首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autoreactive B cells are activated by DNA, chromatin, or chromatin-containing immune complexes (ICs) through a mechanism dependent on dual engagement of the BCR and TLR9. We examined the contribution of endogenous DNA sequence elements to this process. DNA sequence can determine both recognition by the BCR and by TLR9. DNA fragments containing CpG islands, a natural source of unmethylated CpG dinucleotides, promote the activation of DNA-reactive B cells derived from BCR transgenic mice as well as DNA-reactive B cells present in the normal repertoire. ICs containing these CpG island fragments are potent ligands for AM14 IgG2a-reactive B cells. In contrast, ICs containing total mammalian DNA, or DNA fragments lacking immunostimulatory motifs, fail to induce B cell proliferation, indicating that BCR crosslinking alone is insufficient to activate low-affinity autoreactive B cells. Importantly, priming B cells with IFN-alpha lowers the BCR activation threshold and relaxes the selectivity for CpG-containing DNA. Taken together, our findings underscore the importance of endogenous CpG-containing DNAs in the TLR9-dependent activation of autoreactive B cells and further identify an important mechanism through which IFN-alpha can contribute to the pathogenesis of systemic lupus erythematosus.  相似文献   

2.
《MABS-AUSTIN》2013,5(4):991-999
The Fc receptor (FcγRIIb) inhibits B cell responses when coengaged with B cell receptor (BCR), and has become a target for new autoimmune disease therapeutics. For example, BCR and FcγRIIb coengagement via the Fc-engineered anti-CD19 XmAb5871 suppresses humoral immune responses. We now assess effects of XmAb5871 on other activation pathways, including the pathogen-associated molecular pattern receptor, TLR9. Since TLR9 signaling is implicated in autoimmune diseases, we asked if XmAb5871 could inhibit TLR9 costimulation. We show that XmAb5871 decreases ERK and AKT activation, cell proliferation, cytokine, and IgG production induced by BCR and/or TLR9 signals. XmAb5871 also inhibited differentiation of citrullinated peptide-specific plasma cells from rheumatoid arthritis patients. XmAb5871 may therefore have potential to suppress pathogenic B cells in autoimmune diseases.  相似文献   

3.

Introduction  

B cells have many different roles in systemic lupus erythematosus (SLE), ranging from autoantigen recognition and processing to effector functions (for example, autoantibody and cytokine secretion). Recent studies have shown that intracellular nucleic acid-sensing receptors, Toll-like receptor (TLR) 7 and TLR9, play an important role in the pathogenesis of SLE. Dual engagement of rheumatoid factor-specific AM14 B cells through the B-cell receptor (BCR) and TLR7/9 results in marked proliferation of autoimmune B cells. Thus, strategies to preferentially block innate activation through TLRs in autoimmune B cells may be preferred over non-selective B-cell depletion.  相似文献   

4.
Autoreactive B cells may become activated in a T-independent manner via synergistic engagement of the BCR and TLRs. Using the VH3H9 Ig H chain transgene to track anti-chromatin B cells, we demonstrate that VH3H9/Vlambda1 anti-chromatin B cells proliferate in response to stimulatory oligodeoxynucleotides containing CpG motifs, suggesting that these autoreactive B cells are responsive to TLR9 signaling. Strikingly, some VH3H9 B cells, but not the well-characterized VH3H9/Vlambda1 B cells, proliferate spontaneously in culture medium. This proliferation is blocked by inhibitory CpG oligodeoxynucleotides, implicating the TLR9 (or possibly TLR7) pathway. Most hybridomas generated from the proliferating cells are polyreactive, and one exhibits binding to nuclear Ags but not to the other Ags tested. Thus, B cells carrying autoreactive and/or polyreactive specificities may be susceptible to T cell-independent activation via dual engagement of the BCR and TLRs.  相似文献   

5.
6.
7.
The Fc receptor (FcγRIIb) inhibits B cell responses when coengaged with B cell receptor (BCR), and has become a target for new autoimmune disease therapeutics. For example, BCR and FcγRIIb coengagement via the Fc-engineered anti-CD19 XmAb5871 suppresses humoral immune responses. We now assess effects of XmAb5871 on other activation pathways, including the pathogen-associated molecular pattern receptor, TLR9. Since TLR9 signaling is implicated in autoimmune diseases, we asked if XmAb5871 could inhibit TLR9 costimulation. We show that XmAb5871 decreases ERK and AKT activation, cell proliferation, cytokine, and IgG production induced by BCR and/or TLR9 signals. XmAb5871 also inhibited differentiation of citrullinated peptide-specific plasma cells from rheumatoid arthritis patients. XmAb5871 may therefore have potential to suppress pathogenic B cells in autoimmune diseases.  相似文献   

