首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is important to understand switchgrass (Panicum virgatum L.) productivity with relation to diverse nutrient deficiency conditions in order to optimize continuous biomass production in marginal lands. This study was conducted on a wasteland sandy soil (Aridosol) to assess biomass yield, nutrient uptake and nitrogen (N) recovery of switchgrass, and soil nitrate-N (NO3?-N) accumulation responses to N (120 kg N ha?1), phosphorus (P, 100 kg P2O5 ha?1), and potassium (K, 45 kg K2O ha?1) applications during 2015 and 2016 in Inner Mongolia, China. The experiment layout was a randomized complete block design with fertilizer mixture treatments of N, P, and K (NPK), P and K (PK), N and K (NK), N and P (NP), and a control with no fertilizer input (CK). Plant height and stem diameter remained unaffected by the different fertilizer treatments. Biomass yield with the NPK treatment in 2015 was 8.9 Mg ha?1 and in 2016 it was 7.3 Mg ha?1. In 2015, compared with the NPK treatment, a significant yield reduction of 33.7% was found with PK, 22.5% with NK, 28.1% with NP, and 40.5% with CK; however, in 2016, yield declined significantly only with CK compared to the rest of the fertilizer treatments, for which yields were statistically similar. Plant N content was reduced for the treatment PK (i.e. N omission); conversely, plant P and K content remained unaffected with P and K omission treatments. Plant nutrient uptake, particularly of N and K, was severely decreased by the nutrient omission treatments when averaged across 2 years. Apparent N recovery (ANR; quantity of N uptake per unit of N applied) was reduced for the NP and NK treatments, which led to an increase in soil NO3?-N accumulation in the top 0–20 cm layer, compared with the NPK treatment. However, ANR was the highest (37.2% in 2015) with the NPK treatment, which also reduced soil NO3?-N accumulation. A balanced N, P, and K fertilizer management approach is suggested to sustain switchgrass yield and stand persistence on semiarid, marginal, sandy wasteland.  相似文献   

2.
A large part of the nutrient flux in deciduous forests is through fine root turnover, yet this process is seldom measured. As part of a nutrient cycling study, fine root dynamics were studied for two years at Huntington Forest in the Adirondack Mountain region of New York, USA. Root growth phenology was characterized using field rhizotrons, three methods were used to estimate fine root production, two methods were used to estimate fine root mortality, and decomposition was estimated using the buried bag technique. During both 1986 and 1987, fine root elongation began in early April, peaked during July and August, and nearly ceased by mid-October. Mean fine root ( 3 mm diameter) biomass in the surface 28-cm was 2.5 t ha–1 and necromass was 2.9 t ha–1. Annual decomposition rates ranged from 17 to 30% beneath the litter and 27 to 52% at a depth of 10 cm. Depending on the method used for estimation, fine root production ranged from 2.0 to 2.9 t ha–1, mortality ranged from 1.8 to 3.7 t ha–1 yr–1, and decomposition was 0.9 t ha–1 yr–1. Thus, turnover ranged from 0.8 to 1.2 yr–1. The nutrients that cycled through fine roots annually were 4.5–6.1 kg Ca, 1.1–1.4 kg Mg, 0.3–0.4 kg K, 1.2–1.7 kg P, 20.3–27.3 kg N, and 1.8–2.4 kg S ha–1. Fine root turnover was less important than leaf litterfall in the cycling of Ca and Mg and was similar to leaf litterfall in the amount of N, P, K and S cycled.  相似文献   

