首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo microdialysis combined with HPLC-EC analysis was used to monitor extracellular glutamate in the n. accumbens of Sprague-Dawley rats during footshock and food delivery. The footshock presentation resulted in a delayed increase in extracellular glutamate level, whereas the food intake caused its decrease. The intra-accumbens infusion of glutamate reuptake blocker D,L-threo-beta-hydroxiaspartate (1 mM) completely prevented the food-induced decrease in glutamate level. The intra-accumbens infusion of sodium channel blocker tetrodotoxin (1 microM) led to an increase in glutamate extracellular level in the n. accumbens in response to food intake. The results suggest that the food-induced decrease in glutamate extracellular level in the n. accumbens occurs due to an enhancement of high-affinity glutamate uptake that is probably under the neuronal control during feeding.  相似文献   

2.
By means of in vivo microdialysis combined with HPLC analysis, we have shown that extracellular glutamate level in the rat n. accumbens increases during a simultaneous presentation of a palatable diet and a tone previously paired with a footshock, the magnitude of the extracellular glutamate increase being proportional to the latency of food taking. In contrast, extracellular glutamate level remains unchanged when the diet is presented after the conditioned aversive stimulus or when the tone is given alone. These data suggest that the glutamate release evoked by the competitive presentation of the diet and the conditioned aversive stimulus appears to be related to the inhibition of a planned feeding response, whereas the choice between behavioural strategies may not contribute to this phenomenon.  相似文献   

3.
The influence of dopamine D1- and D2-like receptors blockage on glutamate level in the n. accumbens of Sprague-Dawly rats during feeding was investigated by in vivo microdialysis combined with HPLC-EC analysis. Food intake resulted in a decrease in extracellular glutamate level. Infusion of D1-like dopamine receptor-blocker (SCH-23390, 0.01 mM) into the n. accumbens did not change this effect. Infusion of D2-like dopamine receptor-blocker (raclopride, 0.1 mM) into the n. accumbens caused an increase in extracellular glutamate level during feeding. The findings suggest, that decrease in extracellular glutamate level in n. accumbens is caused by dopamine D2-like, but not D1-like receptors activation.  相似文献   

4.
Food intake was shown to decrease the glutamate extracellular level in the nucleus accumbens in both deprived and non-deprived Spraque-Dawly rats. Feeding combined with presentation of a tone previously paired with foot shock caused an increase in the glutamate extracellular level in deprived rats only, whereas the tone alone had no effect. The data suggest that emotional and motivational variations exert co-operative effect on the glutamate release in the nucleus accumbens during feeding.  相似文献   

5.
By means of in vivo microdialysis combined with HPLC analysis, we have shown that glutamate extracellular level in the rat n. accumbens increases during a forced switch in behavioral strategy. When infused in the n. accumbens, a Na+ channel blocker tetrodotoxin (TTX, 1 microM) completely prevents this increase whereas a potent cystine/glutamate exchanger blocker (S)-4-carboxyphenylglycine ((S)-4-CPG, 5 microM) has no effect. In contrast, TT (1 microM), infused in the n. accumbens, fails to significantly alter basal level of extracellular glutamate in this region whereas (S)-4-CPG (5 microM) produced a significant decrease. Our data suggest that basal and factional glutamate releases in the n. accumbens are differently regulated. The source of basal glutamate release is a non-vesicular release via cystine/glutamate exchanger. Functional glutamate release observed during a forced switch in behavioral strategy derives from vesicular synaptic pool.  相似文献   

6.
In Sprague-Dawley rats in was shown by means of in vivo microdialysis combined with HPLC-EC analysis that the blockade of D2-dopamine receptors of the n. accumbens by raclopride (10 microM) completely prevents a decrease in accumbal extracellular glutamate level induced by food intake.  相似文献   

7.
In Sprague-Dawley rats, by means of in vivo microdialysis combined with HPLC analysis it has been shown that an exploratory behavior in a new environment is accompanied by a rise in extracellular levels of citrulline (an NO co-product) in the mediolateral regions of the n. accumbens with the maximum observed in the medial n. accumbens. Infusions of 7-nitroindazole (0.5 mM), a neuronal NO synthase inhibitor, into the medial n. accumbens prevented the exploration-induced rise of extracellular citrulline levels in this area. The second presentation of the same chamber did not produce any significant changes of extracellular citrulline levels in the medial n. accumbens, although there was a tendency of a small increase. The presentation of a familiar chamber did not affect citrulline extracellular levels in this area. The data obtained indicate for the first time that exploratory activity in a new environment is accompanied by the nitrergic activation in the entire n. accumbens with the maximal activation in the medial part of this brain area.  相似文献   

