首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this investigation was to compare differences between one- and two-legged exercise on the lactate (LT) and ventilation (VT) threshold. On four separate occasions, eight male volunteer subjects (1-leg VO2max = 3.36 l X min-1; 2-leg VO2max = 4.27 l X min-1) performed 1- and 2-legged submaximal and maximal exercise. Submaximal threshold tests for 1- and 2-legs, began with a warm-up at 50 W and then increased every 3 minutes by 16 W and 50 W, respectively. Similar increments occurred every minute for the maximal tests. Venous blood samples were collected during the last 30 s of each work load, whereas noninvasive gas measures were calculated every 30 s. No differences in VO2 (l X min-1) were found between 1- and 2-legs at LT or VT, but significant differences (p less than 0.05) were recorded at a given power output. Lactate concentration ([LA]) was different (p less than 0.05) between 1- and 2-legs (2.52 vs. 1.97 mmol X l-1) at LT. This suggests it is VO2 rather than muscle mass which affects LT and VT. VO2max for 1-leg exercise was 79% of the 2-leg value. This implies the central circulation rather than the peripheral muscle is limiting to VO2max.  相似文献   

2.
VO2 VE, and heart rates (fH) were measured in 61 Colombian sugarcane cutters while harvesting cane in the AM and PM and in the laboratory during a VO2max test. Productivity and sweat rates were also measured in the field. The subjects had an estimated dietary intake of 2,970 kcal/day, which was lower than calculated daily energy expenditure. During the work measurements the VO2 was 1.5 1/min, VE 48 1/min, and fH 135 beats/min; there were no differences between AM and PM values. The subjects sustained about 35% of VO2max during the 8 h workday, but worked at 57% of VO2max during the tests. Measured energy cost was 7.4 +/- 1.5 kcal/min during the workday. Sweat rates were higher PM than AM (5 KG/8 h day). Grouping of the men according to productivity demonstrated that taller, heavier men were better producers and had lower calculated heart rates at VO2 1.51/min. Efficiency of cane cutting was higher (9%) PM.  相似文献   

3.
Ventilation threshold (VET) and peak O2 uptake (VO2max) were determined annually from ages 11 to 15 yr in 18 athletic boys. The treadmill protocol consisted of a constant-run speed with grade increments every second minute. Ventilation, VO2, and CO2 production were measured using online open-circuit spirometry. Coefficients of variation for determination of VO2max and VET were 3.4 and 5.6%, respectively. VO2max increased across age 11-15 yr, from 60.8 to 68.0 ml X kg-1 X min-1. VET at 11 yr was 34.4 and at 15 yr 41.9 ml X kg-1 X min-1, thus increasing from 56 to 62% of VO2max. Previous studies of children have shown a decline of VET relative to VO2max across age; however, in the present study the increase may have been due to the training of the boys in competitive athletics. However, the trained youth did not achieve the high relative threshold of trained adults. Across age, both VO2max and VET scaled to weight to the power 1 (in a log-log transformation). The increase in VO2max (l/min) showed greatest increments corresponding to gains in size (a growth curve), whereas increases of VET were consistent year to year. Thus VET was altered independently of VO2max. Factors other than size (and presumably muscle mass) such as the maturation of an enzymatic profile of fast glycolytic fibers might have an important influence on the threshold during youth.  相似文献   

