首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Salmonella entry into epithelial host cells results from the host actin cytoskeleton reorganization that is induced by a group of bacterial proteins delivered to the host cells by the Salmonella type III secretion system. SopE, SopE2 and SopB activate CDC42 and Rac1 to intercept the signal transduction pathways involved in actin cytoskeleton rearrangements. SipA and SipC directly bind actin to modulate the actin dynamics facilitating bacterial entry. Biochemical studies have indicated that SipA decreases the critical concentration for actin polymerization and may be involved in promoting the initial actin polymerization in Salmonella-induced actin reorganization. In this report, we conducted experiments to analyze the in vivo function(s) of SipA during Salmonella invasion. SipA was found to be preferentially associated with peripheral cortical actin filaments but not stress fibres using permeabilized epithelial cells. When polarized Caco-2 cells were infected with Salmonella, actin cytoskeleton rearrangements induced by the wild-type strain had many filopodia structures that were intimately associated with the bacteria. In contrast, ruffles induced by the sipA null mutant were smoother and distant from the bacteria. We also found that the F-actin content in cells infected with the sipA mutant decreased nearly 80% as compared to uninfected cells or those infected with the wild-type Salmonella strain. Furthermore, expression of either the full-length or the SipA(459-684) actin-binding fragment induced prominent punctuate actin assembly in the cortical region of COS-1 cells. These results indicate that SipA is involved in modulating actin dynamics in cultured epithelial cells during Salmonella invasion.  相似文献   

2.
The Salmonella pathogenicity island 1 (SPI-1) type three secretion system (TTSS) is essential for Salmonella invasion of host cells through its triggering of actin-dependent membrane ruffles. The SPI-1 effectors SipA, SopE, SopE2 and SopB all have actin regulating activities and contribute to invasion. The precise role of actin regulation by SipA in Salmonella invasion remains controversial since divergent data have been presented regarding the relationship between SipA and membrane ruffling. We hypothesized that the contribution of SipA to membrane ruffling and invasion might vary between Salmonella strains. We compared the effects of SipA deletion on Salmonella enterica serovar Typhimurium ( S.  Typhimurium) strains that possess or lack SopE. Loss of SipA reduced invasion in the early stages of infection by SopE+ and SopE- strains but the number of membrane ruffles elicited was unaffected. Salmonella strains lacking both SipA and SopE induced ruffles with very different morphology from those induced by wild-type strains or ones lacking single effectors, including the presence of highly dynamic finger-like protrusions and numerous filopodia. A similar phenotype was found for sipA - sopE -, sipA - sopE2 - and sipA - sopB - mutants. Thus, SipA plays a more prominent role in induction of invasion-competent membrane ruffles by Salmonella lacking a full complement of SPI-1 effectors.  相似文献   

3.
Mitra K  Zhou D  Galán JE 《FEBS letters》2000,482(1-2):81-84
An essential step in the pathogenesis of Salmonella enterica infections is bacterial entry into non-phagocytic cells of the intestinal epithelium. Proteins injected by Salmonella into host cells stimulate cellular responses that lead to extensive actin cytoskeleton reorganization and subsequent bacterial uptake. One of these proteins, SipA, modulates actin dynamics by directly binding to F-actin. We have biophysically characterized a C-terminal fragment, SipA(446-684), which has previously been shown to retain activity. Our results show that SipA(446-684) exhibits an elongated shape with a predominantly helical conformation and predict the existence of a coiled-coil domain. We suggest that the protein is able to span two adjacent actin monomers in a filament and propose a model that is consistent with the observed effects of SipA(446-684) on actin dynamics and F-actin stability and morphology.  相似文献   

