首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the molecular mechanism of fish adipocyte differentiation, the three subtypes of PPAR genes (alpha, beta and gamma) were characterized in a marine teleost red sea bream (Pagrus major). The primary structures of red sea bream PPARs exhibited high degrees of similarities to their mammalian counterparts, and their gene expression was detected in various tissues including adipose tissue, heart and hepatopancreas. During the differentiation of primary cultured red sea bream adipocytes, three PPARs showed distinct expression patterns: The alpha subtype showed a transient increase and the beta gene expression tended to increase during adipocyte differentiation whereas the gene expression level of PPARgamma did not change. These results suggest that they play distinct roles in adipocyte differentiation in red sea bream. In the differentiating red sea bream adipocytes, mammalian PPAR agonists, 15-deoxy-Delta(12,14)-prostaglandin J(2), ciglitazone and fenofibrate did not show clear effects on the adipogenic gene expression. However, 2-bromopalmitate increased the PPARgamma and related adipogenic gene expression levels, suggesting the gamma subtype plays a central role in red sea bream adipocyte differentiation and in addition, fatty acid metabolites can be used as modulators of adipocyte function. Thus our study highlighted the roles of PPARs in fish adipocyte differentiation and provided information on the molecular mechanisms of fish adipocyte development.  相似文献   

2.
Fatty acid composition, which is altered in patients with abdominal obesity, is influenced not only by dietary intake but also by the desaturating enzymes stearoyl-CoA desaturase (SCD), delta-6 desaturase (D6D) and delta-5 desaturase (D5D). We investigated desaturase activities and their associations with metabolic risk factors, C-reactive protein levels (CRP) and insulin resistance in Japanese children. There were 237 school children in this study; 115 were boys. The fatty acid composition of plasma phospholipids was analyzed, and the following desaturase activities were estimated: SCD (16:1n-7/16:0 and 18:1n-9/18:0), D6D (20:3n-6/18:2n-6) and D5D (20:4n-6/20:3n-6). D6D and D5D activities, but not SCD activity, were significantly associated with triglyceride levels, high-density lipoprotein cholesterol levels and insulin resistance in both sexes, and with CRP levels in boys. In addition, increased abdominal adiposity was significantly associated with increased D6D activity, and decreased D5D activity and insulin resistance in both sexes, and with increased CRP levels in boys. The n-6 polyunsaturated fatty acid desaturation pathway may be associated with metabolic risk factors, insulin resistance and increased inflammation in children with abdominal obesity, especially in boys.  相似文献   

3.
The mouse preputial gland (PG), a specialized sebaceous structure, is rich in wax esters, triglycerides, and alkyl-2,3-diacylglycerol. We have found that the mouse PG expresses the three gene isoforms (SCD1, SCD2, and SCD3) of the Delta9 stearoyl-CoA desaturase enzyme that catalyzes the biosynthesis of monounsaturated fatty acids mainly, C16:1n-7 and C18:1n-9. However, mice with a targeted disruption in the SCD1 isoform (SCD1(-/-)) have undetectable SCD3 mRNA expression in the PG while the expression of SCD2 isoform was not altered. The levels of C16:1n-7 were reduced by greater than 70% while that of C18:1n-9 were reduced by 28%. The content of the C16:1n-10 (Delta6 hexadecenoic acid) isomer and a major fatty acid of the PG was increased by greater than 2-fold, mainly in the wax ester fraction of the SCD1(-/-) mouse. We demonstrate that the increase in C16:1n-10 is due to induction of a specific palmitoyl-CoA Delta6 desaturase activity. Testosterone administration to the SCD1(-/-) mouse induced SCD3 mRNA expression and resulted in an increase in the Delta9 desaturation of 16:0-CoA, but not of 18:0-CoA. These observations demonstrate that loss of SCD1 function alters the expression of SCD3 and reveal for the first time the presence and regulation of a palmitoyl-CoA Delta6 desaturase enzyme in mammals.  相似文献   

