首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
突触可塑性是学习记忆的基础,其分子机制是理解记忆形成和维持的关键,也为神经退行性疾病的预防与治疗提供了新靶点。肌球蛋白超家族广泛存在于人体各种组织细胞中,主要分为常规肌球蛋白和非常规肌球蛋白。越来越多的研究发现,非常规肌球蛋白参与了许多重要的生命活动,尤其是在神经系统对突触可塑性的调节中,起到了十分重要的作用。  相似文献   

2.
This review focuses on recent advances in the understanding of the organization and roles of actin filaments, and associated myosin motor proteins, in regulating the structure and function of the axon shaft. ‘Patches’ of actin filaments have emerged as a major type of actin filament organization in axons. In the distal axon, patches function as precursors to the formation of filopodia and branches. At the axon initial segment, patches locally capture membranous organelles and contribute to polarized trafficking. The trapping function of patches at the initial segment can be ascribed to interactions with myosin motors, and likely also applies to patches in the more distal axon. Finally, submembranous rings of actin filaments were recently described in axons, which form an actin‐spectrin cytoskeleton, likely contributing to the maintenance of axon integrity. Continued investigation into the roles of axonal actin filaments and myosins will shed light on fundamental aspects of the development, adult function and the repair of axons in the nervous system.

  相似文献   


3.
During development, neurons extend projections that pathfind to reach their appropriate targets. These projections are composed of two distinct domains: a highly dynamic growth cone and a stable neurite shaft, which is considered to be consolidated. Although the regulation of these domains is critical to the appropriate formation of neural networks, the molecular mechanisms that regulate neurite shape remain poorly understood. Here, we show that calpain protease activity localizes to the neurite shaft, where it is essential for the repression of protrusive activity by limiting cortactin levels and inhibiting actin polymerization. Correspondingly, inhibition of calpain by branching factors induces the formation of new growth cones along the neurite shaft through cAMP elevation. These findings demonstrate that neurite consolidation is an active process requiring constant repression of protrusive activity. We also show that sprouting is, at least in part, accomplished by turning off the mechanism of consolidation.  相似文献   

4.
During development, dynamic changes in the axonal growth cone and dendrite are necessary for exploratory movements underlying initial axo‐dendritic contact and ultimately the formation of a functional synapse. In the adult central nervous system, an impressive degree of plasticity is retained through morphological and molecular rearrangements in the pre‐ and post‐synaptic compartments that underlie the strengthening or weakening of synaptic pathways. Plasticity is regulated by the interplay of permissive and inhibitory extracellular cues, which signal through receptors at the synapse to regulate the closure of critical periods of developmental plasticity as well as by acute changes in plasticity in response to experience and activity in the adult. The molecular underpinnings of synaptic plasticity are actively studied and it is clear that the cytoskeleton is a key substrate for many cues that affect plasticity. Many of the cues that restrict synaptic plasticity exhibit residual activity in the injured adult CNS and restrict regenerative growth by targeting the cytoskeleton. Here, we review some of the latest insights into how cytoskeletal remodeling affects neuronal plasticity and discuss how the cytoskeleton is being targeted in an effort to promote plasticity and repair following traumatic injury in the central nervous system.  相似文献   

5.
6.
Drebrin is a well-known side-binding protein of F-actin in the brain. Immunohistochemical data suggest that the peripheral parts of growing axons are enriched in the drebrin E isoform and mature axons are not. It has also been observed that drebrin E is concentrated in the growth cones of PC12 cells. These data strongly suggest that drebrin E plays a role in axonal growth during development. In this study, we used primary hippocampal neuronal cultures to analyze the role of drebrin E. Immunocytochemistry showed that within axonal growth cones drebrin E specifically localized to the transitional zone, an area in which dense networks of F-actins and microtubules overlapped. Over-expression of drebrin E caused drebrin E and F-actin to accumulate throughout the growth cone and facilitated axonal growth. In contrast, knockdown of drebrin E reduced drebrin E and F-actin in the growth cone and prevented axonal growth. Furthermore, inhibition of myosin II ATPase masked the promoting effects of drebrin E over-expression on axonal growth. These results suggest that drebrin E plays a role in axonal growth through actin–myosin interactions in the transitional zone of axonal growth cones.  相似文献   

7.
8.
Although myelin-associated neurite outgrowth inhibitors express their effects through RhoA/Rho-kinase, the downstream targets of Rho-kinase remain unknown. We examined the involvement of myosin II, which is one of the downstream targets of Rho-kinase, by using blebbistatin – a specific myosin II inhibitor – and small interfering RNA targeting two myosin II isoforms, namely, MIIA and MIIB. We found that neurite outgrowth inhibition by repulsive guidance molecule (RGMa) was mediated via myosin II, particularly MIIA, in cerebellar granule neurons. RGMa induced myosin light chain (MLC) phosphorylation by a Rho-kinase-dependent mechanism. After spinal cord injury in rats, phosphorylated MLC in axons around the lesion site was up-regulated, and this effect depends on Rho-kinase activity. Further, RGMa-induced F-actin reduction in growth cones and growth cone collapse were mediated by MIIA. We conclude that Rho-kinase-dependent activation of MIIA via MLC phosphorylation induces F-actin reduction and growth cone collapse and the subsequent neurite retraction/outgrowth inhibition triggered by RGMa.  相似文献   

