes from boreal peatlands by enhancing the microbial processes involved in nitrogen transformations.  相似文献   

13.
The response of nitrous oxide (N2O) emission rates and β‐proteobacterial ammonia‐oxidizing (AOB) communities to manipulations of temperature, soil moisture and nitrogenous fertilizer concentration were studied for 16–20 weeks in a multifactorial laboratory experiment using a California meadow soil. Interactions among these three environmental factors influenced the N2O emission rates, and two patterns of N2O emission rates due to nitrification (NitN2O) were observed. First, in soils receiving low or moderate amounts of fertilizer, the rates decreased sharply in response to increasing soil moisture and temperature. Second, in soils receiving high amounts of fertilizer, the rates were influenced by an interaction between soil moisture and temperature, such that at 20 °C increasing soil moisture resulted in an increase in the rates, and at 30 °C the highest rate was observed at moderate soil moisture. We used path analysis to identify the interrelationships that best explain these two patterns. Path analysis revealed that in the high fertilizer (HF) treatment, the major path by which ammonia influenced NitN2O rates was indirect through an influence on the abundance of one particular phylogenetic group (AOB ‘cluster 10’). In contrast, in the low and moderate fertilizer treatments soil moisture influenced the rates both directly (the major path) and indirectly through AOB community structure. Although terminal restriction fragment length polymorphism (T‐RFLP) analysis revealed shifts in the community structure of AOB in all treatments, the shifts at HF concentrations were particularly striking, with dominance by three different phylogenetic groups under different combinations of the three environmental factors. The high emission rates observed at the lowest soil moistures suggest that bacterial nitrifiers may use denitrification as a stress response.  相似文献   

14.
Natural wetlands are critically important to global change because of their role in modulating atmospheric concentrations of CO2, CH4, and N2O. One 4‐year continuous observation was conducted to examine the exchanges of CH4 and N2O between three wetland ecosystems and the atmosphere as well as the ecosystem respiration in the Sanjiang Plain in Northeastern China. From 2002 to 2005, the mean annual budgets of CH4 and N2O, and ecosystem respiration were 39.40 ± 6.99 g C m?2 yr?1, 0.124 ± 0.05 g N m?2 yr?1, and 513.55 ± 8.58 g C m?2 yr?1 for permanently inundated wetland; 4.36 ± 1.79 g C m?2 yr?1, 0.11 ± 0.12 g N m?2 yr?1, and 880.50 ± 71.72 g C m?2 yr?1 for seasonally inundated wetland; and 0.21 ± 0.1 g C m?2 yr?1, 0.28 ± 0.11 g N m?2 yr?1, and 1212.83 ± 191.98 g C m?2 yr?1 for shrub swamp. The substantial interannual variation of gas fluxes was due to the significant climatic variability which underscores the importance of long‐term continuous observations. The apparent seasonal pattern of gas emissions associated with a significant relationship of gas fluxes to air temperature implied the potential effect of global warming on greenhouse gas emissions from natural wetlands. The budgets of CH4 and N2O fluxes and ecosystem respiration were highly variable among three wetland types, which suggest the uncertainties in previous studies in which all kinds of natural wetlands were treated as one or two functional types. New classification of global natural wetlands in more detailed level is highly expected.  相似文献   

