首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo rat retinal preparations, we have measured RGC intracellular free calcium concentration ([Ca2+]i) and RGC spiking activity, respectively. We found that NPY attenuated the increase in the [Ca2+]i triggered by glutamate mainly via Y1 receptor activation. Moreover, (Leu31, Pro34)−NPY, a Y1/Y5 receptor agonist, increased the initial burst response of OFF-type RGCs, although no effect was observed on RGC spontaneous spiking activity. The Y1 receptor activation was also able to directly modulate RGC responses by attenuating the NMDA-induced increase in RGC spiking activity. These results suggest that Y1 receptor activation, at the level of inner or outer plexiform layers, leads to modulation of RGC receptive field properties. Using in vitro cultures of rat retinal explants exposed to NMDA, we found that NPY pretreatment prevented NMDA-induced cell death. However, in an animal model of retinal ischemia-reperfusion injury, pretreatment with NPY or (Leu31, Pro34)−NPY was not able to prevent apoptosis or rescue RGCs. In conclusion, we found modulatory effects of NPY application that for the first time were detected at the level of RGCs. However, further studies are needed to evaluate whether NPY neuroprotective actions detected in retinal explants can be translated into animal models of retinal degenerative diseases.  相似文献   

2.
Regional variations in cell death are ubiquitous in the nervous system. In the retina, cell death in retinal ganglion cells is elevated in the retinal periphery and may be important in setting up the initial conditions that produce central retinal specializations such as an area centralis or visual streak. In central visual system structures, pronounced spatial and spatiotemporal inhomogeneities in cell death are seen both in layers and regions of the lateral geniculate nucleus and superior colliculus; similar indications of inhomogeneities are seen in those nonvisual structures that have been examined. Cell death in the cortex is highly nonuniform, by layer and by cortical area. A variety of possible functions for these regional losses are proposed, in the context of a uniform mechanism for cell death that allows it to assume multiple functions. © 1992 John Wiley & Sons, Inc.  相似文献   

3.
Both L1 and N-CAM are present on optic axons early in the developing mouse retina and optic nerve. In in vitro assays on substrates of purified cell adhesion molecules cells derived from E13 mouse retinae showed vigorous neurite extension on L1 but not on N-CAM. Although retinal neurons on N-CAM showed only limited attachment to the substrate, they were able to form lamellipodia immediately around the cell perimeter. In contrast, similarly derived cortical cells showed extensive neurite outgrowth on both substrates. Under these culture conditions, nearly all of the L1 and N-CAM present in the cell membrane appeared to be sequestered on the lower surface of the growth cones and neurites, indicating that most of these cell adhesion molecules were involved in homophilic interactions. Our results suggest differential roles for L1 and N-CAM in intitiation and establishment of the optic pathway. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
The property of dendritic growth dynamics during development is a subject of intense interest. Here, we investigated the dendritic motility of retinal ganglion cells (RGCs) during different developmental stages, using ex vivo mouse retina explant culture, Semliki Forest Virus transfection and time-lapse observations. The results illustrated that during development, the dendritic motility underwent a change from rapid growth to a relatively stable state, i.e., at P0 (day of birth), RGC dendrites were in a highly active state, whereas at postnatal 13 (P13) they were more stable, and at P3 and P8, the RGCs were in an intermediate state. At any given developmental stage, RGCs of different types displayed the same dendritic growth rate and extent. Since the mouse is the most popular mammalian model for genetic manipulation, this study provided a methodological foundation for further exploring the regulatory mechanisms of dendritic development.  相似文献   

5.
The electrical activity of rat retinal ganglion cells is described. It was found that most such cells generate tonic discharges, while cells that demonstrate a phasic type of activity are less numerous. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 382–384, July–October, 2007.  相似文献   