9.
《Current biology : CB》2019,29(22):3874-3886.e9
  1. Download : Download high-res image (203KB)
  2. Download : Download full-size image
  相似文献   

10.
Retinotopic maps can undergo compression and expansion in response to changes in target size, but the mechanism underlying this compensatory process has remained a mystery. The discovery of ephrins as molecular mediators of Sperry's chemoaffinity process allows a mechanistic approach to this important issue. In Syrian hamsters, neonatal, partial (PT) ablation of posterior superior colliculus (SC) leads to compression of the retinotopic map, independent of neural activity. Graded, repulsive EphA receptor/ephrin‐A ligand interactions direct the formation of the retinocollicular map, but whether ephrins might also be involved in map compression is unknown. To examine whether map compression might be directed by changes in the ephrin expression pattern, we compared ephrin‐A2 and ephrin‐A5 mRNA expression between normal SC and PT SC using in situ hybridization and quantitative real‐time PCR. We found that ephrin‐A ligand expression in the compressed maps was low anteriorly and high posteriorly, as in normal animals. Consistent with our hypothesis, the steepness of the ephrin gradient increased in the lesioned colliculi. Interestingly, overall levels of ephrin‐A2 and ‐A5 expression declined immediately after neonatal target damage, perhaps promoting axon outgrowth. These data establish a correlation between changes in ephrin‐A gradients and map compression, and suggest that ephrin‐A expression gradients may be regulated by target size. This in turn could lead to compression of the retinocollicular map onto the reduced target. These findings have important implications for mechanisms of recovery from traumatic brain injury. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

11.
RNA trafficking in axons   总被引:1,自引:0,他引:1  
A substantial number of studies over a period of four decades have indicated that axons contain mRNAs and ribosomes, and are metabolically active in synthesizing proteins locally. For the most part, little attention has been paid to these findings until recently when the concept of targeting of specific mRNAs and translation in subcellular domains in polarized cells emerged to contribute to the likelihood and acceptance of mRNA targeting to axons as well. Trans-acting factor proteins bind to cis-acting sequences in the untranslated region of mRNAs integrated in ribonucleoprotein (RNPs) complexes determine its targeting in neurons. In vitro studies in immature axons have shown that molecular motors proteins (kinesins and myosins) associate to RNPs suggesting they would participate in its transport to growth cones. Tau and actin mRNAs are transported as RNPs, and targeted to axons as well as ribosomes. Periaxoplasmic ribosomal plaques (PARPs), which are systematically distributed discrete peripheral ribosome-containing, actin-rich formations in myelinated axons, also are enriched with actin and myosin Va mRNAs and additional regulatory proteins. The localization of mRNAs in PARPs probably means that PARPs are local centers of translational activity, and that these domains are the final destination in the axon compartment for targeted macromolecular traffic originating in the cell body. The role of glial cells as a potentially complementary source of axonal mRNAs and ribosomes is discussed in light of early reports and recent ultrastructural observations related to the possibility of glial-axon trans-endocytosis.  相似文献   

12.
Neurons are highly polarized cells with axonal and somatodendritic membrane surfaces that spatially separate signal-sending from signal-receiving membrane domains. As found in many other cell types, different populations of endosomes are involved in the sorting of synaptic and other membrane cargo in neurons. The exact source of the membrane for neurite extension and process remodelling during neuronal differentiation has remained uncertain, and we do not know exactly how polarized sorting of neuronal membrane proteins is achieved. In the present article, we will provide a brief overview of endosomes and their putative or proven functions in fibroblasts, epithelial cells and neurons. On the basis of insights from non-neuronal cell types and recent studies on the function of recycling endosomes during synaptic plasticity-induced membrane remodelling, we postulate a speculative model regarding the role of recycling endosomes in neuronal differentiation.  相似文献   

13.
Axons of monopolar cell interneurons L1 and L2 in the first optic lobe (lamina) of the fly Musca domestica undergo cyclical changes in diameter. These axons swell during the day and shrink during the night. In addition, the axons' size depends on light conditions since they are largest in continuous light (LL), somewhat smaller under day/night (LD) conditions, and smallest under constant darkness (DD). In this study we found that sizes of both cells can further increase in free flying flies under LD conditions, while the visual stimulation alone does not have significant effect on the cross-sectional area of L1 and L2 axons. The stimulation of free flying had no effect on L1 and L2 sizes if it was performed at the beginning of subjective day in LL or DD. Our results indicate that a maximal increase in size of L1 and L2 is observed when stimulation of free flying is synchronized with a fly' daily peak of activity. We also found that protein synthesis is needed to increase size of monopolar cell axons during the day when they normally swell.  相似文献   

