首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rust fungi are plant parasites which colonise host tissue with an intercellular mycelium that forms haustoria within living plant cells. To identify genes expressed during biotrophic growth, EST sequencing was performed with a haustorium-specific cDNA library from Uromyces fabae. One thousand seventeen ESTs were generated, which assembled into 530 contigs. Several of the most frequently represented sequences in the EST database were identical to the in planta induced genes (PIGs) identified previously (Hahn, M., Mendgen, K., 1997. Characterisation of in planta-induced rust genes isolated from a haustorium-specific cDNA library, Mol. Plant-Microbe Interact. 10, 427-437). Virus-encoded sequences were identified, providing evidence for two novel RNA mycoviruses in U. fabae. Microarray hybridisation revealed many cDNAs that were significantly activated in rust-infected leaves compared to germinated uredospores. Very strong in planta expression was found for two PIGs encoding putative metallothioneins. Furthermore, several genes involved in ribosome biogenesis and translation, glycolysis, amino acid metabolism, stress response, and detoxification showed an increased expression in the parasitic mycelium. These data indicate a strong shift in gene expression in rust fungi between germination and the biotrophic stage of development.  相似文献   

2.
Obligate biotrophic pathogens like the rust fungi are important plant pathogens causing enormous losses on food, forage and biomass crops. The analysis of the molecular details underlying obligate biotrophic host-parasite interactions is mainly hampered by the fact that no system for transformation is available for most obligate biotrophic organisms. Here we report the transient transformation of Uromyces fabae, an obligate biotrophic rust fungus using a biolistic approach. Biolistic bombardment of U. fabae urediospores was used to deliver different color markers (β-glucuronidase (GUS), intron green fluorescent protein (iGFP) and red fluorescent protein (DsRed) and/or a selection marker. Endogenous regulatory elements from U. fabae plasma membrane ATPase (Uf-PMA1) were used to drive expression of the transgenes. In addition to the delivery of color markers, an in planta selection procedure using the fungicide Carboxin was established allowing the propagation of transformants. In addition to mere cytoplasmic expression of the color markers, a nuclear localization signal was fused to DsRed (pRV115-NLS) targeting the fluorescent marker protein to the nuclei. A?procedure for the genetic modification of U. fabae was established. The method can be easily adapted for use with other obligate biotrophic fungi. This provides the basis for a more in depth analysis of the molecular principles governing the obligate biotrophic lifestyle.  相似文献   

3.
4.
Nutrients for a rust fungus: the role of haustoria.   总被引:1,自引:0,他引:1  
Haustoria are specialized organs that are formed within the living cell of a host by biotrophic fungal pathogens. It had been speculated that fungi obtain nutrients via the haustorium, but the actual function of haustoria was unclear. Now, sugars have been shown to pass into the haustorium from the host via a sugar transporter, a hexose-proton symport located exclusively in the haustorial plasma membrane.  相似文献   

5.
S M Bhairi  R C Staples  P Freve  O C Yoder 《Gene》1989,81(2):237-243
Uredospores of the plant pathogen, Uromyces appendiculatus, infect leaves of the bean plant, Phaseolus vulgaris, through stomata. Physical stimuli provided by the stomate induce differentiation of the germ tube to form a series of infection structures involved in host colonization. Contact between the uredospores and the oil-collodion membranes induces formation of infection structures in the absence of the host. This report describes the characterization of a Uromyces gene, INF24, that is induced by the physical stimulus of an oil-collodion membrane. INF24 contains a 450-bp open reading frame which encodes a 16.4-kDa polypeptide. The N terminus of the INF24-encoded protein, and the C terminus of human single-stranded DNA-binding protein are both glycine-rich and share homology.  相似文献   