4.
During epithelial cell migration, membrane ruffles can be visualized by phase contrast microscopy as dark waves arising at the leading edge of lamellipodia that move centripetally toward the main cell body. Despite the common use of the term membrane ruffles, their structure, molecular composition, and the mechanisms leading to their formation remained largely unknown. We show here that membrane ruffles differ from the underlying cell lamella by more densely packed bundles of actin filaments that are enriched in the actin cross-linkers filamin and ezrin, pointing to a specific bundling process based on these cross-linkers. The accumulation of phosphorylated, that is, inactivated, cofilin in membrane ruffles suggests that they are compartments of inhibited actin filament turnover. High Rac1 and low RhoA activities were found under conditions of suboptimal integrin-ligand interaction correlating with low lamellipodia persistence, inefficient migration, and high ruffling rates. Based on these findings, we define membrane ruffles as distinct compartments of specific composition that form as a consequence of inefficient lamellipodia adhesion.  相似文献   

5.
The bacterial protein SipA polymerizes G-actin and mimics muscle nebulin   总被引:1,自引:0,他引:1  
SipA is a Salmonella protein delivered into host cells to promote efficient bacterial entry, which is essential for pathogenicity. SipA exerts its function by binding F-actin, resulting in the stabilization of F-actin and the stimulation of the bundling activity of fimbrin. Here we show that under low salt conditions where spontaneous nucleation and polymerization of actin do not occur, SipA induces extensive polymerization. We have used electron microscopy and a method for helical image analysis to visualize the complex of actin with the actin-binding fragment of SipA. The SipA fragment binds to actin as a tubular molecule extending approximately 95 A. The main sites of SipA binding on actin involve sequence insertions that are not present in the bacterial homolog of actin, MreB, suggesting a mechanism for preventing SipA from interacting with bacterial MreB filaments. Remarkably, the pattern of SipA binding, which connects subunits on opposite actin strands and explains the stabilization of F-actin, is similar to that shown for a fragment of the giant muscle protein nebulin. We suggest that SipA is a bacterial structural mimic of muscle nebulin and nebulin-like proteins in non-muscle cells that are involved in the regulation of the actin-based cytoskeleton.  相似文献   

6.
鼠伤寒沙门菌表达两个不同的Ⅲ型分泌系统(typeⅢsecretion/translocation systems, TTSS),分别由致病岛1和2(pathogenicityi slands 1 and 2, SPI-1 and SPI-2)编码。细菌依赖TTSS将效应蛋白转运至宿主细胞,通过“触发”机制诱导细菌进入宿主细胞。这些效应蛋白可诱导细胞骨架重排,导致“巨吞饮”,促使细菌入侵。本综述依据多种沙门菌效应蛋白的功能,建立沙门菌侵袭模型。TTSS活化并转运效应蛋白进入宿主细胞发挥功能(Ⅰ)。小G蛋白交换因子SopE和肌醇磷酸酯酶SopB通过激活CDC42和Rac1,诱导内陷相关的蛋白聚集(Ⅱ)。SipA和SipC通过降低肌动蛋白临界浓度、刺激网素成束、稳定纤维状肌动蛋白(fibrousactin, F-actin)以及使肌动蛋白核化等功能,促使细菌入侵(Ⅲ)。SopB可使膜内陷区PIP2的浓度降低以及VAMP8聚集,促使细胞膜分裂(Ⅳ)。这些效应蛋白的联合作用,使膜皱褶在局部向外显著延伸,使沙门菌被细胞内形成的特殊膜结构包裹。沙门菌的另一种效应蛋白SptP,通过刺激小G蛋白内源性GTPase的活性,抑制小G蛋白的活化,使细胞膜恢复至原有状态(Ⅴ)。  相似文献   