4.
5.
6.
Sapienic acid, 16:1n-10 is the most abundant unsaturated fatty acid on human skin where its synthesis is mediated by FADS2 in the sebaceous glands. The FADS2 product introduces a double bond at the Δ6, Δ4 and Δ8 positions by acting on at least ten substrates, including 16:0, 18:2n-6, and 18:3n-3. Our aim was to characterize the competition for accessing FADS2 mediated Δ6 desaturation between 16:0 and the most abundant polyunsaturated fatty acids (PUFA) in the human diet, 18:2n-6 and 18:3n-3, to evaluate whether competition may be relevant in other tissues and thus linked to metabolic abnormalities associated with FADS2 or fatty acid levels. MCF7 cells stably transformed with FADS2 biosynthesize 16:1n-10 from exogenous 16:0 in preference to 16:1n-7, the immediate product of SCD highly expressed in cancer cell lines, and 16:1n-9 via partial β-oxidation of 18:1n-9. Increasing availability of 18:2n-6 or 18:3n-3 resulted in decreased bioconversion of 16:0 to 16:1n-10, simultaneously increasing the levels of highly unsaturated products. FADS2 cells accumulate the desaturation-elongation products 20:3n-6 and 20:4n-3 in preference to the immediate desaturation products 18:3n-6 and 18:4n-3 implying prompt/coupled elongation of the nascent desaturation products. MCF7 cells incorporate newly synthesized 16:1n-10 into phospholipids. These data suggest that excess 16:0 due to, for instance, de novo lipogenesis from high carbohydrate or alcohol consumption, inhibits synthesis of highly unsaturated fatty acids, and may in part explain why supplemental preformed EPA and DHA in some studies improves insulin resistance and other factors related to diabetes and metabolic syndrome aggravated by excess calorie consumption.  相似文献   

7.
Fish are the most important dietary source of the n-3 highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), that have particularly important roles in human nutrition reflecting their roles in critical physiological processes. The objective of the study described here was to clone, functionally characterize and compare expressed fatty acid desaturase genes involved in the production of EPA and DHA in freshwater and marine teleost fish species. Putative fatty acid desaturase cDNAs were isolated and cloned from common carp (Cyprinus carpio) and turbot (Psetta maximus). The enzymic activities of the products of these cDNAs, together with those of cDNAs previously cloned from rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata), were determined by heterologous expression in the yeast Saccharomyces cerevisiae. The carp and turbot desaturase cDNAs included open reading frames (ORFs) of 1335 and 1338 base pairs, respectively, specifying proteins of 444 and 445 amino acids. The protein sequences possessed all the characteristic features of microsomal fatty acid desaturases, including three histidine boxes, two transmembrane regions, and N-terminal cytochrome b(5) domains containing the haem-binding motif, HPGG. Functional expression showed all four fish cDNAs encode basically unifunctional Delta6 fatty acid desaturase enzymes responsible for the first and rate-limiting step in the biosynthesis of HUFA from 18:3n-3 and 18:2n-6. All the fish desaturases were more active towards the n-3 substrate with 59.5%, 31.5%, 23.1% and 7.0% of 18:3n-3 being converted to 18:4n-3 in the case of turbot, trout, sea bream and carp, respectively. The enzymes also showed very low, probably physiologically insignificant, levels of Delta5 desaturase activity, but none of the products showed Delta4 desaturase activity. The cloning and characterization of desaturases from these fish is an important advance, as they are species in which there is a relative wealth of data on the nutritional regulation of fatty acid desaturation and HUFA synthesis, and between which substantive differences occur.  相似文献   

8.
The degree of unsaturation of membrane lipids has been implicated in a number of physiological disorders, yet its regulation remains poorly understood, especially the regulation of the synthesis and distribution of arachidonic acid levels, the most abundant long chain polyunsaturated fatty acid in membranes. Transgenic mice expressing the ovine metallothionein 1a — ovine growth hormone (oMt1a-oGH) fusion gene exhibited significantly elevated levels of a number of long chain polyusaturated fatty acids in serum, including arachidonic acid. In oMt1a-oGH transgenic mice the products of all three desaturation pathways are affected by the expression of the ovine growth hormone trangene. The essential precursors of membrane long chain polyunsturated fatty acids, 18:2n-6 and 18:3n-3, were reduced in transgenic relative to controls, and their desaturation and elongation products, arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3), were elevated. As rare intermediate long chain polyunsaturated fatty acids such as eicosatrienoic acid (20:3n-9) were also signficantly elevated, we conclude that these observations reflect increased activity of the Δ-5 and Δ-6 desaturase enzymes. In contranst, the products of the stearoyl CoA or Δ-9 desaturase, were significantly reduced in oMt1a-oGH expressing transgenics relative to their levels in control mice.  相似文献   

