首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cell-cell interactions in regulating osteogenesis and osteoblast function   总被引:2,自引:0,他引:2  
Endochondral bone formation requires an elaborate interplay among autocrine, paracrine, and endocrine signals, positional cues, and cell-cell contacts to mediate the complex three-dimensional architecture and function of the skeleton. Embryonic bone development occurs by migration, aggregation, and condensation of immature mesenchymal progenitor cells to form the cartilaginous anlage. Upon vascular invasion, the cartilaginous scaffold is colonized and subsequently mineralized by osteoblasts. Likewise, bone remodeling in the adult skeleton is a dynamic process that requires coordinated cellular activities among osteoblasts, osteocytes, and osteoclasts to maintain bone homeostasis. This review examines the role of cell-cell interactions mediated by adherens junctions formed by cadherins and communicative gap junctions formed by connexins in regulating bone development and osteogenic function.  相似文献   

3.
Lrp5 functions in bone to regulate bone mass   总被引:1,自引:0,他引:1  
The human skeleton is affected by mutations in low-density lipoprotein receptor-related protein 5 (LRP5). To understand how LRP5 influences bone properties, we generated mice with osteocyte-specific expression of inducible Lrp5 mutations that cause high and low bone mass phenotypes in humans. We found that bone properties in these mice were comparable to bone properties in mice with inherited mutations. We also induced an Lrp5 mutation in cells that form the appendicular skeleton but not in cells that form the axial skeleton; we observed that bone properties were altered in the limb but not in the spine. These data indicate that Lrp5 signaling functions locally, and they suggest that increasing LRP5 signaling in mature bone cells may be a strategy for treating human disorders associated with low bone mass, such as osteoporosis.  相似文献   

4.
Resorption and remodelling of skeletal tissues is required for development and growth, mechanical adaptation, repair, and mineral homeostasis of the vertebrate skeleton. Here we review for the first time the current knowledge about resorption and remodelling of the skeleton in teleost fish, the largest and most diverse group of extant vertebrates. Teleost species are increasingly used in aquaculture and as models in biomedical skeletal research. Thus, detailed knowledge is required to establish the differences and similarities between mammalian and teleost skeletal remodelling, and between distantly related species such as zebrafish (Danio rerio) and medaka (Oryzias latipes). The cellular mechanisms of differentiation and activation of osteoclasts and the functions of teleost skeletal remodelling are described. Several characteristics, related to skeletal remodelling, distinguish teleosts from mammals. These characteristics include (a) the absence of osteocytes in most species; (b) the absence of haematopoietic bone marrow tissue; (c) the abundance of small mononucleated osteoclasts performing non‐lacunar (smooth) bone resorption, in addition to or instead of multinucleated osteoclasts; and (d) a phosphorus‐ rather than calcium‐driven mineral homeostasis (mainly affecting the postcranial dermal skeleton). Furthermore, (e) skeletal resorption is often absent from particular sites, due to sparse or lacking endochondral ossification. Based on the mode of skeletal remodelling in early ontogeny of all teleosts and in later stages of development of teleosts with acellular bone we suggest a link between acellular bone and the predominance of mononucleated osteoclasts, on the one hand, and cellular bone and multinucleated osteoclasts on the other. The evolutionary origin of skeletal remodelling is discussed and whether mononucleated osteoclasts represent an ancestral type of resorbing cells. Revealing the differentiation and activation of teleost skeletal resorbing cells, in the absence of several factors that trigger mammalian osteoclast differentiation, is a current challenge. Understanding which characters of teleost bone remodelling are derived and which characters are conserved should enhance our understanding of the process in fish and may provide insights into alternative pathways of bone remodelling in mammals.  相似文献   

5.
Recent work has demonstrated that neurotransmitters, signalling molecules primarily associated with the nervous system, can have profound effects on the skeleton. Bone cells express a broad range of neurotransmitter receptors and transporters, and respond to receptor activation by initiating diverse intracellular signalling pathways, which modulate cellular function. Evidence of neuronal innervation in skeletal tissues, neurotransmitter release directly from bone cells and functional effects of pharmacological manipulation support the existence of a complex and functionally significant neurotransmitter-mediated signalling network in bone. This review aims to concisely summarise our current understanding of how neurotransmitters affect the skeletal system, focusing on their origin, cellular targets and functional effects in bone.  相似文献   