15.
From spring 2000 through fall 2001, we measured nitric oxide (NO) and nitrous oxide (N2O) fluxes in two temperate forest sites in Massachusetts, USA that have been treated since 1988 with different levels of nitrogen (N) to simulate elevated rates of atmospheric N deposition. Plots within a pine stand that were treated with either 50 or 150 kg N ha?1 yr?1 above background displayed consistently elevated NO fluxes (100–200 µg N m?2 h?1) compared to control plots, while only the higher N treatment plot within a mixed hardwood stand displayed similarly elevated NO fluxes. Annual NO emissions estimated from monthly sampling accounted for 3.0–3.7% of N inputs to the high‐N plots and 8.3% of inputs to the Pine low‐N plot. Nitrous oxide fluxes in the N‐treated plots were generally < 10% of NO fluxes. Net nitrification rates (NRs) and NO production rates measured in the laboratory displayed patterns that were consistent with field NO fluxes. Total N oxide gas flux was positively correlated with contemporaneous measurements of NR and concentration. Acetylene inhibited both nitrification and NO production, indicating that autotrophic nitrification was responsible for the elevated NO production. Soil pH was negatively correlated with N deposition rate. Low levels (3–11 µg N kg?1) of nitrite () were detected in mineral soils from both sites. Kinetic models describing NO production as a function of the protonated form of (nitrous acid [HNO2]) adequately described the mineral soil data. The results indicate that atmospheric deposition may generate losses of gaseous NO from forest soils by promoting nitrification, and that the response may vary significantly between forest types under similar climatic regimes. The lowering of pH resulting from nitrification and/or directly from deposition may also play a role by promoting reactions involving HNO2.  相似文献   

16.
There is considerable uncertainty in the estimates of indirect N2O emissions as defined by the Intergovernmental Panel on Climate Change's (IPCC) methodology. Direct measurements of N2O yields and fluxes in aquatic river environments are sparse and more data are required to determine the role that rivers play in the global N2O budget. The objectives of this research were to measure the N2O fluxes from a spring‐fed river, relate these fluxes to the dissolved N2O concentrations and NO3‐N loading of the river, and to try to define the indirect emission factor (EF5‐r) for the river. Gas bubble ebullition was observed at the river source with bubbles containing 7.9 μL N2O L?1. River NO3‐N and dissolved N2O concentrations ranged from 2.5 to 5.3 mg L?1 and 0.4 to 1.9 μg N2O‐N L?1, respectively, with N2O saturation reaching 404%. Floating headspace chambers were used to sample N2O fluxes. N2O‐N fluxes were significantly related to dissolved N2O‐N concentrations (r2=0.31) but not to NO3‐N concentrations. The N2O‐N fluxes ranged from 38 to 501 μg m?2 h?1, averaging 171 μg m?2 h?1 (±SD 85) overall. The measured N2O‐N fluxes equated to an EF5‐r of only 6.6% of that calculated using the IPCC methodology, and this itself was considered to be an overestimate because of the degassing of antecedent dissolved N2O present in the groundwater that fed the river.  相似文献   

17.
Based on current climate scenarios, a higher frequency of summer drought periods followed by heavy rainfall events is predicted for Central Europe. It is expected that drying/rewetting events induce an increased matter cycling in soils and may contribute considerably to increased emissions of the greenhouse gas N2O on annual scales. To investigate the influence of drying/rewetting events on N2O emissions in a mature Norway spruce forest in the Fichtelgebirge area (NE Bavaria, Germany), a summer drought period of 46 days was induced by roof installations on triplicate plots, followed by a rewetting event of 66 mm experimental rainfall in 2 days. Three nonmanipulated plots served as controls. The experimentally induced soil drought was accompanied by a natural drought. During the drought period, the soil of both the throughfall exclusion and control plots served as an N2O sink. This was accompanied by subambient N2O concentrations in upper soil horizons. The sink strength of the throughfall exclusion plots was doubled compared with the control plots. We conclude that the soil water status together with the soil nitrate availability was an important driving factor for the N2O sink strength. Rewetting quickly turned the soil into a source for atmospheric N2O again, but it took almost 4 months to turn the cumulative soil N2O fluxes from negative (sink) to positive (source) values. N2O concentration and isotope analyses along soil profiles revealed that N2O produced in the subsoil was subsequently consumed during upward diffusion along the soil profile throughout the entire experiment. Our results show that long drought periods can lead to drastic decreases of N2O fluxes from soils to the atmosphere or may even turn forest soils temporarily to N2O sinks. Accumulation of more field‐scale data on soil N2O uptake as well as a better understanding of underlying mechanisms would essentially advance our knowledge of the global N2O budget.  相似文献   