3.
A field experiment was conducted under a wheat-maize rotation system from 1990 to 2006 in North China Plain (NCP) to determine the effects of N, P and K on yield and yield gap. There were five treatments: NPK, PK, NK, NP and a control. Average wheat and maize yields were the highest in the NPK treatment, followed by those in the NP plots among all treatments. For wheat and maize yield, a significant increasing trend over time was found in the NPK-treated plots and a decreasing trend in the NK-treated plots. In the absence of N or P, wheat and maize yields were significantly lower than those in the NPK treatment. For both crops, the increasing rate of the yield gap was the highest in the P omission plots, i.e., 189.1 kg ha−1 yr−1 for wheat and 560.6 kg ha−1 yr−1 for maize. The cumulative omission of P fertilizer induced a deficit in the soil available N and extractable P concentrations for maize. The P fertilizer was more pivotal in long-term wheat and maize growth and soil fertility conservation in NCP, although the N fertilizer input was important for both crops growth. The crop response to K fertilizers was much lower than that to N or P fertilizers, but for maize, the cumulative omission of K fertilizer decreased the yield by 26% and increased the yield gap at a rate of 322.7 kg ha−1 yr−1. The soil indigenous K supply was not sufficiently high to meet maize K requirement over a long period. The proper application of K fertilizers is necessary for maize production in the region. Thus, the appropriate application of N and P fertilizers for the growth of both crops, while regularly combining K fertilizers for maize growth, is absolutely necessary for sustainable crop production in the NCP.  相似文献   

4.
Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L.) were collected in four maize agro-ecological regions of China, and the optimal management (OPT), farmers’ practice (FP), a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N), phosphorus (P), and potassium (K) were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE) of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies.  相似文献   

5.
Understanding the time-course of dry matter (DM) and nitrogen (N) accumulation in terms of yield–trait relationships is essential to simultaneously increase grain yield and synchronize N demand and N supply. We collected 413 data points from 11 field experiments to address patterns of DM and N accumulation with time in relation to grain yield and management of winter wheat in China. Detailed growth analysis was conducted at the Zadok growth stages (GS) 25 (regreening), GS30 (stem elongation), GS60 (anthesis), and GS100 (maturity) in all experiments, including DM and N accumulation. Grain yield averaged 7.3 Mg ha−1, ranging from 2.1 to 11.2 Mg ha−1. The percent N accumulation was consistent prior to DM accumulation, while both DM and N accumulation increased continuously with growing time. Both the highest and fastest DM and N accumulations were observed from stem elongation to the anthesis stage. Significant correlations between grain yield and DM and N accumulation were found at each of the four growth stages, although no positive relationship was observed between grain yield and harvest index or N harvest index. The yield increase from 7–9 Mg ha−1 to >9 Mg ha−1 was mainly attributed to increased DM and N accumulation from stem elongation to anthesis. Although applying more N fertilizer increased N accumulation during this stage, DM accumulation was not improved, indicating that N fertilizer management and related agronomic management should be intensified synchronously across the wheat growing season to simultaneously achieve high yields and match N demand and N supply.  相似文献   

6.
Li  Hong  Parent  Léon E.  Karam  Antoine  Tremblay  Catherine 《Plant and Soil》2003,251(1):23-36
It was hypothesized that soil N variability, and fertilization and cropping management affect potato (Solanum tuberosum L.) growth and fertilizer N efficiency. Following a 20-year sod breakup on a loamy soil in eastern Quebec, Canada (46°37 N, 71°47 W), we conducted a 3-year (1993–1995) study to investigate the effects of soil pool N and fertilizer N management on non-irrigated potato (cv. Superior) tuber yield, fertilizer N recovery (NRE), and residual N distribution in soils under humid, cool and acid pedoclimatic conditions. The fertilizer N treatments consisted of a control, side-dress at rates of 70, 105 and 140 kg ha–1, and split applications (at seeding and bloom) at rates of 70+70, 105+70 and 140+70 kg ha–1, respectively. Soil acidity was corrected with limestone following the plow down of the sod. Years of cropping, main effect of N treatment, and year and fertilizer N interaction were significant on total and marketable tuber yields and N uptake, which were significantly related to soil N, and root growth. Apparent NRE ranged between 29 and 70%, depending on years and N rates. Total tuber yield, N uptake, soil N use and NRE were significantly higher in the first (sod–potato) year, but decreased by 41.8, 22.7, 21.4 and 14.7%, respectively, in the third (sod–potato–potato–potato) year. Initial soil N pool was declined by 75% following the 3-year cropping. In 2–3 years, the side-dress N (140 kg ha–1) increased significantly tuber yields (11.4–19.8%) compared to the split N (70+70 kg ha–1). Higher split N had no effect on tuber yield and N uptake but increased residual N at harvest. Unused fertilizer N was strongly linked (R 2=0.98) to fertilizer N rates. Time factor and N treatment had significant effects (P<0.0001) on loss of N to below the root zone. Smaller scale rate and timing of split N need to be further determined. Increasing fertilizer N use efficiency could be expected with sod breakup and 75% of regional recommendation rate under humid, cool and acid pedoclimatic conditions.  相似文献   