8.
BCR signaling in naive B cells depends on the function of signalosome mediators; however, prior engagement of CD40 or of IL-4R produces an alternate signaling pathway in which Bruton's tyrosine kinase, PI3K, phospholipase Cgamma2, and protein kinase Cbeta are no longer required for BCR-induced downstream events. To explore the range of mediators capable of producing such an alternate pathway for BCR signaling, we examined the TLR4 agonist, LPS. B cell treatment with LPS at relatively low doses altered subsequent BCR signaling such that ERK phosphorylation and NF-kappaB activation occurred in a PI3K-independent manner. This effect of LPS extended to MEK phosphorylation and IkappaBalpha degradation, and it developed slowly over a period of 16-24 h. The involvement of TLRs is suggested by similar effects observed with a structurally distinct TLR agonist, PAM3CSK4 and by the need for MyD88 for induction of alternate BCR signaling by LPS. Thus, LPS-mediated TLR engagement produces an alternate pathway for BCR-triggered signal propagation that differs from the classical, signalosome-dependent pathway.  相似文献   

9.
In a classical dogma, pathogens are sensed (via recognition of Pathogen Associated Molecular Patterns (PAMPs)) by innate immune cells that in turn activate adaptive immune cells. However, recent data showed that TLRs (Toll Like Receptors), the most characterized class of Pattern Recognition Receptors, are also expressed by adaptive immune B cells. B cells play an important role in protective immunity essentially by differentiating into antibody-secreting cells (ASC). This differentiation requires at least two signals: the recognition of an antigen by the B cell specific receptor (BCR) and a T cell co-stimulatory signal provided mainly by CD154/CD40L acting on CD40. In order to better understand interactions of innate and adaptive B cell stimulatory signals, we evaluated the outcome of combinations of TLRs, BCR and/or CD40 stimulation. For this purpose, mouse spleen B cells were activated with synthetic TLR agonists, recombinant mouse CD40L and agonist anti-BCR antibodies. As expected, TLR agonists induced mouse B cell proliferation and activation or differentiation into ASC. Interestingly, addition of CD40 signal to TLR agonists stimulated either B cell proliferation and activation (TLR3, TLR4, and TLR9) or differentiation into ASC (TLR1/2, TLR2/6, TLR4 and TLR7). Addition of a BCR signal to CD40L and either TLR3 or TLR9 agonists did not induce differentiation into ASC, which could be interpreted as an entrance into the memory pathway. In conclusion, our results suggest that PAMPs synergize with signals from adaptive immunity to regulate B lymphocyte fate during humoral immune response.  相似文献   

10.
B lymphocytes express both B cell receptor and Toll-like receptors (TLR). We show here that Bruton's tyrosine kinase (Btk), a critical component in B cell receptor signaling, is also involved in TLR9 signaling in B cells. Stimulation of B cells with TLR9 ligand CpG oligodeoxynucleotide (ODN) leads to transient phosphorylation of Btk, and in the absence of Btk, TLR9-induced proliferation of B cells is impaired. Interestingly, Btk(-/-) B cells secrete significantly more interleukin (IL)-12 but much less IL-10 compared with wild type B cells upon TLR9 stimulation. Immunization of Btk(-/-) mice with CpG ODN also leads to elevated levels of IL-12 in vivo and consequently, a greater -fold increment in the production of Th1 type IgG2b and IgG3 antibodies in these mice compared with wild type controls. The addition of exogenous recombinant IL-10 could suppress IL-12 production by TLR9-activated Btk(-/-) B cells, suggesting that in B cells, Btk negatively regulates IL-12 through the induction of autocrine IL-10 production. TLR9 signaling also leads to the activation of NFkappaB, including the p65RelA subunit in wild type B cells. The lack of Btk signaling affects the activation of NFkappaB and impairs the translocation of the p65RelA subunit to the nucleus of B cells upon TLR9 stimulation. However, p65RelA(-/-) B cells could respond similarly to wild type B cells in terms of IL-10 and IL-12 secretion when stimulated with CpG ODN, suggesting that the defect in NFkappaB p65RelA activation is additional to the impairment in cytokine production in TLR9-activated Btk(-/-) B cells. Thus, Btk plays an important role in TLR9 signaling and acts separately to regulate NFkappaB RelA activation as well as IL-10 and IL-12 production in B cells.  相似文献   