6.
Aspects of the ultrastructure of mitotic nuclei of the fungus Uromyces phaseoli var. vignae are described from both intercellular hyphae in the cowpea host and infection structures induced to differentiate in vitro. The interphase nucleus-associated organelle (NAO) consists of two trilamellar acircular disks connceted by an osmiophilic bar. The intranuclear spindle develops between these disks when they separate. The spindle contains pole to pole, interdigitating, chromosomal, and fragmentary microtubules arranged to form a central bundle along the surface of which lie the metaphase chromosomes. No metaphase plate is found. There are up to three microtubules per kinetochore and approximately 14 chromosomes on the haploid spindle. Telophase elongation appears to involve extension of pole to pole microtubules with no evidence for the remaining presence of interdigitating microtubules. Concomitantly, numerous cytoplasmic microtubules develop from each NAO disk where few or none are present in other phases. Reformation of the interphase NAO involves the formation of a sausage- shaped intermediate at late telophase. The nuclear envelope remains intact and the nucleolus persists throughtout division. Various aspects of the spindle and NAOs appear to be evolutionary intermediates between Ascomycetes and higher Basidiomycetes, thus supporting the theory of Basidiomycete evolution from the former group and demonstrating an encouraging correlation between mitotic characteristics and other phylogenetic markers.  相似文献   

7.
8.
I B Heath  M C Heath 《Cytobiologie》1978,16(3):393-411
Direct visual observation and time lapse films of in vitro differentiating infection structures of the cowpea rust fungus Uromyces phaseoli var. vignae revealed three categories of movement: a) general movement of cytoplasm, plus organelles, into the developing portions of the fungus during which the nuclei, in particular, maintained their characteristic position with remarkable constancy, b) relatively slow movements of various organelles such that they became displaced relative to one another and to the growing fungal tip, and c) erratic, rapid, saltations of small organelles over short distances. Serial section ultrastructural analysis showed that microtubules were typically orientated parallel to the direction of cytoplasm migration. Simple statistical analyses showed that the microtubules were non-randomly associated with mitochondria but only rarely associated with lipid droplets or microbodies. All microtubules were typically short (less than 2 micrometer) and, in various parts of the cell, were often intimately associated with 3 to 6 nm diameter filaments of unidentified material. Interphase nuclei characteristically lacked microtubules emanating from their variously laterally or posteriorly located NAOs (nucleus associated organelle) but were associated with groups of laterally placed microtubules. The correlations between the observed types of movement and the ultrastructure of the cells discussed in terms of various models for organelle motility.  相似文献   

9.
Baka ZA 《Mycopathologia》2002,156(3):215-221
The ultrastructure of intercellular hyphae and dikaryotic haustoria of Uromyces euphorbiae, and the host response to haustorial invasion was investigated. The intercellular hyphae share common characteristics with those of other uredinial stages of rust fungi. Three types of septa were recognized inside the intercellular hypha. This study showed that the extrahaustorial membrane was possibly formed before the development of the haustorium. The periodic acid-thiocharbohydrazide-silver proteinate technique showed that the haustorial mother cell wall at the penetration site, and the haustorial wall contained more carbohydrates than other fungal structures. In addition, the neckband, present around the haustorial neck, contains different material from those of the rest of the haustorial neck wall. The close associations of host organelles, such as the nucleus, chloroplasts, mitochondria, endoplasmic reticulum and microtubules, with the haustorium, is described.  相似文献   