9.
The effects of dietary cholesterol (CH) and isolation stress on fatty acid compositions of plasma and liver cholesteryl ester and phospholipids were compared in growing rats fed an 18:2n-6 or an 18:3n-6 enriched semisynthetic diet for 2 weeks. Stress, CH-feeding, and dietary fats had no significant effects on plasma CH level, but CH-feeding alone elevated the liver CH concentrations. CH-feeding also modulated the liver polyunsaturated fatty acid compositions, i.e., increasing 18:2n-6 levels, and reducing 20:4n-6 levels, indicating an inhibition of the enzymes, delta-6 and delta-5-desaturases. The extent of these changes was less in rats fed 18:3n-6 than in those fed 18:2n-6. Stress, which alone had no significant effects on plasma and liver fatty acid compositions, attenuated the CH-induced changes of fatty acid levels.  相似文献   

10.
Sesamin is a specific inhibitor of Δ5 desaturation, the conversion from dihomo-γ-linolenic acid (20: 3, n-6) to arachidonic acid (AA, 20: 4, n-6). Previously, we reported that sesamin inhibited Δ5 desaturation of n-6 fatty acids in rat hepatocytes but not that of n-3 fatty acids, from 20: 4 (n-3) to eicosapentaenoic acid (EPA, 20: 5, n-3). In this study, we investigated the interaction of sesamin and EPA on Δ5 desaturation of both series and the n-6/n-3 fatty acids ratio by measuring actural fatty acid contents in vivo. Rats were fed three types of dietary oils; 1) linoleic acid (LA, 18: 2, n-6): linolenic acid (LLA, 18: 3, n-3) = 3: 1, n-6/n-3 ratio of 3: 1 (LA group), 2) LA: LLA =1: 3, n-6/n-3 ratio of 1: 3 (LLA group), 3) LA: LLA: EPA =1: 0.5: 3, n-6/n-3 ratio of 1: 3.5 (EPA group) with or without sesamin (0.5% w/w) for 4 weeks. In all groups, sesamin administration increased the content of dihomo-γ-linolenic acid (20: 3, n-6) in the liver and decreased the Δ5 desaturation index of n-6 fatty acid, the ratio of 20: 4/20: 3 (n-6). On the contrary, the Δ5 desaturation index of n-3 fatty acid, the ratio of 20: 5 + 22: 5 + 22: 6/20: 4 (n-3), was increased by the administration of sesamin. These results suggest that sesamin inhibits the A5 desaturation of n-6 fatty acid, but not that of n-3 fatty acid in rat livers. Sesamin administration decreased incorporation of EPA (n-3) and simultaneously increased the AA (n-6) content in the liver. The n-6/n-3 ratio in the liver was increased by administering sesamin under n-3 rich conditions, i.e., the LLA and EPA groups.  相似文献   

11.
Atlantic salmon (Salmo salar) preadipocytes, isolated from visceral adipose tissue, differentiate from an unspecialized fibroblast like cell type to mature adipocytes filled with lipid droplets in culture. The expression of the adipogenic gene markers peroxisome proliferated activated receptor (PPAR) alpha, lipoprotein lipase (LPL), microsomal triglyceride transfer protein (MTP), fatty acid transport protein (FATP) 1 and fatty acid binding protein (FABP) 3 increased during differentiation. In addition, we describe a novel alternatively spliced form of PPARgamma (PPARgamma short), the expression of which increased during differentiation. Eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA) lowered the triacylglycerol (TAG) accumulation in mature salmon adipocytes compared to oleic acid (18:1n-9, OA). This finding indicates that a reduced level of highly unsaturated n-3 fatty acids (HUFAs) in fish diets, when the traditional marine oil is exchanged for n-9 fatty acids (FAs) rich vegetable oils (VOs), may influence visceral fat deposition in salmonids. Moreover, major differences in the metabolism of EPA, DHA and OA at different stages during differentiation of adipocytes occur. Most of the EPA and DHA were oxidized in preadipocytes, while they were mainly stored in TAGs in mature adipocytes in contrast to OA which was primarily stored in TAGs at all stages of differentiation.  相似文献   