8.
Food intake decreased the glycine extracellular level in the rat n.accumbens. Tetrodotoxin prevented the decrease, whereas D,L-threo-beta-hydroxyaspartic acid exerted no effect. Raclopride (D2 dopamine receptor antagonist) increased the glycine extracellular level in food intake. The data obtained suggest that during feeding the glycine release in the n.accumbens is controlled by the D2 dopamine receptors.  相似文献   

9.
Del Arco A  Segovia G  Mora F 《Amino acids》2000,19(3-4):729-738
Summary. Using microdialysis, the effects of endogenous glutamate on extracellular concentrations of taurine in striatum and nucleus accumbens of the awake rat were investigated. The glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) was used to increase the extracellular concentration of glutamate. PDC (1, 2 and 4 mM) produced a dose-related increase of extracellular concentrations of glutamate and taurine in striatum and nucleus accumbens. Increases of extracellular taurine were significantly correlated with increases of extracellular glutamate, but not with PDC doses, which suggests that endogenous glutamate produced the observed increases of extracellular taurine in striatum and nucleus accumbens. The role of ionotropic glutamate receptors on the increases of taurine was also studied. In striatum, perfusion of the antagonists of NMDA and AMPA/kainate glutamate receptors attenuated the increases of extracellular taurine. AMPA/kainate, but not NMDA receptors, also reduced the increases of extracellular taurine in nucleus accumbens. These results suggest that glutamate-taurine interactions exist in striatum and nucleus accumbens of the awake rat. Received March 5, 1999/Accepted September 22, 1999  相似文献   

10.
The aim of the present study was to investigate, using microdialysis, the effects of aging on the glutamate/dopamine/GABA interaction in striatum and nucleus accumbens of the awake rat. For that, the effects of an increase of the endogenous concentration of glutamate on the extracellular concentration of dopamine and GABA in striatum and nucleus accumbens of young (2-4 months), middle-aged (12-14 months), aged (27-33 months), and very aged (37 months) male Wistar rats were studied. Endogenous extracellular glutamate was selectively increased by perfusing the glutamate uptake inhibitor L-trans-pyrrolidine-3,4-dicarboxylic acid (PDC) through the microdialysis probe. In young rats, PDC (1, 2, and 4 mM) produced a dose-related increase of dialysate concentrations of glutamate in both striatum and nucleus accumbens. PDC also increased dialysate dopamine and GABA in both structures. These increases were significantly correlated with the increases of glutamate but not with the PDC dose used, which strongly suggests that the increases of dopamine and GABA were produced by glutamate. In striatum, there were no significant differences in the dopamine/glutamate and GABA/glutamate correlations between young and aged rats. This means that the effects of glutamate on dopamine and GABA do not change during aging. On the contrary, in the nucleus accumbens of aged rats, the increases of dopamine, when correlated with the increases of glutamate, were significantly lower than in young rats. Moreover, the ratio of dopamine to glutamate increases at maximal increases of glutamate was negatively correlated with aging. On the contrary, the ratio of GABA to glutamate increases in nucleus accumbens was positively correlated with aging, which suggests that the effects of endogenous glutamate on GABA tend to be higher in the nucleus accumbens of aged rats. The findings of this study suggest that aging changes the interaction between endogenous glutamate, dopamine, and GABA in nucleus accumbens, but not in striatum, of the awake rat.  相似文献   

11.
The attribution of incentive salience to reward‐predictive stimuli has been shown to be associated with substance abuse‐like behavior such as increased drug taking. Evidence suggests that glutamate neurotransmission and sequential N‐methyl‐D‐aspartate (NMDA) activation are involved in the attribution of incentive salience. Here, we further explore the role of second‐by‐second glutamate neurotransmission in the attribution of incentive salience to reward‐predictive stimuli by measuring sign‐tracking behavior during a Pavlovian conditioned approach procedure using ceramic‐based microelectrode arrays configured for sensitive measures of extracellular glutamate in awake behaving Sprague‐Dawley rats. Specifically, we show that there is an increase in extracellular glutamate levels in the prelimbic cortex (PrL) and the nucleus accumbens core (NAcC) during sign‐tracking behavior to a food‐predictive conditioned stimulus (CS+) compared to the presentation of a non‐predictive conditioned stimulus (CS?). Furthermore, the results indicate greater increases in extracellular glutamate levels in the PrL compared to NAcC in response to the CS+, including differences in glutamate release and signal decay. Taken together, the present research suggests that there is differential glutamate signaling in the NAcC and PrL during sign‐tracking behavior to a food‐predictive CS+.