4.
There are conflicting reports in the literature which imply that the decrement in maximal aerobic power experienced by a sea-level (SL) resident sojourning at high altitude (HA) is either smaller or larger for the more aerobically "fit" person. In the present study, data collected during several investigations conducted at an altitude of 4300 m were analyzed to determine if the level of aerobic fitness influenced the decrement in maximal oxygen uptake (VO2max) at HA. The VO2max of 51 male SL residents was measured at an altitude of 50 m and again at 4300 m. The subjects' ages, heights, and weights (mean +/- SE) were 22 +/- 1 yr, 177 +/- 7 cm and 78 +/- 2 kg, respectively. The subjects' VO2max ranged from 36 to 60 ml X kg -1 X min -1 (mean +/- SE = 48 +/- 1) and the individual values were normally distributed within this range. Likewise, the decrement in VO2max at HA was normally distributed from 3 ml X kg-1 X min-1 (9% VO2max at SL) to 29 ml X kg-1 X min-1 (54% VO2max at SL), and averaged 13 +/- 1 ml X kg-1 X min-1 (27 +/- 1% VO2max at SL). The linear correlation coefficient between aerobic fitness and the magnitude of the decrement in VO2max at HA expressed in absolute terms was r = 0.56, or expressed as % VO2max at SL was r = 0.30; both were statistically significant (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The adaptation of muscle structure, power output, and mass-specific rate of maximal O2 consumption (VO2max/Mb) with endurance training on bicycle ergometers was studied for five male and five female subjects. Biopsies of vastus lateralis muscle and VO2max determinations were made at the start and end of 6 wk of training. The power output maintained on the ergometer daily for 30 min was adjusted to achieve a heart rate exceeding 85% of the maximum for two-thirds of the training session. It is proposed that the observed preferential proliferation of subsarcolemmal vs. interfibrillar mitochondria and the increase in intracellular lipid deposits are two possible mechanisms by which muscle cells adapt to an increased use of fat as a fuel. The relative increase of VO2max/Mb (14%) with training was found to be smaller by more than twofold than the relative increase in maximal maintained power (33%) and the relative change in the volume density of total mitochondria (+40%). However, the calculated VO2 required at an efficiency of 0.25 to produce the observed mass-specific increase in maximal maintained power matched the actual increase in VO2max/Mb (8.0 and 6.5 ml O2 X min-1 X kg-1, respectively). These results indicate that despite disparate relative changes the absolute change in aerobic capacity at the local level (maintained power) can account for the increase in aerobic capacity observed at the general level (VO2max).  相似文献   

6.
Six trained male cyclists and six untrained sedentary men were studied to determine whether the plasma lactate threshold (PLT) and ventilation threshold (VT) occur at the same work rate in both fit and unfit populations. The PLT was determined from a marked increase in plasma lactate concentration ([La]) and VT from a nonlinear increase in expired minute ventilation (VE) during incremental leg-cycling tests; work rate was increased 30 W every 2 min until volitional exhaustion. The trained subjects' mean VO2 max (63.8 ml O2 X kg-1 X min-1) and VT (65.8% VO2 max) were significantly higher (P less than 0.05) than the untrained subjects' mean VO2max (35.5 ml O2 X kg-1 X min-1) and VT (51.4% VO2 max). The trained subjects' mean PLT (68.8% VO2 max) and VT did not differ significantly, but the untrained subjects' mean PLT (61.6% VO2 max) was significantly higher than their VT. The trained subjects' mean peak [La] (10.5 mmol X l-1) did not differ significantly from the untrained subjects' mean peak [La] (11.5 mmol X l-1). However, the time of appearance of the peak [La] during passive recovery was inversely related to VO2 max. These results suggest that variance in lactate diffusion and/or removal processes between the trained and untrained subjects may account in part for the different relationships between the VT and PLT in each population.  相似文献   

7.
Six trained male cyclists and six untrained but physically active men participated in this study to test the hypothesis that the use of percentage maximal oxygen consumption (%VO2max) as a normalising independent variable is valid despite significant differences in the absolute VO2max of trained and untrained subjects. The subjects underwent an exercise test to exhaustion on a cycle ergometer to determine VO2max and lactate threshold. The subjects were grouped as trained (T) if their VO2max exceeded 60 ml.kg-1.min-1, and untrained (UT) if their VO2max was less than 50 ml.kg-1.min-1. The subjects were required to exercise on the ergometer for up to 40 min at power outputs that corresponded to approximately 50% and 70% VO2max. The allocation of each exercise session (50% or 70% VO2max) was random and each session was separated by at least 5 days. During these tests venous blood was taken 10 min before exercise (- 10 min), just prior to the commencement of exercise (0 min), after 20 min of exercise (20 min), at the end of exercise and 10 min postexercise (+ 10 min) and analysed for concentrations of cortisol, [Na+], [K+], [Cl-], glucose, free fatty acid, lactate [la-], [NH3], haemoglobin [Hb] and for packed cell volume. The oxygen consumption (VO2) and related variables were measured at two time intervals (14-15 and 34-35 min) during the prolonged exercise tests. Rectal temperature was measured throughout both exercise sessions. There was a significant interaction effect between the level of training and exercise time at 50% VO2max for heart rate (fc) and venous [la-].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Native and cryptic Met-enkephalin and catecholamines are coreleased in response to stress. However, it is not known whether Met-enkephalin and catecholamines exhibit concurrent temporal relationships in response to exercise. The purpose of this investigation was to examine the corelease of catecholamines and Met-enkephalin in endurance-trained (n = 6) and untrained (n = 6) male subjects during a 6-min bout of exercise: 4 min at 70% of maximal O2 uptake (VO2max) followed by 2 min at 120% VO2max. Peak catecholamine levels were found at 1 min of recovery. In trained subjects, native Met-enkephalin peaked during exercise at 70% VO2max, declined during exercise at 120% VO2max, and returned to basal levels by 1 min of recovery. In the untrained subjects, native Met-enkephalin peaked at 120% VO2max (6 min) and returned to baseline by 5 min of recovery. In both groups, cryptic Met-enkephalin peaked at 70% VO2max and returned to basal levels during exercise at 120% VO2max. These data demonstrate that during exercise there is a temporal dissociation in plasma levels of Met-enkephalin and catecholamines.  相似文献   