12.
Orbitofrontal cortex (OFC, Brodmann area 10) gray matter volume reductions and selective reductions in docosahexaenoic acid (DHA, 22:6n-3) are observed in adult patients with major depressive disorder (MDD). OFC gray matter volume also decreases with advancing age in healthy subjects. To examine if OFC gray matter DHA composition decreases during normal aging, we determined age-related changes in OFC gray matter fatty acid composition by gas chromatography in subjects aged 29-80 years (n=30). We additionally determined elongase (HELO1), delta-5 desaturase (FASD1), delta-6 desaturase (FASD2), peroxisomal (PEX19), and stearoyl-CoA desaturase (SCD) mRNA expression in the same tissues. Increasing age was associated with a progressive decline in polyunsaturated fatty acid (PUFA) composition, including DHA and arachidonic acid (AA, 20:4n-6), and transient, apparently compensatory, elevations in elongase and desaturase gene expression. The age-related reduction in PUFA composition was inversely correlated with SCD expression and activity resulting in elevations in monounsaturated fatty acid composition. These dynamic age-related changes in OFC gray matter fatty acid composition and biosynthetic gene expression may contribute to the progressive decline in OFC gray matter volume found with advancing age. The implications of age-related reductions in OFC PUFA composition for affective dysregulation in the elderly are discussed.  相似文献   

13.
The Δ9-elongase isolated from Thraustochytrium aureum, which contains a high level of polyunsaturated fatty acids (PUFAs), was demonstrated to be associated with the synthesis of C20 PUFAs. The TaELO gene contains a 825 bp ORF that encodes a protein of 274 amino acids that shares a high similarity with other PUFA elongases. The expression of the TaELO gene in Pichia pastoris resulted in the elongation of linoleic acid (LA, C18:2; n-6) and α-linolenic acid (ALA, C18:3; n-3) to eicosadienoic acid (EDA, C20:2; n-6) and eicosatrienoic acid (ETrA, C20:3; n-3), respectively. The endogenous conversion rate of LA and ALA to EDA and ETrA was 32.68 and 38.57%, respectively. In addition, TaELO was also able to synthesize eicosenoic acid (C20:1; n-9) from oleic acid (OA, C18:1; n-9), even though the conversion level was low (2.81%). Furthermore, TaELO was able to carry out the 6Δ-elongation of γ-linolenic acid (GLA, C18:3; n-6) to dihomo-γ-linolenic acid (DGLA, C20:3; n-6) and Δ5-elongation of eicosapentaenoic acid (EPA, C20:5; n-3) to docosapentaenoic acid (DPA, C22:5; n-3). The conversion rate of GLA to DGLA and EPA to DPA were 93 and 28.36%, respectively. The TaELO protein was confirmed to have multifunctional activities, such as Δ9, Δ6, and Δ5-elongations as well as the elongation of monounsaturated fatty acid.  相似文献   

14.
This study investigated the effects of dietary linolenic acid (C18:3n-3) v. linoleic acid (C18:2n-6) on fatty acid composition and protein expression of key lipogenic enzymes, acetyl-CoA carboxylase (ACC), stearoyl-CoA desaturase (SCD) and delta 6 desaturase (Δ6d) in longissimus muscle and subcutaneous adipose tissue of bulls. Supplementation of the diet with C18:3n-3 was accompanied by an increased level of n-3 fatty acids in muscle which resulted in decrease of n-6/n-3 ratio. The diet enriched with n-3 polyunsaturated fatty acids (PUFAs) significantly inhibited SCD protein expression in muscle and subcutaneous adipose tissue, and reduced the Δ6d expression in muscle. There was no significant effect of the diet on ACC protein expression. Inhibition of the Δ6d expression was associated with a decrease in n-6 PUFA level in muscles, whereas repression of SCD protein was related to a lower oleic acid (C18:1 cis-9) content in the adipose tissue. Expression of ACC, SCD and Δ6d proteins was found to be relatively higher in subcutaneous adipose tissue when compared with longissimus muscle. It is suggested that dietary manipulation of fatty acid composition in ruminants is mediated, at least partially, through the regulation of lipogenic enzymes expression and that regulation of the bovine lipogenic enzymes expression is tissue specific.  相似文献   