7.
Biomass demand for energy will lead to utilization of marginal, low fertility soil. Application of fertilizer to such soil may increase switchgrass (Panicum virgatum L.) biomass production. In this three-way factorial field experiment, biomass yield response to potassium (K) fertilizer (0 and 68 kg?K?ha?1) on nitrogen (N)-sufficient and N-deficient switchgrass (0 and 135 kg?N?ha?1) was evaluated under two harvest systems. Harvest system included harvesting once per year after frost (December) and twice per year in summer (July) at boot stage and subsequent regrowth after frost. Under the one-cut system, there was no response to N or K only (13.4 Mg?ha?1) compared to no fertilizer (12.4 Mg?ha?1). Switchgrass receiving both N and K (14.6 Mg?ha?1) produced 18 % greater dry matter (DM) yield compared to no fertilizer check. Under the two-cut harvest system, N only (16.0 Mg?ha?1) or K only (14.1 Mg?ha?1) fertilizer produced similar DM to no fertilizer (15.1 Mg?ha?1). Switchgrass receiving both N and K in the two-cut system (19.2 Mg?ha?1) produced the greatest (P?<?0.05) DM yield, which was 32 % greater than switchgrass receiving both N and K in the one-cut system. Nutrient removal (biomass?×?nutrient concentration) was greatest in plots receiving both N and K, and the two-cut system had greater nutrient removal than the one-cut system. Based on these results, harvesting only once during winter months reduces nutrient removal in harvested biomass and requires less inorganic fertilizer for sustained yields from year to year compared to two-cut system.  相似文献   

8.
A field incubation technique with acetylene to inhibit nitrification was used to estimate net N mineralization rates in some grassland soils through an annual cycle. Measurements were made on previously long-term grazed pastures on a silty clay loam soil in S.W. England which had background managements of +/– drainage and +/– fertilizer (200 kg N ha–1 yr–1). The effect of fertilizer addition on mineralization during the year of measurement was also determined. Small plots with animals excluded, and with herbage clipped and removed were used as treatment areas and measurements were made using an incubation period of 7 days at intervals of 7 or 14 days through the year. Soil temperature, moisture and mineral N contents were also determined. Mineralization rates fluctuated considerably in each treatment. Maximum daily rates ranged from 1.01 to 3.19 kg N ha–1, and there was substantial net release of N through the winter period (representing, on average, 27% of the annual release). Changes in temperature accounted for 35% of the variability but there was little significant effect of soil moisture. Annual net release of N ranged from 135 kg ha–1 (undrained soil, no previous or current fertilizer) to 376 (drained soil, +200 kg N ha–1 yr–1 previous and current fertilizer addition). Addition of fertilizer N to a previously unfertilized sward significantly increased the net release of N but there was no immediate effect of withholding fertilizer on mineralization during the year in which measurements were made.  相似文献   