9.
Slow upward drift of VO2 during constant-load cycling in untrained subjects   总被引:2,自引:0,他引:2  
The oxygen uptake kinetics during constant-load exercise when sitting on a bicycle ergometer were determined in 7 untrained subjects by measuring breath-by-breath VO2 during continuous exercise to volitional exhaustion (mean endurance time = 1160 +/- 172 s) at a pedal frequency of 70 revolutions.min-1. The power output, averaging 189.5 W, was set at 82.5% of that eliciting the individual VO2max during a 5 min incremental exercise test. Throughout the exercise period, the VO2 kinetics could be appropriately described by a two-component exponential equation of the form: VO2(t) = Ya[1 - exp(-kat)] + Yb[1 - exp(-kbt)] where VO2 is net oxygen consumption and t the time from work onset. VO2 measured at the end of exercise was close to VO2max (98% VO2max) and the mean values of Ya, ka, Yb and kb amounted to 1195 ml O2.min-1, 0.034 s-1, 1562 ml O2.min-1, and 0.005 s-1 respectively. The initial rate of increase in VO2 predicted from the above equation is slower than that calculated, for the same work intensity, on the basis of the data obtained by Morton (1985) in trained subjects. For t greater than 480 s, however, the two models yield substantially equal results.  相似文献   

10.
The response of runners to arduous triathlon competition   总被引:1,自引:0,他引:1  
As very few of the competitors in a triathlon are truly specialist in more than one of the three disciplines, high levels of physical (and mental) stress may result during the course of the event. We investigated some of the physiological responses occurring in runners participating in an "Iron Man" triathlon consisting of canoeing (20 km), cycling (90 km) and running (42 km), in that sequence. Twenty-one male entrants volunteered as subjects for the study. Prior to the competition, maximal oxygen consumption (VO2max) was determined. Basal venous blood samples were collected on the day prior to the competition and post-exercise venous blood samples were collected within 5 minutes of completion of the race. Serum iron was significantly reduced from a mean basal value of 20.6 mumol X l-1 to a mean value of 8.4 mumol X l-1 after the race. Cortisol levels showed a 3 fold increase after the race. Gross VO2max (l X min-1) and mass standardised VO2max (ml X min-1 X kg-1) were both negatively correlated to cortisol levels after the race (p less than 0.05). Total performance time was not related to gross VO2max (l X min-1) but was well correlated to mass corrected VO2max (ml X min-1 X kg-1). The marked fall in serum iron may have been related to heavy sweating or prelatent iron deficiency. Chronic iron deficiency (without frank anaemia) can impair physical performance, although we were unable to show any significant correlation between serum iron level after the race and time taken to complete the event.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Nasal airflow resistances were studied in 20 healthy subjects at rest, with exercise, and during recovery from exercise. Resistances were first measured under resting conditions. As a basis for comparison 0.1% xylometazoline was applied by insufflation; it reduced nasal resistance by an average of 49%. On a subsequent occasion, the degree and time course of changes in resistance were measured 1) during 5-min exercise bouts at rest 25, 50, and 75% of predicted maximum O2 intake (VO2max), 2) during 5-, 10-, and 15-min exercise bouts at 50% of VO2max, and 3) during recovery from exercise. Resistance decreased with intensity but not duration of exercise; an initial sudden decrease was followed by a more gradual but progressive decrease, which continued for several minutes following vigorous short duration exercise. Thus following 5 min of effort at 75% of VO2max, resistance reached a nadir (46% fall) 5 min after cessation of exercise. Recovery of preexercise values required 5 min after 5 min of exercise at 25% of VO2max and 10 min after 5 min of exercise at 50% of VO2max. Some decrease persisted 15 min after 5 min of exercise at 75% of VO2max.  相似文献   