15.
High intakes of linoleic acid (LA,18:2n-6) have raised concern due to possible increase in arachidonic acid (ARA, 20:4n-6) synthesis, and inhibition of alpha linolenic acid (ALA, 18:3n-3) desaturation to eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). In healthy men, 10.5% energy compared to 3.8% energy LA with 1% energy ALA increased plasma phospholipid LA and 20:2n-6, the elongation product of LA, and decreased EPA, with no change in ARA. However, LA was inversely related to ARA at both 10.5% energy and 3.8% energy LA, (r=?0.761, r=?0.817, p<0.001, respectively). A two-fold variability in ARA among individuals was not explained by the dietary LA, ARA, ALA, or fish intake. Our results confirm LA requirements for ARA synthesis is low, <3.8% energy, and they suggest current LA intakes saturate Δ-6 desaturation and adversely affect n-3 fatty acid metabolism. Factors other than n-6 fatty acid intake are important modifiers of plasma ARA.  相似文献   

16.
1. [1-14C]linolenic acid was injected into the rainbow trout, Salmo gairdnerii, ayu, Plecoglossus altivelis, eel, Anguilla japonica, red sea bream, Chrysophrys major, rockfish, Sebastiscus marmoratus, globefish, Fugu rubripes rubripes and prawn, Penaeus japonicus (molting stage D"1-D2), and the bioconversion of linolenic acid (18:3 omega 3) to highly unsaturated fatty acids such as eicosapentaenoic (20:5 omega 3) and docosahexaenoic (22:6 omega 3) acids was investigated. 2. Linolenic acid was converted to 20:5 omega 3 and 22:6 omega 3 intensively in the rainbow trout, moderately in the ayu, eel and prawn, but slightly in the red sea bream, rockfish and globefish. 3. These results were discussed in relation to the essential fatty acid requirements of the aquatic animals.  相似文献   

17.
We have investigated the effects of hypertension associated with diabetes mellitus on polyunsaturated fatty acid biosynthesis. For this purpose, two rat models for these pathologies have been established: a type 1 diabetic hypertensive model obtained by streptozotocin injection to spontaneously hypertensive rat (SHR), followed or not by insulin treatment (experiment 1); a type 2 diabetic hypertensive model by feeding SHR with a fructose enriched diet (experiment 2). Liver gene expression of delta-6 desaturase (D6D), microsomal D6D activities and fatty acid composition of total lipids were estimated. In experiment 1, an increase of linoleic acid (18:2 n-6) level was observed in the streptozotocin group. D6D gene expression appeared depressed in both experimental groups. Insulin did not reverse the streptozotocin effect in SHR, as it does in insulin-dependent diabetic rats. In experiment 2, the results showed a decrease of 18:2 n-6 and of long chain products of desaturation in rats fed on fructose diet. Delta-6 n-3 desaturase activity was significantly increased, whereas gene expression tended to decrease. Feeding fructose induced a significant increase in delta-9 desaturated products, suggesting a stimulation of stearoyl-CoA desaturase. These changes in monounsaturated fatty acids strongly differ from those observed in the streptozotocin experiment, indicating that the effects on lipogenesis of hypertension linked to diabetes differ according to the type of diabetes. Then, these results indicate that the liver steatosis observed during genetic hypertension was reinforced by fructose feeding. All together, the present results showed that hypertension associated to type 1 or type 2 diabetes exacerbated the damage caused by diabetes or hypertension alone on liver lipid metabolism. The metabolic effects induced by fructose being very similar to those found in human NIDDM, SHR fed a fructose-rich diet appears to be an appropriate model for studying the consequences of the combination of hypertension and NIDDM in the metabolic syndrome diseases.  相似文献   