6.
7.
During mammalian visual system development, retinal ganglion cells (RGCs) undergo extensive apoptotic death. In mouse retina, approximately 50% of RGCs present at birth (postnatal day 0; P0) die by P5, at a time when axons innervate central targets such as the superior colliculus (SC). We examined whether RGCs that make short‐range axonal targeting errors within the contralateral SC are more likely to be eliminated during the peak period of RGC death (P1‐P5), compared with RGCs initially making more accurate retinotopic connections. A small volume (2.3 nL) of the retrograde nucleophilic dye Hoechst 33342 was injected into the superficial left SC of anesthetized neonatal C57Bl/6J mice at P1 (n = 5) or P4 (n = 8), and the contralateral retina wholemounted 12 hr later. Retrogradely labelled healthy and dying (pyknotic) RGCs were identified by morphological criteria and counted. The percentage of pyknotic RGCs was analyzed in relation to distance from the area of highest density RGC labelling, presumed to represent the most topographically accurate population. As expected, pyknotic RGC density at P1 was significantly greater than P4 (p < 0.05). At P4, the density of healthy RGCs 500–750 µm away from the central region was significantly less, although this was not reflected in altered pyknotic rates. However, at P1 there was a trend (p = 0.08) for an increased proportion of pyknotic RGCs, specifically in temporal parts of the retina outside the densely labelled center. Overall, the lack of consistent association between short‐range targeting errors and cell death suggests that most postnatal RGC loss is not directly related to topographic accuracy. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 51–60, 2018  相似文献   

8.
During early postnatal development, dendrites of retinal ganglion cells (RGCs) extend and branch in the inner plexiform layer to establish the adult level of stratification, pattern of branching, and coverage. Many studies have described the branching patterns, transient features, and regulatory factors of stratification of the RGCs. The rate of RGC dendritic field (DF) expansion relative to the growing retina has not been systematically investigated. In this study, we used two methods to examine the relative expansion of RGC DFs. First, we measured the size of RGC DFs and the diameters of the eyeballs at several postnatal stages. We compared the measurements with the RGC DF sizes calculated from difference of the eyeball sizes based on a linear expansion assumption. Second, we used the number of cholinergic amacrine cells (SACs) circumscribed by the DFs of RGCs at corresponding time points as an internal ruler to assess the size of DFs. We found most RGCs exhibit a phase of faster expansion relative to the retina between postnatal day 8 (P8) and P13, followed by a phase of retraction between P13 and adulthood. The morphological α cells showed the faster growing phase but not the retraction phase, whereas the morphological ON–OFF direction selective ganglion cells expanded in the same pace as the growing retina. These findings indicate different RGCs show different modes of growth, whereas most subtypes exhibit a fast expansion followed by a retraction phase to reach the adult size. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 70: 397–407, 2010  相似文献   

9.
10.
认知功能是大脑的重要能力,但在神经病理状况或疾病中受损时易出现认知损伤。目前,针对认知损伤患者的有效治疗和康复措施尚不明确。光疗作为一种无创物理疗法,受到越来越多的关注。本文旨在介绍光疗在与神经精神疾病相关认知损伤中的临床应用现状,特别是在阿尔茨海默病(Alzheimer’s disease,AD)、轻度认知功能损害(mild cognitive impairment, MCI)、脑损伤后认知障碍(post-traumatic cognitive impairment, PTCI)以及精神分裂症相关的认知损伤(cognition impairments associated with schizophrenia,CIAS)方面。光疗影响认知的机制是多方面的,包括调节昼夜节律、神经保护和修复、改善血液循环、调节神经递质、抗炎作用、神经可塑性、减少氧化应激等。此外,光疗还被认为与脑电活动、神经环路、神经营养因子以及神经递质有关。这些机制对于理解光疗如何改善认知损伤具有重要意义。最后,文章将讨论光疗在临床应用中的局限性原因,包括光照参数的标准化和个体差异的影响等。光疗在临床应用中的局限性包括...  相似文献   