9.
Increasing desire for renewable energy sources has increased research on biomass energy crops in marginal areas with low potential for food and fiber crop production. In this study, experiments were established on low phosphorus (P) soils in southern Oklahoma, USA to determine switchgrass biomass yield, nutrient concentrations, and nutrient removal responses to P and nitrogen (N) fertilizer application. Four P rates (0, 15, 30, and 45?kg?P?ha?1) and two N fertilizer rates (0 and 135?kg?N?ha?1) were evaluated at two locations (Ardmore and Waurika) for 3?years. While P fertilization had no effect on yield at Ardmore, application of 45?kg?P?ha?1 increased yield at Waurika by 17% from 10.5 to 12.3?Mg?ha?1. Across P fertilizer rates, N fertilizer application increased yields every year at both locations. In Ardmore, non-N-fertilized switchgrass produced 3.9, 6.7, and 8.8?Mg?ha?1, and N-fertilized produced 6.6, 15.7, and 16.6?Mg?ha?1 in 2008, 2009, and 2010, respectively. At Waurika, corresponding yields were 7.9, 8.4, and 12.2?Mg?ha?1 and 10.0, 12.1, and 15.9?Mg?ha?1. Applying 45?kg?P?ha?1 increased biomass N, and P concentration and N, P, potassium, and magnesium removal at both locations. Increased removal of nutrients with N fertilization was due to both increased biomass and biomass nutrient concentrations. In soils of generally low fertility and low plant available P, application of P fertilizer at 45?kg?P?ha?1 was beneficial for increasing biomass yields. Addition of N fertilizer improves stand establishment and biomass production on low P sites.  相似文献   

10.
In phosphorus deficient soils and under smallscale farming systems, the development of efficient management strategies for P fertilizers is crucial to sustain food production. A field experiment was conducted on a P-fixing Acrisol in western Kenya to study possibilities of replenishing soil P with seasonal additions of small rates of P fertilizers. Triple superphosphate was applied at 0, 10, 25, 50 and 150 kg P ha–1 for 5 consecutive maize growing seasons followed by 4 seasons of residual crops. Maize yields and soil P fractions were determined. Although maize responded to additions of 10 kg P ha–1 with a cumulative grain yield of 16.8 Mg ha–1, at the end of the experiment, compared to 8.8 Mg ha–1 in the non-P fertilized plots, soil labile P did not increase correspondingly. Seasonal additions of 150 kg P ha–1 increased maize yields to a cumulative value of 39 Mg ha–1 at the end of the experiment, and increased all soil inorganic P fractions. At the third season of residual phase, treatment with a cumulative addition of 750 kg P ha–1 gave the highest yields compared to treatments in the same residual stage, but these yields were considered less than the maximum yield of the season. This indicates that the large build up of soil P was not available for crop uptake. The inorganic P fraction extracted by NaHCO3 was the most affected by changes in management, increasing during the input phase and decreasing after interruption of P addition, for all P rates. The decrease in this pool during the residual phase could be explained by the maize uptake. This study showed that seasonal additions of 25 kg P ha–1 can increase maize yield with gradual replenishment of soil P.  相似文献   

11.
The production of aboveground tissue of three alder species (Alnus crispa (Ait.) Pursh,A. rugosa (Du Roi) Spreng. andA. glutinosa (L) Gaertn.) on four sites ranged from 0.4 t ha–1 yr–1 to 4.0 t ha–1 yr–1 after four growing seasons. Large differences were observed among the four sites studied and among species. Soil nutrient levels affected the biomass production and foliar symptoms of P and Mg deficiency occurred withA. crispa andA. rugosa. Because of their poor aboveground biomass production (0.4–1.4 t ha–1 yr–1),A. crispa andA. rugosa should be used mainly as nurse trees. For its higher potential for biomass production (up to 4.0 t ha–1 yr–1), and its apparent higher ability to use P and Mg on deficient sites,A. glutinosa should be used preferably toA. crispa andA. rugosa for the production of biomass.  相似文献   