18.
Plasma total lipids, total cholesterol (cholesterol esters and free cholesterol) and oxysterol (mainly 7 beta-hydroxycholesterol (7 beta OH)) concentrations were significantly elevated in New Zealand rabbits fed a 2% cholesterol-containing diet with respect to controls fed the same diet without cholesterol. In addition, linoleic (18:2 n-6) and alpha-linolenic acid (18:3 n-3) plasma concentrations were significantly elevated in hypercholesterolemic rabbits, while concentrations of long-chain n-6 and n-3 derivatives were reduced. Studies in monocytic cell line THP-1 revealed that 7 beta OH markedly inhibited the conversion of 18:2 to 20:4 n-6 and of 18:3 to 22:6 n-3, indicating depression of the desaturation steps; in particular the inhibition was greater for the Delta 5 desaturation step. Furthermore, experiments of Real-Time PCR showed that 5-10 microM 7 beta OH decreased the Delta 5 gene expression. In conclusion, atherogenic oxysterols interfere with the production of long-chain polyunsaturated fatty acids from their precursors both in hypercholesterolemic rabbits and in cultured cells.  相似文献   

19.
Isolated hepatocytes from Atlantic salmon (Salmo salar), fed diets containing either 100% fish oil or a vegetable oil blend replacing 75% of the fish oil, were incubated with a range of seven (14)C-labelled fatty acids. The fatty acids were [1-(14)C]16:0, [1-(14)C]18:1n-9, 91-(14)C]18:2n-6, [1-(14)C]18:3n-3, [1-(14)C]20:4n-6, [1-(14)C]20:5n-3, and [1-(14)C]22:6n-3. After 2 h of incubation, the hepatocytes and medium were analysed for acid soluble products, incorporation into lipid classes, and hepatocytes for desaturation and elongation. Uptake into hepatocytes was highest with [1-(14)C]18:2n-6 and [1-(14)C]20:5n-3 and lowest with [1-(14)C]16:0. The highest recovery of radioactivity in the cells was found in triacylglycerols. Of the phospholipids, the highest recovery was found in phosphatidylcholine, with [1-(14)C]16:0 and [1-(14)C]22:6n-3 being the most prominent fatty acids. The rates of beta-oxidation were as follows: 20:4n-6>18:2n-6=16:0>18:1n-9>22:6n-3=18:3n-3=20:5n-3. Of the fatty acids taken up by the hepatocytes, [1-(14)C]16:0 and [1-(14)C]18:1n-9 were subsequently exported the most, with the majority of radioactivity recovered in phospholipids and triacylglycerols, respectively. The major products from desaturation and elongation were generally one cycle of elongation of the fatty acids. Diet had a clear effect on the overall lipid metabolism, with replacing 75% of the fish oil with vegetable oil resulting in decreased uptake of all fatty acids and reduced incorporation of fatty acids into cellular lipids, but increased beta-oxidation activity and higher recovery in products of desaturation and elongation of [1-(14)C]18:2n-6 and [1-(14)C]18:3n-3.  相似文献   

20.

Background  

Although unsaturated fatty acids such as eicosapentaenoic acid (EPA, C20:5n-3), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (ARA, C20:4n-6), collectively known as the highly unsaturated fatty acids (HUFA), play pivotal roles in vertebrate reproduction, very little is known about their synthesis in the ovary. The zebrafish (Danio rerio) display capability to synthesize all three HUFA via pathways involving desaturation and elongation of two precursors, the linoleic acid (LA, C18:2n-6) and linolenic acid (LNA, C18:3n-3). As a prerequisite to gain full understanding on the importance and regulation of ovarian HUFA synthesis, we described here the mRNA expression pattern of two enzymes; desaturase (fadsd6) and elongase (elovl5), involved in HUFA biosynthesis pathway, in different zebrafish ovarian follicle stages. Concurrently, the fatty acid profile of each follicle stage was also analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号