11.
12.
Although glaucomatous optic nerve degeneration is a leading cause of worldwide blindness, neither the precise cellular mechanisms underlying neurodegeneration in glaucoma, nor effective strategies for neuroprotection are yet clear. This review focuses on diverse cellular events associated with glaucomatous neurodegeneration whose balance is critical for determination of ultimate cell fate. An improved understanding of the site of primary injury to optic nerve, the mediator pathways of apoptotic cell death and intrinsic protection mechanisms in retinal ganglion cells, the role of glial activation on the survival and death of retinal ganglion cell bodies and their axons, and the protective and destructive consequences of immune system involvement can facilitate development of effective neuroprotective strategies in glaucoma.  相似文献   

13.
Autophagy is an essential recycling pathway implicated in neurodegeneration either as a pro-survival or a pro-death mechanism. Its role after axonal injury is still uncertain. Axotomy of the optic nerve is a classical model of neurodegeneration. It induces retinal ganglion cell death, a process also occurring in glaucoma and other optic neuropathies. We analyzed autophagy induction and cell survival following optic nerve transection (ONT) in mice. Our results demonstrate activation of autophagy shortly after axotomy with autophagosome formation, upregulation of the autophagy regulator Atg5 and apoptotic death of 50% of the retinal ganglion cells (RGCs) after 5 days. Genetic downregulation of autophagy using knockout mice for Atg4B (another regulator of autophagy) or with specific deletion of Atg5 in retinal ganglion cells, using the Atg5(flox/flox) mice reduces cell survival after ONT, whereas pharmacological induction of autophagy in vivo increases the number of surviving cells. In conclusion, our data support that autophagy has a cytoprotective role in RGCs after traumatic injury and may provide a new therapeutic strategy to ameliorate retinal diseases.  相似文献   

14.
Pathologies of the optic nerve could result as primary insults in the visual tract or as secondary deficits due to inflammation, demyelination, or compressing effects of the surrounding tissue. The extent of damage may vary from mild to severe, differently affecting patient vision, with the most severe forms leading to complete uni‐ or bilateral visual loss. The aim of researchers and clinicians in the field is to alleviate the symptoms of these, yet uncurable pathologies, taking advantage of known and novel potential therapeutic approaches, alone or in combinations, and applying them in a limited time window after the insult. In this review, we discuss the epidemiological and clinical profile as well as the pathophysiological mechanisms of two main categories of optic nerve pathologies, namely traumatic optic neuropathy and optic neuritis, focusing on the demyelinating form of the latter. Moreover, we report on the main rodent models mimicking these pathologies or some of their clinical aspects. The current treatment options will also be reviewed and novel approaches will be discussed.  相似文献   

15.
16.
Optic nerve transection results in the death of retinal ganglion cells (RGCs) by apoptosis. Apoptosis is regulated by the Bcl-2 family of proteins, of which the Bcl-2 homology (BH3) -only proteins forms a subset. As BH3-only proteins have been shown to play a significant role in regulating cell death in the central nervous system, we wished to investigate the role of Bcl-2 interacting mediator of cell death (Bim), a prominent member of this protein family in the regulation of cell death in the RGC layer using in vitro retinal explants. In this study, we use an innovative retinal shaving procedure to isolate the cells of the ganglion cell layer to use for western blotting. Members of the BH3-only protein family are down-regulated during retinal development and are not normally expressed in the adult retina. Using this procedure, we demonstrate that Bim is re-expressed and its expression is increased over time following axotomy. Expression of Bad and Bik decreases over the same time course, whereas there is no indication that Bid and Puma are re-expressed. We show that explants from Bim knockout mice are resistant to axotomy-induced death when compared with their wild-type counterparts. Genetic deletion of Bim also prevents caspase 3 cleavage. The activity of Bim can be negatively regulated by phosphorylation. We show that the decrease of Bim phosphorylation correlates with a decrease in expression of survival kinases such as pAkt and pERK over the same time course. These results implicate Bim re-expression as being essential for axotomy-induced death of RGCs and that phosphorylation of Bim negatively regulates its activity in RGCs.  相似文献   