11.
B cells possess functional characteristics of innate immune cells, as they can present Ag to T cells and can be stimulated with microbial molecules such as TLR ligands. Because crude preparations of Staphylococcus aureus are frequently used as polyclonal B cell activators and contain potent TLR2 activity, the scope of this study was to analyze the impact of S. aureus-derived TLR2-active substances on human B cell activation. Peripheral B cells stimulated with chemically modified S. aureus cell wall preparations proliferated in response to stimulation with crude cell wall preparations but failed to be activated with pure peptidoglycan, indicating that cell wall molecules other than peptidoglycan are responsible for B cell proliferation. Subsequent analysis revealed that surface protein A (SpA), similar to BCR cross-linking with anti-human Ig, sensitizes B cells for the recognition of cell wall-associated TLR2-active lipopeptides (LP). In marked contrast to TLR7- and TLR9-triggered B cell stimulation, stimulation with TLR2-active LP and SpA or with crude cell wall preparations failed to induce IgM secretion, thereby revealing qualitative differences in TLR2 signaling compared with TLR7/9 signaling. Notably, combined stimulation with SpA plus TLR2 ligands induced vigorous proliferation of a defined B cell subset that expressed intracellular IgM in the presence of IL-2. Conclusion: S. aureus triggers B cell activation via SpA-induced sensitization of B cells for TLR2-active LP. Combined SpA and TLR2-mediated B cell activation promotes B cell proliferation but fails to induce polyclonal IgM secretion as seen after TLR7 and TLR9 ligation.  相似文献   

12.
B cell development and activation are regulated by combined signals mediated by the B cell receptor (BCR), receptors for the B-cell activating factor of the tumor necrosis factor family (BAFF-R) and the innate receptor, Toll-like receptor 9 (TLR9). However, the underlying mechanisms by which these signals cooperate in human B cells remain unclear. Our aim was to elucidate the key signaling molecules at the crossroads of BCR, BAFF-R and TLR9 mediated pathways and to follow the functional consequences of costimulation.Therefore we stimulated purified human B cells by combinations of anti-Ig, B-cell activating factor of the tumor necrosis factor family (BAFF) and the TLR9 agonist, CpG oligodeoxynucleotide. Phosphorylation status of various signaling molecules, B cell proliferation, cytokine secretion, plasma blast generation and the frequency of IgG producing cells were investigated. We have found that BCR induced signals cooperate with BAFF-R- and TLR9-mediated signals at different levels of cell activation. BCR and BAFF- as well as TLR9 and BAFF-mediated signals cooperate at NFκB activation, while BCR and TLR9 synergistically costimulate mitogen activated protein kinases (MAPKs), ERK, JNK and p38. We show here for the first time that the MAP3K7 (TGF beta activated kinase, TAK1) is responsible for the synergistic costimulation of B cells by BCR and TLR9, resulting in an enhanced cell proliferation, plasma blast generation, cytokine and antibody production. Specific inhibitor of TAK1 as well as knocking down TAK1 by siRNA abrogates the synergistic signals. We conclude that TAK1 is a key regulator of receptor crosstalk between BCR and TLR9, thus plays a critical role in B cell development and activation.  相似文献   

13.
14.
Through their differential interactions with B lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL), the three BLyS family receptors play central roles in B cell survival and differentiation. Recent evidence indicates BLyS receptor levels shift following BCR ligation, suggesting that activation cues can alter overall BLyS receptor profiles and thus ligand sensitivity. In this study, we show that TLR stimuli also alter BLyS receptor expression, but in contrast to BCR ligation, TLR9 and TLR4 signals, preferentially increase transmembrane activator calcium modulator and cyclophilin ligand interactor (TACI) expression. Although both of these TLRs act through MyD88-dependent mechanisms to increase TACI expression, they differ in terms of their downstream mediators and the B cell subset affected. Surprisingly, only TLR4 relies on c-Rel and p50 to augment TACI expression, whereas TLR9 does not. Furthermore, although all follicular and marginal zone B cells up-regulate TACI in response to TLR9 stimulation, only marginal zone B cells and a subset of follicular B cells respond to TLR4. Finally, we find that both BLyS and APRIL enhance viability among quiescent and BCR-stimulated B cells. However, although BLyS enhances viability among TLR stimulated B cells, APRIL does not, suggesting that TACI but not BLyS receptor 3 may share survival promoting pathways with TLRs.  相似文献   