12.
Dynamic exercise training of the elderly increases maximal O2 uptake (VO2max); however, the effects of training on the ventilation threshold (VET) have not been studied. VET was identified as the final point before the ventilatory equivalent for O2 (VE/VO2) increased, without an increase in the ventilatory equivalent for CO2 (VE/VCO2). Inactive elderly males (mean age, 62 yr) were randomly assigned to a control (C, n = 44) or activity (A, n = 45) group. VO2max and VET were determined from an incremental treadmill test. Initial VO2max was not different between the C (2.34 +/- 0.42 l X min-1) and A (2.28 +/- 0.44 l X min-1) groups, nor was there a significant difference in the VO2 at the VET (C = 1.39 +/- 0.26 l X min-1; A = 1.31 +/- 0.23 l X min-1). The activity group trained for 30 min/day, 3 days/wk at an intensity of approximately 65-80% of VO2max. After 1 yr of training the activity group exhibited an 18% increase in VO2max (A = 2.70 +/- 0.54 l X min-1), but the change in VET was not significant (A = 1.39 +/- 0.28 l X min-1). There was no significant change in VO2max (C = 2.45 +/- 0.68 l X min-1) or VET (C = 1.38 +/- 0.31 l X min-1) in the control group. VET/VO2max declined significantly in the activity group (from 58 to 52% of VO2max). Change in VET/VO2max with training was not correlated with the initial VO2max value. We conclude that increases in aerobic capacity are more readily effected than alterations of the VET in elderly subjects.  相似文献   

13.
The purpose of this study was to investigate the physical activity levels in eleven 9-10 year old boys with reference to aerobic power or lactate threshold (LT). Daily physical activity levels were evaluated from a HR monitoring system for 12 h on three different days. VO2max, VO2-HR relationship and LT were determined by the progressive treadmill test. LT was 36.7 +/- 3.1 ml X kg-1 X min-1 and 71.0 +/- 6.6% VO2max. Mean total time of activities with HR above the level corresponding to 60% VO2max (T-60%) and that above LT (T-LT) were 34 +/- 7 and 18 +/- 7 min, respectively. VO2max (ml X kg-1 X min-1) correlated significantly with T-60% (p less than 0.01), while no significant relationship was found with LT in ml X kg-1 X min-1. In conclusion, longer daily physical activities at moderate to higher intensity for preadolescent children seem to increase VO2max rather than LT.  相似文献   