12.
Rice-based (Oryza sativa L.) rainfed lowlands are the major cropping system in northeast Thailand. Average yields are low, which is generally explained by frequent drought events, low soil fertility, and poor fertilizer response. However, neither the relative importance of these factors nor their interaction is well understood. Therefore, we analyzed an existing database on fertilizer trials conducted between 1995 and 1997 at eight different sites in northeast Thailand with the objective to determine indigenous nutrient supplies, internal efficiencies, and recovery efficiencies of applied nutrients in rainfed lowland rice. Of particular interest was the effect of variety type (traditional) and water supply on these components. Comparison of N, P, and K concentrations in grain and straw (average N–P–K grain concentration of 11.0–2.7–3.4 g kg−1; average N–P–K straw concentration of 5.2–0.9–16.4 g kg−1) in the traditional-type varieties used at all trial sites with literature values showed no differences for these parameters between traditional and modern-type varieties or between irrigated and rainfed environments. In contrast, internal efficiencies of N, P, and K (average IEN: 46 kg grain per kg N uptake; IEP: 218 kg grain per kg P uptake; IEK: 25 kg grain per kg K uptake) were much lower than reported for irrigated systems, and the difference was greatest for K, which is mainly accumulated in the straw. Indigenous nutrient supply (average INS: 38 kg ha−1; IPS: 10 kg ha−1; IKS: 89 kg ha−1) and recovery efficiency (average REN: 0.28 kg kg−1; REP: 0.13 kg kg−1; REK: 0.49 kg kg−1) were low but comparable to the lower values reported from irrigated systems. Average seasonal field water resources seemed to reduce the indigenous nutrient supply but had no or little effect on internal efficiency and recovery efficiency. We concluded that the main reason for the low system productivity without and with fertilizer in northeast Thailand is the dominant use of traditional-type varieties with low harvest indices, which was the dominant cause for the observed low internal nutrient efficiency. Therefore, intensification of rainfed systems through substantially increased nutrient inputs can be recommended only where varieties with an average harvest index of close to 0.4 or higher are available.  相似文献   

13.
Tropical dry forest is the most widely distributed land-cover type in the tropics. As the rate of land-use/land-cover change from forest to pasture or agriculture accelerates worldwide, it is becoming increasingly important to quantify the ecosystem biomass and carbon (C) and nitrogen (N) pools of both intact forests and converted sites. In the central coastal region of México, we sampled total aboveground biomass (TAGB), and the N and C pools of two floodplain forests, three upland dry forests, and four pastures converted from dry forest. We also sampled belowground biomass and soil C and N pools in two sites of each land-cover type. The TAGB of floodplain forests was as high as 416 Mg ha–1, whereas the TAGB of the dry forest ranged from 94 to 126 Mg ha–1. The TAGB of pastures derived from dry forest ranged from 20 to 34 Mg ha–1. Dead wood (standing and downed combined) comprised 27%–29% of the TABG of dry forest but only about 10% in floodplain forest. Root biomass averaged 32.0 Mg ha–1 in floodplain forest, 17.1 Mg ha–1 in dry forest, and 5.8 Mg ha–1 in pasture. Although total root biomass was similar between sites within land-cover types, root distribution varied by depth and by size class. The highest proportion of root biomass occurred in the top 20 cm of soil in all sites. Total aboveground and root C pools, respectively, were 12 and 2.2 Mg ha–1 in pasture and reached 180 and 12.9 Mg ha–1 in floodplain forest. Total aboveground and root pools, respectively, were 149 and 47 kg ha–1 in pasture and reached 2623 and 264 kg ha–1 in floodplain forest. Soil organic C pools were greater in pastures than in dry forest, but soil N pools were similar when calculated for the same soil depths. Total ecosystem C pools were 306. The Mg ha–1 in floodplain forest, 141 Mg ha–1 in dry forest, and 124 Mg ha–1 in pasture. Soil C comprised 37%–90% of the total ecosystem C, whereas soil N comprised 85%–98% of the total. The N pools lack of a consistent decrease in soil pools caused by land-use change suggests that C and N losses result from the burning of aboveground biomass. We estimate that in México, dry forest landscapes store approximately 2.3 Pg C, which is about equal to the C stored by the evergreen forests of that country (approximately 2.4 Pg C). Potential C emissions to the atmosphere from the burning of biomass in the dry tropical landscapes of México may amount to 708 Tg C, as compared with 569 Tg C from evergreen forests.  相似文献   