10.
11.
BACKGROUND AND AIMS: Insect damage to plants leads to wound-activated responses directed to healing of damaged tissues, as well as activation of defences to prevent further insect damage. Negative cross-talk exists between the jasmonic acid-based signalling system that is activated upon insect attack and the salicylic acid-based system frequently activated following pathogen infection. Thus, insect attack may compromise the ability of the plant to defend itself against pathogens and vice versa. However, insect herbivory and mechanical wounding have been shown to reduce fungal infections on some plants, although the underlying mechanisms remain to be defined. This work examines the effects of mechanical wounding on rust infection both locally and systemically in the broad bean, Vicia faba and follows changes in oxylipins in wounded leaves and unwounded leaves on wounded plants. METHODS: The lamina of first leaves was wounded by crushing with forceps, and first and second leaves were then inoculated, separately, with the rust Uromyces fabae at various times over a 24 h period. Wounded first leaves and unwounded second leaves were harvested at intervals over a 24 h period and used for analysis of oxylipin profiles. KEY RESULTS Mechanical wounding of first leaves of broad bean led to significantly reduced rust infection in the wounded first leaf as well as the unwounded second leaf. Increased resistance to infection was induced in plants inoculated with rust just 1 h after wounding and was accompanied by rapid and significant accumulation of jasmonic acid and two trihydroxy oxylipins in both wounded first leaves and unwounded second leaves. The two trihydroxy oxylipins were found to possess antifungal properties, reducing germination of rust spores. CONCLUSIONS: These results demonstrate the rapidity with which resistance to pathogen infection can be induced following wounding and provides a possible mechanism by which pathogen infection might be halted.  相似文献   

12.
13.
Pea rust caused by Uromyces fabae (Pers.) de-Bary is an important disease in subtropical regions of the world. The use of partial resistance or slow rusting is an important strategy for developing varieties having durable rust resistance. A mapping population of 136 F6:7 Recombinant Inbred Lines (RILs) derived from the cross HUVP 1?×?FC 1 was evaluated for disease severity percent (DS%) and three components of slow rusting, number of aecial pustules per leaf (AP), leaf area covered by sporulating pustules (LASP) and number of aecial cups per leaf (TNAC) during crop seasons 2006–07 and 2007–08 in polyhouse and field experiments. The components were governed by four quantitative trait loci, two major (Qruf on LGVII, Qruf2 on LGI), and two minor QTLs (Qruf1 on LG VII and Qruf3 on LGVI). This confirmed the positions of one each of the major (Qruf) and minor (Qruf1) QTLs and also detected two new QTLs Qruf2 and Qruf3. The new major QTL Qruf2 (phenotypic variance 21.3 to 29.6 %) appeared to be the most important component-specific QTL and played key role in deciding disease resistance. The minor QTL Qruf3 appeared environment-specific and contributed by the susceptible parent.  相似文献   

14.
15.
Pea rust is a devastating disease of peas especially in the sub-tropical regions of the world and greatly influenced by the environmental conditions during disease development. Molecular markers associated with pea rust resistance would be useful in marker assisted selection (MAS). Utility of molecular markers associated with the pea rust resistance were evaluated in 30 diverse pea genotypes using four SSR markers (AA446 and AA505 flanking the major QTL Qruf; AD146 and AA416 flanking the minor QTL, Qruf1). QTL, Qruf flanking markers were able to identify all the resistant genotypes when used together, except Pant P 31. While, SSR markers AD146 and AA416 flanking the minor QTL, Qruf1 were able to identify all the pea resistant genotypes used for validation, except for HUDP-11 by AD146 and Pant P 31 by AA416. Similarly, SSR markers AA446 and AA505 were able to identify all the susceptible pea genotypes, except IPFD 99–13, HFP 9415 and S- 143. SSR markers AD146 and AA416 were together able to identify all the pea susceptible genotypes used for validation, except KPMR 526, KPMR 632 and IPFD 99–13. On the basis of marker allele analysis it may be concluded that SSR markers (AA446, AA505, AD146 and AA416) can be used in MAS of pea rust resistance.  相似文献   