  相似文献   

12.
Presence of a tone previously paired with a foot-shock in rats during food intake increases the glycine extracellular level in the n. accumbens. The increase will be completely prevented by intra-accumbal infusion of Na-channel blocking agent tetrodotoxine. The findings suggest that glycine mechanisms in the n. accumbens are involved in the correction of feeding behaviour.  相似文献   

13.
Orphanin FQ has been reported to suppress extracellular dopamine levels in the nucleus accumbens after intracerebroventricular administration. This study sought to provide evidence for an intra-ventral tegmental site of action for this effect using a dual-probe microdialysis experimental design. Orphanin FQ was applied to the ventral tegmental area of anesthetized rats by reverse dialysis while extracellular dopamine was sampled with a second dialysis probe in the nucleus accumbens. Orphanin FQ at a probe concentration of 1 mM (but not at 0.1 mM) significantly reduced nucleus accumbens dialysate dopamine levels. The receptor-inactive analogue, des-Phe1-orphanin FQ (1 mM), produced a small but significant increase in nucleus accumbens dialysate dopamine levels. Simultaneous measurement of ventral tegmental area dialysate amino acid content revealed significant increases in both GABA and glutamate during infusion of orphanin FQ (1 mM). To determine if increased GABA overflow mediates the action of orphanin FQ on mesolimbic neurons, orphanin FQ (10 nmol) was microinjected directly into the ventral tegmental area in the presence or absence of the GABA(A) receptor antagonist, bicuculline (1 nmol). Bicuculline transiently blocked the suppressive action of orphanin FQ on accumbens dialysate dopamine levels. These data indicate that orphanin FQ decreases dopamine transmission in the nucleus accumbens by inhibiting dopamine neuronal activity in the ventral tegmental area through a mechanism that may involve an increased overflow of GABA.  相似文献   

14.
In Sprague-Dawley rats, by means of in vivo microdialysis combined with HPLC analysis it was shown that a consumption of a novel food did not produce any changes in extracellular levels ofcitrulline (an NO-co-product) in the medial n. accumbens. In contrast, the rejection of the novel food caused a rise of the extracellular citrulline level in this brain area which can be completely prevented by intra-accumbal infusion of 0.5 mM 7-nitroindazple, a neuronal NO-synthase inhibitor. The data obtained reveal for the first time that new food rejection (but not its consumption) is characterized by neuronal NO-synthase activation and, very likely, NO production in the medial nucleus accumbens.  相似文献   

15.
Previous in vitro studies have shown that group III metabotropic glutamate receptors (mGluRs) regulate synaptic glutamate release. The present study used microdialysis to characterize this regulation in vivo in rat nucleus accumbens. Reverse dialysis of the group III mGluR agonist l-(+)-2-amino-4-phosphonobutyric acid (L-AP4) decreased, whereas the antagonist (R,S)-alpha-methylserine-O-phosphate (MSOP) increased the extracellular level of glutamate. The decrease by L-AP4 or the increase by MSOP was antagonized by co-administration of MSOP or L-AP4, respectively. Activation of mGluR4a by (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid or mGluR6 by 2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid had no effect on extracellular glutamate. (R,S)-4-Phosphonophenylglycine (PPG), another group III agonist with high affinity for mGluR4/6/8, reduced extracellular glutamate only at high concentrations capable of binding to mGluR7. The increase in extracellular glutamate by MSOP was tetrodotoxin-independent, and resistant to both the L-type and N-type Ca2+ channel blockers. L-AP4 failed to block 30 mm K+-induced vesicular glutamate release. Blockade of glutamate uptake by d,l-threo-beta-benzyloxyaspartate caused a Ca2+-independent elevation in extracellular glutamate that was reversed by L-AP4. Finally, (S)-4-carboxyphenylglycine, an inhibitor of cystine-glutamate antiporters, attenuated the L-AP4-induced reduction in extracellular glutamate. Together, these data indicate that group III mGluRs regulate in vivo extracellular glutamate in the nucleus accumbens by inhibiting non-vesicular glutamate release.  相似文献   

16.
By means of in vivo microdialysis combined with HPLC analysis, we have shown that extracellular levels of citrulline (NO co-product) and arginine (NO precursor) increase in the rat n. accumbens during acquisition and expression of a classical fear response. The conditioned rise of citrulline and arginine levels gradually decreased in the course of extinction. The renewal of the response produced an increase in extracellular citrulline and arginine levels. These data suggest that the acquisition of conditioned fear response causes an increase in NO production in the n. accumbens that weakens during the extinction and is restored during the reinstatement of the response.  相似文献   