7.
Salmonella force their way into nonphagocytic host intestinal cells to initiate infection. Uptake is triggered by delivery into the target cell of bacterial effector proteins that stimulate cytoskeletal rearrangements and membrane ruffling. The Salmonella invasion protein A (SipA) effector is an actin binding protein that enhances uptake efficiency by promoting actin polymerization. SipA-bound actin filaments (F-actin) are also resistant to artificial disassembly in vitro. Using biochemical assays of actin dynamics and actin-based motility models, we demonstrate that SipA directly arrests cellular mechanisms of actin turnover. SipA inhibits ADF/cofilin-directed depolymerization both by preventing binding of ADF and cofilin and by displacing them from F-actin. SipA also protects F-actin from gelsolin-directed severing and reanneals gelsolin-severed F-actin fragments. These data suggest that SipA focuses host cytoskeletal reorganization by locally inhibiting both ADF/cofilin- and gelsolin-directed actin disassembly, while simultaneously stimulating pathogen-induced actin polymerization.  相似文献   

8.
Invasive Salmonella trigger their own uptake into non-phagocytic eukaryotic cells by delivering virulence proteins that stimulate signaling pathways and remodel the actin cytoskeleton. It has recently emerged that Salmonella encodes two actin-binding proteins, SipC and SipA, which together efficiently nucleate actin polymerization and stabilize the resulting supramolecular filament architecture. Therefore, Salmonella might directly initiate actin polymerization independently of the cellular Arp2/3 complex early in the cell entry process. This is an unprecedented example of a direct intervention strategy to facilitate entry of a pathogen into a target cell. Here, we discuss the Salmonella actin-binding proteins and how they might function in combination with entry effectors that stimulate Rho GTPases. We propose that membrane-targeted bacterial effector proteins might trigger actin polymerization through diverse mechanisms during cell entry by bacterial pathogens.  相似文献   

9.
Changes in cell shape that occur in many cellular processes are thought to arise from polymerization of actin filaments near the cell membrane. End-to-end annealing of actin filaments is believed to play only a minor role in this process, as annealing in solution was shown to be a slow process, which is not typical for a bimolecular reaction, its rate constant decreasing over time, being inversely proportional to the filament length. Furthermore, in vitro studies on f-actin solutions were found to display an exponential steady-state length distribution. In the cell, many physiologically important parameters, such as mechanical strength or viscoelastic response are a direct function of the physical properties of the underlying actin cytoskeleton, such as actin filament length distribution and dynamics. How the underlying physical parameters of the actin cytoskeleton may be influenced by the cell surface or molecular crowding remains poorly understood. Using total internal reflection fluorescence (TIRF) microscopy we reinvestigated actin end-to-end annealing in vitro in a more realistic environment. We studied the process near a hydrophilic surface together with crowding agents, in order to mimic the physiological media near the cell membrane, which has substantial amounts of macromolecules present. We find that actin end-to-end annealing changes in three ways near a crowded hydrophilic surface as compared to solution. First the annealing rate becomes a factor of 20 faster than in solution. Second the rate of annealing becomes typical of a bimolecular reaction, shows no length dependence and is basically just a function of the square of the concentration of ends. Lastly the length distribution is Gaussian throughout the entire annealing process. This implicates that dynamic rearrangement of actin filaments by annealing near the leading edge of the cell, could change physical parameters like the mechanical response and contribute significantly to cell motility.  相似文献   

10.
Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast Schizosaccharomyces pombe assembles actin into three discrete structures: endocytic actin patches, polarizing actin cables, and the cytokinetic contractile ring. The fission yeast filament cross-linker fimbrin Fim1 primarily localizes to Arp2/3 complex-nucleated branched filaments of the actin patch and by a lesser amount to bundles of linear antiparallel filaments in the contractile ring. It is unclear whether Fim1 associates with bundles of parallel filaments in actin cables. We previously discovered that a principal role of Fim1 is to control localization of tropomyosin Cdc8, thereby facilitating cofilin-mediated filament turnover. Therefore, we hypothesized that the bundling ability of Fim1 is dispensable for actin patches but is important for the contractile ring and possibly actin cables. By directly visualizing actin filament assembly using total internal reflection fluorescence microscopy, we determined that Fim1 bundles filaments in both parallel and antiparallel orientations and efficiently bundles Arp2/3 complex-branched filaments in the absence but not the presence of actin capping protein. Examination of cells exclusively expressing a truncated version of Fim1 that can bind but not bundle actin filaments revealed that bundling activity of Fim1 is in fact important for all three actin structures. Therefore, fimbrin Fim1 has diverse roles as both a filament "gatekeeper" and as a filament cross-linker.  相似文献   