14.
The improved glucose tolerance and increased insulin sensitivity associated with regular exercise appear to be the result, in large part, of the residual effects of the last bout of exercise. To determine the effects of exercise intensity on this response, glucose tolerance and the insulin response to a glucose load were determined in seven well-trained male subjects [maximal O2 uptake (VO2max) = 58 ml.kg-1.min-1] and in seven nontrained male subjects (VO2max = 49 ml.kg-1.min-1) in the morning after an overnight fast 1) 40 h after the last training session (control), 2) 14 h after 40 min of exercise on a cycle ergometer at 40% VO2max, and 3) 14 h after 40 min of exercise at 80% VO2max. Subjects replicated their diets for 3 days before each test and ate a standard meal the evening before the oral glucose tolerance test. No differences in the 3-h insulin or glucose response were observed between the control trial and before exercise at either 40 or 80% VO2max in the trained subjects. In the nontrained subjects the plasma insulin response was decreased by 40% after a single bout of exercise at either 40 or 80% VO2max (7.0 X 10(3) vs. 5.0 X 10(3), P less than 0.05; 3.8 X 10(3) microU.ml-1.180 min-1, P less than 0.01). The insulin response after a single bout of exercise in the nontrained subjects was comparable with the insulin responses found in the trained subjects for the control and exercise trials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The purpose of this study was to determine the effect of training on the rating of perceived exertion (RPE) at the ventilatory threshold. College students were assigned to either training (n = 17) or control (n = 10) groups. Trainers completed 18 interval training sessions (five X 5 min cycling at 90-100% VO2max) and 8 continuous training sessions (40 min running or cycling) in 6 weeks. Pre- and post-training, cardiorespiratory, metabolic, and perceptual variables were measured at the ventilatory threshold during graded exercise tests on a cycle ergometer. Ventilatory threshold was that point above which VE X VO2-1 increased abruptly relative to work rate. Post-training means of trained and control subjects were compared using analysis of covariance, with pre-training values as covariates. Following training, the adjusted means for the trained subjects were significantly greater (p less than 0.05) than for controls for VO2max (6%), and for work rate (20%), VO2 (23%), and %VO2max (13%) at the ventilatory threshold. However, adjusted means for RPE at the ventilatory threshold were not significantly different (2%). Both before and after training, exercise at the ventilatory threshold was perceived as 'somewhat hard' to 'hard' (RPE = 13-15) by both groups. The relationship between RPE and %VO2max was altered by training, with trained subjects having a lower RPE at a given %VO2max. It is concluded that RPE at the ventilatory threshold is not affected by training, despite that after training the ventilatory threshold occurs at a higher work rate and is associated with higher absolute and relative metabolic and cardiorespiratory demands.  相似文献   

16.
The effects of beta-blockade on tidal volume (VT), breath cycle timing, and respiratory drive were evaluated in 14 endurance-trained [maximum O2 uptake (VO2max) approximately 65 ml X kg-1 X min-1] and 14 untrained (VO2max approximately 50 ml X kg-1 X min-1) male subjects at 45, 60, and 75% of unblocked VO2max and at VO2max. Propranolol (PROP, 80 mg twice daily), atenolol (ATEN, 100 mg once a day) and placebo (PLAC) were administered in a randomized double-blind design. In both subject groups both drugs attenuated the increases in VT associated with increasing work rate. CO2 production (VCO2) was not changed by either drug during submaximal exercise but was reduced in both subject groups by both drugs during maximal exercise. The relationship between minute ventilation (VE) and VCO2 was unaltered by either drug in both subject groups due to increases in breathing frequency. In trained subjects VT was reduced during maximal exercise from 2.58 l/breath on PLAC to 2.21 l/breath on PROP and to 2.44 l/breath on ATEN. In untrained subjects VT at maximal exercise was reduced from 2.30 l/breath on PLAC to 1.99 on PROP and 2.12 on ATEN. These observations indicate that 1) since VE vs. VCO2 was not altered by beta-adrenergic blockade, the changes in VT and f did not result from a general blunting of the ventilatory response to exercise during beta-adrenergic blockade; and 2) blockade of beta 1- and beta 2-receptors with PROP caused larger reductions in VT compared with blockade of beta 1-receptors only (ATEN), suggesting that beta 2-mediated bronchodilation plays a role in the VT response to heavy exercise.  相似文献   

17.
The energy cost of kayaking per unit distance (C(k), kJ x m(-1)) was assessed in eight middle- to high-class athletes (three males and five females; 45-76 kg body mass; 1.50-1.88 m height; 15-32 years of age) at submaximal and maximal speeds. At submaximal speeds, C(k) was measured by dividing the steady-state oxygen consumption (VO(2), l x s(-1)) by the speed (v, m x s(-1)), assuming an energy equivalent of 20.9 kJ x l O(-1)(2). At maximal speeds, C(k) was calculated from the ratio of the total metabolic energy expenditure (E, kJ) to the distance (d, m). E was assumed to be the sum of three terms, as originally proposed by Wilkie (1980): E = AnS + alphaVO(2max) x t-alphaVO(2max) x tau(1-e(-t x tau(-1))), were alpha is the energy equivalent of O(2) (20.9 kJ x l O(2)(-1)), tau is the time constant with which VO(2max) is attained at the onset of exercise at the muscular level, AnS is the amount of energy derived from anaerobic energy utilization, t is the performance time, and VO(2max) is the net maximal VO(2). Individual VO(2max) was obtained from the VO(2) measured during the last minute of the 1000-m or 2000-m maximal run. The average metabolic power output (E, kW) amounted to 141% and 102% of the individual maximal aerobic power (VO(2max)) from the shortest (250 m) to the longest (2000 m) distance, respectively. The average (SD) power provided by oxidative processes increased with the distance covered [from 0.64 (0.14) kW at 250 m to 1.02 (0.31) kW at 2000 m], whereas that provided by anaerobic sources showed the opposite trend. The net C(k) was a continuous power function of the speed over the entire range of velocities from 2.88 to 4.45 m x s(-1): C(k) = 0.02 x v(2.26) (r = 0.937, n = 32).  相似文献   