15.
Yang J  Reth M 《FEBS letters》2010,584(24):4872-4877
To detect its cognate antigen, each B lymphocyte contains up to 120 000 B cell antigen receptor (BCR) complexes on its cell surface. How these abundant receptors remain silent on resting B cells and how they can be activated by a molecularly diverse set of ligands is poorly understood. The antigen-specific activation of the BCR is currently explained by the cross-linking model (CLM). This model predicts that the many BCR complexes on the surface of a B cell are dispersed signalling-inert monomers and that it is BCR dimerization that initiates signalling from the receptor. The finding that the BCR forms auto-inhibited oligomers on the surface of resting B cells falsifies these predictions of the CLM. We propose the dissociation activation model (DAM), which fits better with the existing body of experimental data.  相似文献   

16.
The inhibitory Fc receptors function to regulate the antigen-driven activation and expansion of lymphocytes. In B cells, the Fc gammaRIIB1 is a potent inhibitor of B cell antigen receptor (BCR) signaling when coligated to the BCR by engagement of antigen-containing immune complexes. Inhibition is mediated by the recruitment of the inositol phosphatase, SHIP, to the Fc gammaRIIB1 phosphorylated tyrosine-based inhibitory motif (ITIM). Here we show that BCR-independent aggregation of the Fc gammaRIIB1 transduces an ITIM- and SHIP-independent proapoptotic signal that is dependent on members of the c-Abl tyrosine kinase family. These results define a novel Abl family kinase-dependent Fc gammaRIIB1 signaling pathway that functions independently of the BCR in controlling antigen-driven B cell responses.  相似文献   

17.
18.
Optimal activation of B-lymphocytes depends both upon expression of various cell surface receptors and adequate integration of signaling pathways. This requires signals generated upon recognition of antigen by the B lymphocyte antigen receptor (BCR) as well as additional signals provided by cognate interaction with T helper cells, including the CD40-CD154 interaction. Engagement of both the BCR and CD40 results in synergistic activation of B cells. Previous studies identified tumor necrosis factor receptor-associated factor (TRAF)-2 and TRAF3 in the CD40-signaling pathway together with BCR-activated protein kinase D (PKD) as important cooperative factors in this synergy. To better understand the role of these factors in bridging the BCR and CD40 signaling pathways, BCR signal regulation of TRAF function was examined. Results show that phosphorylation of TRAF2 is increased upon BCR but not CD40 engagement and that of the potentially phosphorylated residues of TRAF2, tyrosine 484 is crucial for BCR-CD40 synergy. Additionally, wild type or constitutively active Bruton's tyrosine kinase (Btk) enhanced, whereas the xid mutant form of Btk prevented, BCR-CD40 synergy. These effects were dependent upon TRAF2 and PKD activity. These findings suggest a model in which Btk contributes to the enhancement of the CD40 response by TRAF2 in a PKD-dependent manner.  相似文献   

19.
Activation—induced cell death in B lymphocytes   总被引:10,自引:2,他引:8  
Upon encountering the antigen(Ag),the immune system can either develop a specific immune response of enter a specific state of unresponsiveness,tolerance.The response of B cells to their specific Ag can be activation and proliferation,leading to the immune response,or anergy and activation-induced cell death(AICD),leading to tolerance.AICD in B lymphocytes is a highly regulated event initiated by crosslinking of the B cell receptor (BCR).BCR engagement initiates several signaling events such as activation of PLCγ,Ras,and PI3K,which generally speaking,lead to survival.However,in the absence of survival signals(CD40 or IL-4R engagement),BCR crosslinking can also promote apoptotic signal transduction pathways such as activation of effector caspases,expression of pro-apoptotic genes,and inhibition of pro-survival genes.The complex interplay between survival and death signals determines the B cell fate and, consequently,the immune response.  相似文献   

20.
B cells signal through both the B cell receptor (BCR) which binds antigens and Toll-like receptors (TLRs) including TLR9 which recognises CpG DNA. Activation of TLR9 synergises with BCR signalling when the BCR and TLR9 co-localise within an auto-phagosome-like compartment. Here we report that Bruton’s tyrosine kinase (BTK) is required for synergistic IL6 production and up-regulation of surface expression of MHC-class-II, CD69 and CD86 in primary murine and human B cells. We show that BTK is essential for co-localisation of the BCR and TLR9 within a potential auto-phagosome-like compartment in the Namalwa human B cell line. Downstream of BTK we find that calcium acting via calmodulin is required for this process. These data provide new insights into the role of BTK, an important target for autoimmune diseases, in B cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号