11.
The actin homolog ParM plays a microtubule-like role in segregating DNA prior to bacterial cell division. Fluorescence and cryo-electron microscopy have shown that ParM forms filament bundles between separating DNA plasmids in vivo. Given the lack of ParM bundling proteins it remains unknown how ParM bundles form at the molecular level. Here we show using time-lapse TIRF microscopy, under in vitro molecular crowding conditions, that ParM-bundle formation consists of two distinct phases. At the onset of polymerization bundle thickness and shape are determined in the form of nuclei of short helically disordered filaments arranged in a liquid-like lattice. These nuclei then undergo an elongation phase whereby they rapidly increase in length. At steady state, ParM bundles fuse into one single large aggregate. This behavior had been predicted by theory but has not been observed for any other cytomotive biopolymer, including F-actin. We employed electron micrographs of ParM rafts, which are 2-D analogs of 3-D bundles, to identify the main molecular interfilament contacts within these suprastructures. The interface between filaments is similar for both parallel and anti-parallel orientations and the distribution of filament polarity is random within a bundle. We suggest that the interfilament interactions are not due to the interactions of specific residues but rather to long-range, counter ion mediated, electrostatic attractive forces. A randomly oriented bundle ensures that the assembly is rigid and that DNA may be captured with equal efficiency at both ends of the bundle via the ParR binding protein.  相似文献   

12.
Any cellular response leading to morphological changes is highly tuned to balance the force generated from structural reorganization, provided by actin cytoskeleton. Actin filaments serve as the backbone of intracellular force, and transduce external mechanical signal via focal adhesion complex into the cell. During migration, cells not only undergo molecular changes but also rapid mechanical modulation. Here we focus on determining, the role of spatial distribution of mechanical changes of actin filaments in epithelial, mesenchymal, fibrotic and cancer cells with non-migration, directional migration, and non-directional migration behaviors using the atomic force microscopy. We found 1) non-migratory cells only generated one type of filament elasticity, 2) cells generating spatially distributed two types of filament elasticity showed directional migration, and 3) pathologic cells that autonomously generated two types of filament elasticity without spatial distribution were actively migrating non-directionally. The demonstration of spatial regulation of filament elasticity of different cell types at the nano-scale highlights the coupling of cytoskeletal function with physical characters at the sub-cellular level, and provides new research directions for migration related disease.  相似文献   

13.
EPLIN regulates actin dynamics by cross-linking and stabilizing filaments   总被引:2,自引:0,他引:2  
Epithelial protein lost in neoplasm (EPLIN) is a cytoskeleton-associated protein encoded by a gene that is down-regulated in transformed cells. EPLIN increases the number and size of actin stress fibers and inhibits membrane ruffling induced by Rac. EPLIN has at least two actin binding sites. Purified recombinant EPLIN inhibits actin filament depolymerization and cross-links filaments in bundles. EPLIN does not affect the kinetics of spontaneous actin polymerization or elongation at the barbed end, but inhibits branching nucleation of actin filaments by Arp2/3 complex. Side binding activity may stabilize filaments and account for the inhibition of nucleation mediated by Arp2/3 complex. We propose that EPLIN promotes the formation of stable actin filament structures such as stress fibers at the expense of more dynamic actin filament structures such as membrane ruffles. Reduced expression of EPLIN may contribute to the motility of invasive tumor cells.  相似文献   

14.
Although actin filaments can form by oligomer annealing in vitro, they are assumed to assemble exclusively from actin monomers in vivo. In this study, we show that a pool of actin resistant to the monomer-sequestering drug latrunculin A (lat A) contributes to filament assembly in vivo. Furthermore, we show that the cofilin accessory protein Aip1 is important for establishment of normal actin monomer concentration in cells and efficiently converts cofilin-generated actin filament disassembly products into monomers and short oligomers in vitro. Additionally, in aip1Δ mutant cells, lat A–insensitive actin assembly is significantly enhanced. We conclude that actin oligomer annealing is a physiologically relevant actin filament assembly pathway in vivo and identify Aip1 as a crucial factor for shifting the distribution of short actin oligomers toward monomers during disassembly.  相似文献   

15.