14.
N-Methyl-d-aspartate receptor (NMDAR) synaptic incorporation changes the number of NMDARs at synapses and is thus critical to various NMDAR-dependent brain functions. To date, the molecules involved in NMDAR trafficking and the underlying mechanisms are poorly understood. Here, we report that myosin IIb is an essential molecule in NMDAR synaptic incorporation during PKC- or θ burst stimulation-induced synaptic plasticity. Moreover, we demonstrate that myosin light chain kinase (MLCK)-dependent actin reorganization contributes to NMDAR trafficking. The findings from additional mutual occlusion experiments demonstrate that PKC and MLCK share a common signaling pathway in NMDAR-mediated synaptic regulation. Because myosin IIb is the primary substrate of MLCK and can regulate actin dynamics during synaptic plasticity, we propose that the MLCK- and myosin IIb-dependent regulation of actin dynamics is required for NMDAR trafficking during synaptic plasticity. This study provides important insights into a mechanical framework for understanding NMDAR trafficking associated with synaptic plasticity.  相似文献   

15.
《Neuron》2021,109(21):3436-3455.e9
  1. Download : Download high-res image (205KB)
  2. Download : Download full-size image
  相似文献   

16.
17.
18.
Purification and Characterization of Myosin from Calf Brain   总被引:4,自引:1,他引:3  
Actomyosin complex was extracted from the brain cortex in a medium consisting of low salt, ATP, and EDTA, in the presence of protease inhibitors, followed by ammonium sulfate fractionation. Myosin was then purified from the actomyosin. Myosin obtained according to the procedure used was significantly contaminated with actin high (greater than 200,000 dalton) and low molecular weight proteins. Therefore, an alternative method based on affinity chromatography (Blue Dextran/Sepharose) and gel filtration (Sepharose 4B) was developed to purify myosin. This procedure yielded myosin that was greater than 95% pure as judged by electron microscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The subunit composition of purified brain myosin was monitored by sodium dodecyl sulfate-polyacrylamide gel also containing a urea gradient. A closely migrating triplet in the heavy chain and three light chains, LC1, LC2, and LC3, of Mr 21,000, 19,000, and 17,000, respectively, were observed. These findings raise the possibility of the existence of myosin isoenzymes in the brain. Brain myosin formed bipolar thick filaments in 0.075 M KCl and MgCl2. At low ionic strength, the Mg2+-ATPase activity of myosin was stimulated 3- to 3.5-fold in the presence of skeletal muscle f-actin. Brain myosin also hydrolyzed other nucleotides; the rate of hydrolysis was ITP greater than ATP approximately equal to CTP greater than GTP approximately equal to UTP. The substrate (ATP) saturation curve in the presence of 10 mM CaCl2 and 0.6 M KCl was complex and consisted of plateau regions. The Arrhenius plot of the Ca-ATPase data was linear, whereas with ITPase, it was biphasic with a break occurring around 20 degrees C.  相似文献   

19.
Summary Subfragment-1 of rabbit atrial and thyrotoxic ventricular myosin (V1 isomyosin) has been prepared and purified by DEAF-cellulose column chromatography. Pyrophosphate-polyacrylamide gel electrophoretic patterns and column chromatographic profile of the atrial subfragment differ from those of thyrotoxic ventricular myosin subfragment-1. On the other hand, Ca2+, Mg2+ and actin-activated ATPase activities of these subfragments are identical. Comparison of the peptide mapping by limited proteolysis in the presence of sodium dodecyl sulfate of the heavy and the light subunits of these subfragments reveals that the patterns for the heavy chain peptides of these subfragments are substantially similar but their light chain peptide patterns differ. The results suggest that the enzymatic and structural similarities that have been recognized between these isoenzymes using intact myosin hold true for the myosin subfragment-1.The differences between these subfragments are due to the differences in the light chains associated with them.Abbreviations EDTA Ethylene Diamine Tetra-acetic Acid - SDS Sodium Dodecyl Sulfate - S1 myosin subfragment-1 - HC Heavy Chain - LC Light Chain  相似文献   

20.
The backbone of the myosin filament is an aggregate of alpha-helical coiled coil myosin rods. Its surface forms a three-stranded helix composed of myosin heads. Currently there is no adequate model to describe the organization of the myosin filament. It is proposed here that, in cross-section the light meromyosin (LMM) of 18 myosin molecules form an outer tube, with nine S2 forming the interior core. At the surface of the thick filament, myosin heads are arranged in three rows, giving the filament a periodicity of 14.3 nm per three myosin molecules. Two of these molecules are organized at an angle of 120 degrees to each other on the same level, while the third is shifted 7.2 nm along the filament axis. This packing gives a striation pattern of 7.2 nm by electron microscopy. An alternative model is also possible, in which the heads of the myosin molecules are uniformly spaced at an interval of 14.3 nm along the filament axis. The packing of individual molecules within the myosin filament is based on a regular pattern of charge on the 28 amino-acid repeat in the rod domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号