14.
Montás Ramírez  L.  Claassen  N.  Amílcar Ubiera  A.  Werner  H.  Moawad  A.M. 《Plant and Soil》2002,239(2):197-206
During the period January–August 1996, an investigation was carried out in La Mata, Cotuí, Dominican Republic with the objective to study the effect of P, K and Zn fertilizers on Fe toxicity in the rice varieties JUMA-57 (sensitive to Fe toxicity), ISA-40 and PSQ-4 (both tolerant to Fe toxicity). The rate of fertilizer application was 22 and 62 kg P ha–1; 58 and 116 kg K ha–1; 3 and 7 kg Zn ha–1 and a constant dose of 140 kg N ha–1 and 40 kg S ha–1 on all fertilized plots. The control received no fertilizer. JUMA-57 was the only variety that showed symptoms of Fe toxicity. The observed symptoms showed a yellow to orange colour. Symptoms of Fe toxicity appeared first one week after transplanting (WAT), decreased at the fourth WAT, but returned six WAT and continued until the end of the experiment. Fertilizer application reduced symptom intensity and increased grain yield in all varieties, but only JUMA-57 did not reach the maximum yield typical for that variety. Fertilizer application did not completely overcome the toxicity effect, i.e. in symptom intensity and grain yield. The positive effect of fertilizer application could not be attributed to a specific nutrient. Intensity of symptoms was not related to Fe concentration in the leaves. The average Fe concentration of 108 mg kg–1 was not high enough to be considered toxic. Symptoms could not be explained through Mn toxicity (average Mn concentration in the leaves was 733 mg kg–1) nor Zn deficiency (average Zn concentration in the leaves was 20 mg kg–1). There was a clear relationship, though, between soil DTPA extractable Fe and symptom intensity or grain yield. The toxic effect was observed when the DTPA extractable Fe in the flooded soil was above 200 mg kg–1. From these results, we concluded that the Fe toxicity resulted from high Fe in the root zone and not from high Fe concentrations in the leaves.  相似文献   

15.
A pot and a lysimeter experiment were carried out to study the effects of inoculation of the roots of rice seedlings with R. capsulatus in combination with graded levels of nitrogen (N) fertilizer on growth and yield of the rice variety Giza 176. Inoculation increased all the measured growth parameters and yield attributes, but the statistically significant differences at all N levels tested were only those for plant dry weight, number of productive tillers, grain and straw yields. The absolute increases in grain yield of the pot experiment due to inoculation were 0.63, 0.93 and 1.22 ton ha–1 at 0, 47.6 and 95.2 kg N ha–1, respectively. The results suggest that inoculation along with 47.6 kg N ha–1 can save 50% of the nitrogen fertilizer needed for optimum G176 rice crop. However, inoculation along with 95.2 kg N ha–1 can increase grain yield by about 1.2 ton ha–1. This is probably the first reported evidence of a beneficial effect of phototrophic purple nonsulphur bacteria on rice growth and yield under flooded soil conditions.  相似文献   