Background

Previous studies have shown that plant mitochondrial movements are myosin-based along actin filaments, which undergo continuous turnover by the exchange of actin subunits from existing filaments. Although earlier studies revealed that actin filament dynamics are essential for many functions of the actin cytoskeleton, there are little data connecting actin dynamics and mitochondrial movements.

Methodology/Principal Findings

We addressed the role of actin filament dynamics in the control of mitochondrial movements by treating cells with various pharmaceuticals that affect actin filament assembly and disassembly. Confocal microscopy of Arabidopsis thaliana root hairs expressing GFP-FABD2 as an actin filament reporter showed that mitochondrial distribution was in agreement with the arrangement of actin filaments in root hairs at different developmental stages. Analyses of mitochondrial trajectories and instantaneous velocities immediately following pharmacological perturbation of the cytoskeleton using variable-angle evanescent wave microscopy and/or spinning disk confocal microscopy revealed that mitochondrial velocities were regulated by myosin activity and actin filament dynamics. Furthermore, simultaneous visualization of mitochondria and actin filaments suggested that mitochondrial positioning might involve depolymerization of actin filaments on the surface of mitochondria.

Conclusions/Significance

Base on these results we propose a mechanism for the regulation of mitochondrial speed of movements, positioning, and direction of movements that combines the coordinated activity of myosin and the rate of actin turnover, together with microtubule dynamics, which directs the positioning of actin polymerization events.  相似文献   

16.
We investigated the effect of actin filament length and capping protein on the rate of end-to-end annealing of actin filaments. Long filaments were fragmented by shearing and allowed to recover. Stabilizing filaments with phalloidin in most experiments eliminated any contribution of subunit dissociation and association to the redistribution of lengths but did not affect the results. Two different assays, fluorescence microscopy to measure filament lengths and polymerization to measure concentration of barbed filament ends, gave the same time-course of annealing. The rate of annealing declines with time as the average filament length increases. Longer filaments also anneal slower than short filaments. The second-order annealing rate constant is inversely proportional to mean polymer length with a value of 1.1 mM(-1) s(-1)/length in subunits. Capping protein slows but does not prevent annealing. Annealing is a highly favorable reaction with a strong influence on the length of polymers produced by spontaneous polymerization and should be considered in thinking about polymer dynamics in cells.  相似文献   

17.
Tang N  Ostap EM 《Current biology : CB》2001,11(14):1131-1135
Myosin-I is the single-headed, membrane binding member of the myosin superfamily that plays a role in membrane dynamics and transport [1-6]. Its molecular functions and its mechanism of regulation are not known. In mammalian cells, myosin-I is excluded from specific microfilament populations, indicating that its localization is tightly regulated. Identifying the mechanism of this localization, and the specific actin populations with which myosin-I interacts, is crucial to understanding the molecular functions of this motor. eGFP chimeras of myo1b [7] were imaged in live and fixed NRK cells. Ratio-imaging microscopy shows that myo1b-eGFP concentrates within dynamic areas of the actin cytoskeleton, most notably in membrane ruffles. Myo1b-eGFP does not associate with stable actin bundles or stress fibers. Truncation mutants consisting of the motor or tail domains show a partially overlapping cytoplasmic localization with full-length myo1b, but do not concentrate in membrane ruffles. A chimera consisting of the light chain and tail domains of myo1b and the motor domain from nonmuscle myosin-IIb (nmMIIb) concentrates on actin filaments in ruffles as well as to stress fibers. In vitro motility assays show that the exclusion of myo1b from certain actin filament populations is due to the regulation of the actomyosin interaction by tropomyosin. Therefore, we conclude that tropomyosin and spatially regulated actin polymerization play important roles in regulating the function and localization of myo1b.  相似文献   