16.
Vitamin B6 (pyridoxine) is vital for key metabolic reactions and reported to have antioxidant properties in planta. Therefore, enhancement of vitamin B6 content has been hypothesized to be a route to improve resistance to biotic and abiotic stresses. Most of the current studies on vitamin B6 in plants are on eudicot species, with monocots remaining largely unexplored. In this study, we investigated vitamin B6 biosynthesis in rice, with a view to examining the feasibility and impact of enhancing vitamin B6 levels. Constitutive expression in rice of two Arabidopsis thaliana genes from the vitamin B6 biosynthesis de novo pathway, AtPDX1.1 and AtPDX2, resulted in a considerable increase in vitamin B6 in leaves (up to 28.3‐fold) and roots (up to 12‐fold), with minimal impact on general growth. Rice lines accumulating high levels of vitamin B6 did not display enhanced tolerance to abiotic stress (salt) or biotic stress (resistance to Xanthomonas oryzae infection). While a significant increase in vitamin B6 content could also be achieved in rice seeds (up to 3.1‐fold), the increase was largely due to its accumulation in seed coat and embryo tissues, with little enhancement observed in the endosperm. However, seed yield was affected in some vitamin B6‐enhanced lines. Notably, expression of the transgenes did not affect the expression of the endogenous rice PDX genes. Intriguingly, despite transgene expression in leaves and seeds, the corresponding proteins were only detectable in leaves and could not be observed in seeds, possibly pointing to a mode of regulation in this organ.  相似文献   

17.
Puccinia triticina (Pt) is a representative of several cereal-infecting rust fungal pathogens of major economic importance world wide. Upon entry through leaf stomata, these fungi establish intracellular haustoria, crucial feeding structures. We report the first proteome of infection structures from parasitized wheat leaves, enriched for haustoria through filtration and sucrose density centrifugation. 2-D PAGE MS/MS and gel-based LC-MS (GeLC-MS) were used to separate proteins. Generated spectra were compared with a partial proteome predicted from a preliminary Pt genome and generated ESTs, to a comprehensive genome-predicted protein complement from the related wheat stem rust fungus, Puccinia graminis f. sp. tritici (Pgt) and to various plant resources. We identified over 260 fungal proteins, 16 of which matched peptides from Pgt. Based on bioinformatic analyses and/or the presence of a signal peptide, at least 50 proteins were predicted to be secreted. Among those, six have effector protein signatures, some are related and the respective genes of several seem to belong to clusters. Many ribosomal structural proteins, proteins involved in energy, general metabolism and transport were detected. Measuring gene expression over several life cycle stages of ten representative candidates using quantitative RT-PCR, all were shown to be strongly upregulated and four expressed solely upon infection.  相似文献   

18.
19.
20.
Diseases caused by rust fungi pose a significant threat to global plant production. Although carotenoid pigments are produced in spores of nearly all rust species, the corresponding biosynthesis pathway(s) have not been investigated. Here, candidate genes for carotenoid biosynthesis in Puccinia graminis f. sp. tritici (Pgt) were identified, cloned and functionally complemented using specifically engineered strains of Escherichia coli. A part of the carotenoid biosynthesis pathway in rust fungi was elucidated, with only two genes, CrtYB and CrtI, catalysing the reactions from geranyl–geranyl diphosphate (GGPP) to γ-carotene. The CrtYB gene encodes a bi-functional lycopene cyclase/phytoene synthase, which catalyses the condensation of two GGPP into phytoene, as well as the cyclisation of the ψ-end of lycopene to form γ-carotene. The CrtI gene encodes a phytoene desaturase that carries out four successive desaturations of phytoene, through the intermediates phytofluene and neurosporene to lycopene. The evolution of carotenoid pigmentation in rust fungi, including Pgt, P. graminis avenae, P. graminis secalis (Pgs), P. graminis lolli, P. striiformis f. sp. tritici, P. striiformis f. sp. pseudohordei, P. striiformis f. sp. hordei, the “scabrum” rust (putative hybrids between Pgt and Pgs), P. triticina, and P. hordei, was investigated by phylogenetic analysis. Both CrtYB and CrtI were found to be closely related among rust fungi, other pathogenic fungi, and some aphids. Our results provide a springboard to increase the understanding of the physiological role(s) of carotenoid pigments in rust fungi, to better understand evolution within the Pucciniales, and to develop robust molecular diagnostics for rust fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号