16.
Nitrogen and phosphorus budgets were developed forfour sub-catchments in the Richmond River catchmentfor two study years. The catchment is used for avariety of farming pursuits including dairying, beef,cropping, fruit, nuts, forestry, and sugar cane. Eachsub-catchment varies in hydrology, the proportion ofeach land use, and the population density whichenabled a unique opportunity to study fluxes andstorage associated with a variety of environmentalfactors. Total loadings entering each sub-catchmentvaried from 12 to 57 kg ha–1yr–1 fornitrogen and 0.25 to 6.6 kg ha–1yr–1 forphosphorus with little inter-annual variation.Averaged across the whole catchment, nitrogen fixation(47%) dominated the inputs; fertiliser (26%) andrainfall (21%) made up the next largest inputs.Fertiliser inputs dominated the phosphorus budget(65.5%); rainfall and manures making up 13% and 12%respectively. Produce dominated the outputs of bothnitrogen and phosphorus from the four sub-catchmentsbeing greater than the riverine export. The deliveryof nitrogen to catchment streams ranged from <1 to24% of the total inputs and the delivery of phosphorus to catchment streams ranged from <1 to 39%. Storage of phosphorus in catchment soils varied between –0.32 and 4.46 kg ha–1yr–1. Whendenitrification and volatilisation were estimated using data from other studies, storage of nitrogen ranged from 1 to 24 kg ha–1yr–1. Despite theepisodic nature of runoff in the sub-tropical RichmondRiver catchment, the magnitude of nutrient fluxes andstorage appear similar to other catchments of theworld which have mixed land use and relatively lowcatchment nutrient loadings.  相似文献   

17.
Soil degradation is one of the most serious threats to sustainable crop production in many tropical agroecosystems where extensification rather than intensification of agriculture has occurred. In the highlands of western Kenya, we investigated soil nitrogen (N) and phosphorus (P) constraints to maize productivity across a cultivation chronosequence in which land‐use history ranged from recent conversion from primary forest to 100 years in continuous cropping. Nutrient treatments included a range of N and P fertilizer rates applied separately and in combination. Maize productivity without fertilizer was used as a proxy measure for indigenous soil fertility (ISF). Soil pools of mineral nitrogen, strongly bound P and plant‐available P decreased by 82%, 31% and 36%, and P adsorption capacity increased by 51% after 100 years of continuous cultivation. For the long rainy season (LR), grain yield without fertilizer declined rapidly as cultivation age increased from 0 to 25 years and then gradually declined to a yield of 1.6 Mg ha?1, which was maintained as time under cultivation increased from 60 to 100 years. LR grain yield in the old conversions was only 24% of the average young conversion grain yield (6.4 Mg ha?1). Application of either N or P alone significantly increased grain yield in both the LR and short rainy (SR) seasons, but only application of 120 kg N ha?1 on the old conversion increased yield by >1 Mg ha?1. In both SR and LR, there was a greater average yield increment response to N and P when applied together (ranging from 1 to 3.8 Mg ha?1 for the LR), with the greatest responses on the old conversions. The benefit–cost ratio (BCR) for applying 120 kg N ha?1 alone was <1 except on the old conversions, while BCRs were>1 for applying 25 kg P ha?1 alone at all levels of conversion for both seasons. Application of both N (120 kg N ha?1) and P (25 kg P ha?1) on the old conversions resulted in the greatest BCRs. This study clearly indicates that maize productivity responses to N and P fertilizer are significantly affected by the age of cultivation and its influence on ISF, but that loss of productivity can be restored rapidly when these limiting nutrients are applied. Management strategies should consider ISF and economic factors to determine optimal N and P input requirements for achieving and sustaining profitable crop production on degraded soils.  相似文献   