17.
Abstract: The technique of intracerebral microdialysis was used to assess the effect of stress on the extracellular concentrations of excitatory amino acids, glutamate and aspartate, in the rat medial prefrontal cortex, hippocampus, striatum, and nucleus accumbens. A 20-min restraint procedure led to an increase in extracellular glutamate in all regions tested. The increase in glutamate levels was significantly higher in the prefrontal cortex than that observed in other regions. With the exception of the striatum, extracellular levels of aspartate were increased in all regions. Furthermore, the increase in aspartate levels was significantly higher in prefrontal cortex compared to hippocampus and nucleus accumbens. Local perfusion of tetrodotoxin during the restraint procedure significantly decreased the stress-induced increase in extracellular excitatory amino acids. In order to ensure that the above results were not an artifact of restraint not associated with stress (e.g., decreased mobility), we also examined the effect of swimming stress on the extracellular levels of excitatory amino acids in selected regions, i.e., striatum and medial prefrontal cortex. Both regions displayed a significant increase in extracellular levels of aspartate and glutamate following 20 min of swimming in room temperature water. This study provides direct evidence that stress increases the neuronal release of excitatory amino acids in a regionally selective manner. The implications of the present findings for stress-induced catecholamine release and/or hippocampal degeneration are discussed.  相似文献   

18.
The interaction of glutamate and dopamine in the basal ganglia of fully conscious rat during the normal process of aging is reviewed. Using a novel approach, that of blocking the reuptake of glutamate, the effects of increasing concentrations of endogenous glutamate on the extracellular concentrations of dopamine in striatum and nucleus accumbens in the young rat were investigated. It was found that increasing concentrations of glutamate correlated significantly with increasing concentrations of dopamine in striatum and nucleus accumbens. Moreover the increase of dopamine in both structures was significantly reduced after blockade of NMDA and AMPA/kainate glutamate receptors, suggesting that the increase of dopamine was mediated by glutamate. The interaction glutamate/dopamine expressed by its ratio showed a significant age-related decrease in nucleus accumbens but not in striatum, so that to a given amount of glutamate less increase of dopamine is produced. It is suggested that the interaction glutamate-dopamine represents a balanced input to the GABA neuron in the basal ganglia and that during aging this balance is disrupted. In addition, we also speculate on the significance of this glutamate-dopamine disruption in relation to the changes in motor behavior found with age.  相似文献   

19.
The present study was aimed to investigate the effects of a chronic treatment with the dopamine uptake blocker nomifensine on the in vivo extracellular concentrations of dopamine, acetylcholine, glutamate and GABA in the prefrontal cortex, striatum and nucleus accumbens. Male Wistar rats received intraperitoneal (i.p.) daily injections of nomifensine (10 mg/kg) or saline for 22 days. Microdialysis experiments were performed on days 1, 8, 15 and 22 of treatment to evaluate the effects of the injection of nomifensine or saline. Motor activity of the animals was monitored during microdialysis experiments. Injections of nomifensine increased extracellular concentration of dopamine in striatum and nucleus accumbens, but not in prefrontal cortex. Acetylcholine concentrations in striatum but not in nucleus accumbens were increased by nomifensine on days 15 and 22 of treatment. In prefrontal cortex, nomifensine increased acetylcholine levels without differences among days. No changes were found on glutamate and GABA concentrations in the three areas studied. Injections of nomifensine also increased spontaneous motor activity and stereotyped behaviour without differences among days. These results show that systemic chronic treatment with a dopamine uptake blocker produces differential effects on extracellular concentrations of dopamine and acetylcholine, but not glutamate and GABA, in different areas of the brain.  相似文献   

20.
Abstract: In vivo microdialysis was used to determine the extent to which ionotropic glutamate receptors in the ventral tegmental area (VTA) regulate dopamine release in the nucleus accumbens. Coapplication of 2-amino-5-phosphonopentanoic acid (AP5; 200 µ M ) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 50 µ M ) to the VTA via reverse dialysis decreased extracellular concentrations of dopamine in the nucleus accumbens by ∼30%. In accordance with previous results, electrical stimulation of the prefrontal cortex increased dopamine release by 60%. Application of AP5 and CNQX to the VTA during cortical stimulation blocked the effect of stimulation on dopamine release. These results indicate that ionotropic glutamate receptors in the VTA are critically involved in basal and evoked dopamine release in the nucleus accumbens and suggest that a glutamatergic projection from the prefrontal cortex regulates the activity of dopaminergic neurons in the VTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号