18.
Direct demonstration of actin filament annealing in vitro   总被引:6,自引:5,他引:1  
Direct electron microscopic examination confirms that short actin filaments rapidly anneal end-to-end in vitro, leading over time to an increase in filament length at steady state. During annealing of mixtures of native unlabeled filaments and glutaraldehyde-fixed filaments labeled with myosin subfragment-1, the structural polarity within heteropolymers is conserved absolutely. Annealing does not appear to require either ATP hydrolysis or the presence of exogenous actin monomers, suggesting that joining occurs through the direct association of filament ends. During recovery from sonication the initial rate of annealing is consistent with a second-order reaction involving the collision of two filament ends with an apparent annealing rate constant of 10(7) M-1s-1. This rapid phase lasts less than 10 s and is followed by a slow phase lasting minutes to hours. Annealing is calculated to contribute minimally to filament elongation during the initial stages of self-assembly. However, the rapid rate of annealing of sonicated fixed filaments observed in vitro suggests that it may be an efficient mechanism for repairing breaks in filaments and that annealing together with polymer-severing mechanisms may contribute significantly to the dynamics and function of actin filaments in vivo.  相似文献   

19.
Filopodia are rod-like cell surface projections filled with bundles of parallel actin filaments. They are found on a variety of cell types and have been ascribed sensory or exploratory functions. Filopodium formation is frequently associated with protrusion of sheet-like actin filament arrays called lamellipodia and membrane ruffles, but, in comparison to these structures, the molecular details underpinning the initiation and maintenance of filopodia are only just beginning to emerge. Recent advances have improved our understanding of the molecular requirements for filopodium protrusion and have yielded insights into the inter-relationships between lamellipodia and filopodia, the two 'sub-compartments' of the protrusive actin cytoskeleton.  相似文献   

20.
In the assembly of actin filaments that takes place during the spreading of a polulation of human lung cells, after trypsin detachment off the substratum and replating, tropomyosin exhibits a considrable lag in its association with the newly forming filament bundles; it begins to associate with them during the later stages of cell spreading as the actin filament bundles normally seen in interphase cells begin to organize. This lag is evident in a number of cell types that are spreading onto a substratum; it does not appear to be due to a selective degradation of this molecule during rounding up of the cells, since tropmyosin associates with the actin filament bundles after this lag even under conditions where the protein synthetic activity of the cell is inhibited to more than 95% by cycloheximide. The preferential binding of tropomyosin to fully assembled filament bundles but not to newly formed bundles of actin filaments suggests therefore the existence of two classes of action filaments: those that bind tropomyosin and those that do not. This selective localization of tropomyosin and those that do not. This selective localization of tropomyosin on actin filaments was further pursued by examining the localization of this molecule in membrane ruffles. The immunofluorescent results indicate that ruffling is an actin-filament-dependent, microtubule-independent phenomenon. Tropomyosin is absent from membrane ruffles under a variety of circumstances where ruffling is expressed and, more generally, from any other cellular activity where actin filaments are expected to be in a dynamic state of reorganization or are required to be in a flexible configuraion. It is concluded that in tissue culture cells tropomyosin binds preferentially to actin filaments involved in structural support to confer rigidity upon them as well as aid them in maintaining a stretched phenotype. The absence of tropomyosin from certain motile phenomena where actin filaments are involved indicates that these classes of actin filaments are regulated by cytoplasmic mechanisms distinct from that by which tropomyosin (and troponin) mediates contractility in skeletal mulscle; it opens the possibility that different types of actin filaments enagaged in different cellular motile phenomenon in tissue culture cells may be regulated by a host of coexisting regulatory mechanisms, some as yet undetermined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号