18.
Perennial grasses may provide a renewable source of biomass for energy production. Biomass yield, nutrient concentrations, and nutrient removal rates of switchgrass (Panicum virgatum L.), giant miscanthus (Miscanthus x giganteus), giant reed (Arundo donax L.), weeping lovegrass [Eragrostis curvula (Shrad.) Nees], kleingrass (Panicum coloratum L.), and Johnsongrass (Sorghum halepense (L.) Pers.) were evaluated at four N fertilizer rates (0, 56, 112, or 168?kg?N?ha?1) on a Minco fine sandy loam soil in southern Oklahoma. Species were established in 2008 and harvested for biomass in winter of 2009 and 2010. Biomass yield (dry matter basis) did not show a strong relationship with N fertilizer rate (p?=?0.08), but was affected by year and species interactions (p?<?0.01). Weeping lovegrass and kleingrass produced 29.0 and 16.0?Mg?ha?1 in 2009, but only 13.0?Mg?ha?1 and 9.8?Mg?ha?1 in 2010, respectively. Biomass yields of giant reed, switchgrass, and Johnsongrass averaged 23.3, 17.8, and 6.0?Mg?ha?1, respectively. Giant miscanthus established poorly, producing only 4.7?Mg?ha?1. Across years, giant reed had the highest biomass yield, 33.2?Mg?ha?1 at 168?kg?N?ha?1, and the highest nutrient concentrations and removal rates (162 to 228?kg?N?ha?1, 23 to 25?kg?P?ha?1, and 121 to 149?kg?K?ha?1) among the grasses. Although giant reed demonstrated tremendous biomass production, its higher nutrient removal rates indicate a potential for increased fertilization requirements over time. Switchgrass had consistently high biomass yields and relatively low nutrient removal rates (40 to 75?kg?N?ha?1, 5 to 12?kg?P?ha?1, and 44 to 110?kg?K?ha?1) across years, demonstrating its merits as a low-input bioenergy crop.  相似文献   

19.
To be sustainable, feedstock harvest must neither degrade soil, water, or air resources nor negatively impact productivity or subsequent crop yields. Simulation modeling will help guide the development of sustainable feedstock production practices, but not without field validation. This paper introduces field research being conducted in six states to support Sun Grant Regional Partnership modeling. Our objectives are to (1) provide a fundamental understanding of limiting factor(s) affecting corn (Zea mays L.) stover harvest, (2) develop tools (e.g., equations, models, etc.) that account for those factors, and (3) create a multivariant analysis framework to combine models for all limiting factors. Sun Grant modelers will use this information to improve regional estimates of feedstock availability. A minimum data set, including soil organic carbon (SOC), total N, pH, bulk density (BD), and soil‐test phosphorus (P), and potassium (K) concentrations, is being collected. Stover yield for three treatments (0%, 50%, and 90% removal) and concentrations of N, P, and K in the harvested stover are being quantified to assess the impact of stover harvest on soil resources. Grain yield at a moisture content of 155 g kg?1 averaged 9.71 Mg ha?1, matching the 2008 national average. Stover dry matter harvest rates ranged from 0 to 7 Mg ha?1. Harvesting stover increased N–P–K removal by an average of 42, 5, and 45 kg ha?1 compared with harvesting only grain. Replacing those three nutrients would cost $53.68 ha?1 based on 2009 fertilizer prices. This first‐year data and that collected in subsequent years is being used to develop a residue management tool that will ultimately link multiple feedstock supplies together in a landscape vision to help develop a comprehensive carbon management plan, quantify corn stover harvest effects on soil quality, and predict regional variability in feedstock supplies.  相似文献   

20.
Common bean (Phaseolus vulgaris L.) is able to fix 20–60 kg N ha–1 under tropical environments in Brazil, but these amounts are inadequate to meet the N requirement for economically attractive seed yields. When the plant is supplemented with N fertilizer, N2 fixation by Rhizobium can be suppressed even at low rates of N. Using the 15N enriched method, two field experiments were conducted to compare the effect of foliar and soil applications of N-urea on N2 fixation traits and seed yield. All treatments received a similar fertilization including 10 kg N ha–1 at sowing. Increasing rates of N (10, 30 and 50 kg N ha–1) were applied for both methods. Foliar application significantly enhanced nodulation, N2 fixation (acetylene reduction activity) and yield at low N level (10 kg N ha–1). Foliar nitrogen was less suppressive to nodulation, even at higher N levels, than soil N treatments. In the site where established Rhizobium was in low numbers, inoculation contributed substantially to increased N2 fixation traits and yield. Both foliar and soil methods inhibited nodulation at high N rates and did not significantly increase bean yield, when comparing low (10 kg N ha–1) and high (50 kg N ha–1) rates applied after emergence. In both experiments, up to 30 kg N ha–1 of biologically fixed N2 were obtained when low rates of N were applied onto the leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号