18.
Aims:  To monitor emissions of NH3 and N2O during composting and link these to ammonia oxidation rates and the community structure of ammonia oxidizing bacteria (AOB).
Methods and Results:  A laboratory-scale compost reactor treating organic household waste was run for 2 months. NH3 emissions peaked when pH started to increase. Small amounts of N2O and CH4 were also produced. In total, 16% and less than 1% of the initial N was lost as NH3-N and N2O-N respectively. The potential ammonia oxidation rate, determined by a chlorate inhibition assay, increased fourfold during the first 9 days and then remained high. Initially, both Nitrosospira and Nitrosomonas populations were detected using DGGE analysis of AOB specific 16S rRNA fragments. Only Nitrosomonas europaea was detected under thermophilic conditions, but Nitrosospira populations re-established during the cooling phase.
Conclusions:  Thermophilic conditions favoured high potential ammonia oxidation rates, suggesting that ammonia oxidation contributed to reduced NH3 emissions. Small but significant amounts of N2O were emitted during the thermophilic phase. The significance of different AOBs detected in the compost for ammonia oxidation is not clear.
Significance and Impact of Study:  This study shows that ammonia oxidation occurs at high temperature composting and therefore most likely reduces NH3 emissions.  相似文献   

19.
There is considerable uncertainty in the estimates of indirect N2O emissions as defined by the intergovernmental panel on climate change's (IPCC) methodology. Direct measurements of N2O yields and fluxes in aquatic river environments are sparse and more data are required to determine the role that rivers play in the global N2O budget. The objectives of this research were to measure the N2O fluxes from a spring‐fed river, relate these fluxes to the dissolved N2O concentrations and NO3‐N loading of the river, and to try and define the indirect emission factor (EF5‐r) for the river. Gas bubble ebullition was observed at the river source with bubbles containing 7.9 μL N2O L?1. River NO3‐N and dissolved N2O concentrations ranged from 2.5 to 5.3 mg L?1 and 0.4 to 1.9 μg N2O‐N L?1, respectively, with N2O saturation reaching 404%. Floating headspace chambers were used to sample N2O fluxes. N2O‐N fluxes were significantly related to dissolved N2O‐N concentrations (r2=30.6) but not to NO3‐N concentrations. The N2O‐N fluxes ranged from 38–501 μg m?2 h?1, averaging 171 μg m?2 h?1 (±SD 85) overall. The measured N2O‐N fluxes equated to an EF5‐r of only 6.6% of that calculated using the IPCC methodology, and this itself was considered to be an overestimate because of the degassing of antecedent dissolved N2O present in the groundwater that fed the river.  相似文献   

20.
Management options for reducing CO2 emissions from agricultural soils   总被引:18,自引:0,他引:18  
Crop-based agriculture occupies 1.7 billion hectares, globally, with a soil C stock of about 170 Pg. Of the past anthropogenic CO2 additions to the atmosphere, about 50 Pg C came from the loss of soil organic matter (SOM) in cultivated soils. Improved management practices, however, can rebuild C stocks in agricultural soils and help mitigate CO2 emissions.Increasing soil C stocks requires increasing C inputs and/or reducing soil heterotrophic respiration. Management options that contribute to reduced soil respiration include reduced tillage practices (especially no-till) and increased cropping intensity. Physical disturbance associated with intensive soil tillage increases the turnover of soil aggregates and accelerates the decomposition of aggregate-associated SOM. No-till increases aggregate stability and promotes the formation of recalcitrant SOM fractions within stabilized micro- and macroaggregate structures. Experiments using13 C natural abundance show up to a two-fold increase in mean residence time of SOM under no-till vs intensive tillage. Greater cropping intensity, i.e., by reducing the frequency of bare fallow in crop rotations and increasing the use of perennial vegetation, can increase water and nutrient use efficiency by plants, thereby increasing C inputs to soil and reducing organic matter decomposition rates.Management and policies to sequester C in soils need to consider that: soils have a finite capacity to store C, gains in soil C can be reversed if proper management is not maintained, and fossil fuel inputs for different management practices need to be factored into a total agricultural CO2 balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号