18.
Ten men and 11 women were studied to determine the effect of experimentally equating haemoglobin concentration ([Hb]) on the sex difference in maximal oxygen uptake (VO2max). VO2max was measured on a cycle ergometer using a continuous, load-incremented protocol. The men were studied under two conditions: 1) with normal [Hb] (153 g X L-1) and 2) two days following withdrawal of blood, which reduced their mean [Hb] to exactly equal the mean of the women (134 g X L-1). Prior to blood withdrawal, VO2max expressed in L X min-1 and relative to body weight and ride time on the cycle ergometer test were greater (p less than .01) in men by 1.11 L X min-1 (47%), 4.8 ml X kg-1 min-1 (11.5%) and 5.9 min (67%), respectively, whereas VO2max expressed relative to fat-free weight (FFW) was not significantly different. Equalizing [Hb] reduced (p less than .01) the mean VO2max of the men by 0.26 L X min-1 (7.5%), 3.2 ml X kg-1 min-1 (6.9%) or 4.1 ml X kg FFW-1 min-1 (7.7%), and ride time by 0.7 min (4.8%). Equalizing [Hb] reduced the sex difference for VO2max less than predicted from proportional changes in the oxygen content of the arterial blood and arteriovenous oxygen content difference during maximal exercise. It was concluded that the sex difference in [Hb] accounts for a significant, but relatively small portion of the sex difference in VO2max (L X min-1). Other factors such as the dimensions of the oxygen transport system and musculature are of greater importance.  相似文献   

19.
Margaria's equation (1976)--describing the relationship between the minimum time necessary to cover a distance equal or longer than 1,000 m (record-time TR) and the maximal oxygen consumption (VO2 max)--has been modified in order to be applied to the calculation of TR in the 800 m foot race. Fifteen subjects participated in this study (VO2 max = 63 +/- 3.5 ml O2 X kg-1 X min-1, measured TR = 131 +/- 10 seconds). It has been found the TR calculated from Margaria's equation (TRc) are underestimated (TRc = 104 +/- 10 seconds). By taking into account the actual energy cost of running (0.19 ml O2 X kg-1 X m-1) and the kinetics of VO2 at the onset of exercise, TRc averaged 133 +/- 8.5 seconds. Moreover, the relationship between TRc and measured TR (TRm) is highly significant (TRc = 50.4 + 0.65 TRm; r = 0.75; P less than 0.01). These results validate Margaria's equation modifications.  相似文献   

20.
This study was designed to examine the interrelationships between performance in endurance running events from 10 to 90 km, training volume 3-5 weeks prior to competition, and the fractional utilization of maximal aerobic capacity (%VO2max) during each of the events. Thirty male subjects underwent horizontal treadmill testing to determine their VO2max, and steady-state VO2 at specific speeds to allow for calculation of %VO2max sustained during competition. Runners were divided into groups of ten according to their weekly training distance (group A trained less than 60 km X week-1, group B 60 to 100 km X week-1, and group C more than 100 km X week-1). Runners training more than 100 km X week-1 had significantly faster running times (average 19.2%) in all events than did those training less than 100 km X week-1. VO2max or %VO2max sustained during competition was not different between groups. The faster running speed of the more trained runners, running at the same %VO2max during competition, was due to their superior running economy (19.9%). Thus all of the group differences in running performance could be explained on the basis of their differences in running economy. These findings suggest either that the main effect of training more than 100 km X week-1 may be to increase running economy, or that runners who train more than 100 km X week-1 may have inherited superior running economy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号