17.
《Autophagy》2013,9(10):1692-1701
Retinal ganglion cells (RGCs) are the only afferent neurons that can transmit visual information to the brain. The death of RGCs occurs in the early stages of glaucoma, diabetic retinopathy, and many other retinal diseases. Autophagy is a highly conserved lysosomal pathway, which is crucial for maintaining cellular homeostasis and cell survival under stressful conditions. Research has established that autophagy exists in RGCs after increasing intraocular pressure (IOP), retinal ischemia, optic nerve transection (ONT), axotomy, or optic nerve crush. However, the mechanism responsible for defining how autophagy is induced in RGCs has not been elucidated. Accumulating data has pointed to an essential role of reactive oxygen species (ROS) in the activation of autophagy. RGCs have long axons with comparatively high densities of mitochondria. This makes them more sensitive to energy deficiency and vulnerable to oxidative stress. In this review, we explore the role of oxidative stress in the activation of autophagy in RGCs, and discuss the possible mechanisms that are involved in this process. We aim to provide a more theoretical basis of oxidative stress-induced autophagy, and provide innovative targets for therapeutic intervention in retinopathy.  相似文献   

18.
Wen-jian Lin  Hong-yu Kuang 《Autophagy》2014,10(10):1692-1701
Retinal ganglion cells (RGCs) are the only afferent neurons that can transmit visual information to the brain. The death of RGCs occurs in the early stages of glaucoma, diabetic retinopathy, and many other retinal diseases. Autophagy is a highly conserved lysosomal pathway, which is crucial for maintaining cellular homeostasis and cell survival under stressful conditions. Research has established that autophagy exists in RGCs after increasing intraocular pressure (IOP), retinal ischemia, optic nerve transection (ONT), axotomy, or optic nerve crush. However, the mechanism responsible for defining how autophagy is induced in RGCs has not been elucidated. Accumulating data has pointed to an essential role of reactive oxygen species (ROS) in the activation of autophagy. RGCs have long axons with comparatively high densities of mitochondria. This makes them more sensitive to energy deficiency and vulnerable to oxidative stress. In this review, we explore the role of oxidative stress in the activation of autophagy in RGCs, and discuss the possible mechanisms that are involved in this process. We aim to provide a more theoretical basis of oxidative stress-induced autophagy, and provide innovative targets for therapeutic intervention in retinopathy.  相似文献   

19.
哺乳动物昼夜节律调节的神经基础——昼夜光感受器   总被引:1,自引:0,他引:1  
哺乳动物昼夜光感受器为一组具有直接感光功能的特殊视网膜神经节细胞 ,其基本感光色素为黑视素 .昼夜光感受器具有直接、广谱和稳定感受昼夜光变化的功能特点 .昼夜光感受器的功能是通过导引作用 ,使下丘脑视交叉上核内的昼夜节律活动与外界明 暗周期变化同步  相似文献   

20.
Macroautophagy/autophagy is the process by which cellular components are degraded and recycled within the lysosome. These components include mitochondria, the selective degradation of which is known as mitophagy. Mitochondria are dynamic organelles that constantly adapt their morphology, function, and number to accommodate the metabolic needs of the cell. Extensive metabolic reconfiguration occurs during cell differentiation, when mitochondrial activity increases in most cell types. However, our data demonstrate that during physiologic retinal ganglion cell (RGC) development, mitophagy-dependent metabolic reprogramming toward glycolysis regulates numbers of RGCs, which are the first neurons to differentiate in the retina and whose axons form the optic nerve. We show that during retinal development tissue hypoxia triggers HIF1A/HIF-1 stabilization, resulting in increased expression of the mitophagy receptor BNIP3L/NIX. BNIP3L-dependent mitophagy results in a metabolic shift toward glycolysis essential for RGC neurogenesis. Moreover, we demonstrate that BNIP3L-dependent mitophagy also regulates the polarization of proinflammatory/M1 macrophages, which undergo glycolysis-dependent differentiation during the inflammatory response. Our results uncover a new link between hypoxia, mitophagy, and metabolic reprogramming in the differentiation of several cell types in vivo. These findings may have important implications for neurodegenerative, metabolic and other diseases in which mitochondrial dysfunction and metabolic alterations play a prominent role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号