6.
The vertebrate dermal skeleton has long been interpreted to have evolved from a primitive condition exemplified by chondrichthyans. However, chondrichthyans and osteichthyans evolved from an ancestral gnathostome stem‐lineage in which the dermal skeleton was more extensively developed. To elucidate the histology and skeletal structure of the gnathostome crown‐ancestor we conducted a histological survey of the diversity of the dermal skeleton among the placoderms, a diverse clade or grade of early jawed vertebrates. The dermal skeleton of all placoderms is composed largely of a cancellar architecture of cellular dermal bone, surmounted by dermal tubercles in the most ancestral clades, including antiarchs. Acanthothoracids retain an ancestral condition for the dermal skeleton, and we record its secondary reduction in antiarchs. We also find that mechanisms for remodeling bone and facilitating different growth rates between adjoining plates are widespread throughout the placoderms. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Thompson WR  Rubin CT  Rubin J 《Gene》2012,503(2):179-193
A wide range of cell types depend on mechanically induced signals to enable appropriate physiological responses. The skeleton is particularly dependent on mechanical information to guide the resident cell population towards adaptation, maintenance and repair. Research at the organ, tissue, cell and molecular levels has improved our understanding of how the skeleton can recognize the functional environment, and how these challenges are translated into cellular information that can site-specifically alter phenotype. This review first considers those cells within the skeleton that are responsive to mechanical signals, including osteoblasts, osteoclasts, osteocytes and osteoprogenitors. This is discussed in light of a range of experimental approaches that can vary parameters such as strain, fluid shear stress, and pressure. The identity of mechanoreceptor candidates is approached, with consideration of integrins, pericellular tethers, focal adhesions, ion channels, cadherins, connexins, and the plasma membrane including caveolar and non-caveolar lipid rafts and their influence on integral signaling protein interactions. Several mechanically regulated intracellular signaling cascades are detailed including activation of kinases (Akt, MAPK, FAK), β-catenin, GTPases, and calcium signaling events. While the interaction of bone cells with their mechanical environment is complex, an understanding of mechanical regulation of bone signaling is crucial to understanding bone physiology, the etiology of diseases such as osteoporosis, and to the development of interventions to improve bone strength.  相似文献   

8.
Incorporation of bone-seeking, alpha-particle-emitting, heavy-metal radionuclides dramatically increases the incidence of osteosarcoma in humans and experimental animals. The accumulation of these radionuclides within the mineral phase of the bone matrix is believed to result in local irradiation of only those proliferating cells close to the bone surface. We now present evidence for a more general pathway for the irradiation of target cells, mediated through the sequestration of heavy-metal radionuclides by the intracellular iron-storage protein ferritin. In vitro studies reveal the transfer of radionuclide from a 223Ra-transferrin complex into immunoprecipitable cytosolic ferritin. In vivo studies confirm the co-localization of incorporated 224Ra and cellular iron stores. This pathway would result in the highly localized irradiation of ferritin-containing cells. Since osteoblastic cells express large quantities of a ferritin isoform specialized in long-term metal storage, we suggest that this may represent an unrecognized source of intracellular irradiation by alpha-particle-emitting radionuclides. Such a local concentration within target cells has implications both for cellular dosimetry and for inferences of track length and target cell populations within the skeleton.  相似文献   

9.
Craniofacial development involves cranial neural crest (CNC) and mesoderm-derived cells. TGF-beta signaling plays a critical role in instructing CNC cells to form the craniofacial skeleton. However, it is not known how TGF-beta signaling regulates the fate of mesoderm-derived cells during craniofacial development. In this study, we show that occipital somites contribute to the caudal region of mammalian skull development. Conditional inactivation of Tgfbr2 in mesoderm-derived cells results in defects of the supraoccipital bone with meningoencephalocele and discontinuity of the neural arch of the C1 vertebra. At the cellular level, loss of TGF-beta signaling causes decreased chondrocyte proliferation and premature differentiation of cartilage to bone. Expression of Msx2, a critical factor in the formation of the dorsoventral axis, is diminished in the Tgfbr2 mutant. Significantly, overexpression of Msx2 in Myf5-Cre;Tgfbr2flox/flox mice partially rescues supraoccipital bone development. These results suggest that the TGF-beta/Msx2 signaling cascade is critical for development of the caudal region of the skull.  相似文献   

10.
Mitogenic factor from inbred guinea pigs. II. Properties of the factor   总被引:2,自引:0,他引:2  
Thymectomized adult rats which have been heavily irradiated and reconstituted with syngeneic bone marrow cells rapidly regain the ability to defend themselves against a primary infection with the intracellular bacterial parasite, Listeria monocytogenes. They do so by a cell-mediated immunological mechanism as evidenced by the protective immunity transferred adoptively by thoracic duct lymphocytes or peritoneal exudate cells from donors infected with this organism. But peritoneal exudate cells from thymus-derived donors convey only a fraction of the immunity transmitted by exudate cells from similarly infected intact rats. Since thymectomized irradiated animals can mobilize their cellular defenses more effectively when they are injected with a modest number of thoracic duct lymphocytes, an effect that cannot be duplicated with a massive infusion of bone marrow, it is argued that thymusdependent lymphocytes or T cells have an influential role in the development of cellular resistance to infection.  相似文献   

11.
Bone development (modeling) occurs by migration, aggregation, and condensation of immature osteo/chondroprogenitor cells to form the cartilaginous anlage. This process requires precisely controlled cell-cell interactions. Likewise, bone remodeling in the adult skeleton is a dynamic process that requires coordinated cellular activities among osteoblasts, osteocytes, and osteoclasts to maintain bone homeostasis. The cooperative nature of both bone modeling and remodeling requires tightly regulated mechanisms of intercellular recognition and communication that permit the cells to sort and migrate, synchronize activity, equalize hormonal responses, and diffuse locally generated signals. Osteoblasts and osteocytes achieve these interactions through cadherin-based adherens junctions as well as by formation of communicating junctions, gap junctions. This review examines the current knowledge of how direct cell-to-cell interactions modulate osteoblast function.  相似文献   

12.
The cellular and molecular mechanisms that underlie skeletal abnormalities in defective Recql4-related syndromes are poorly understood. Our objective in this study was to explore the function of Recql4 in osteoblast biology both in vitro and in vivo. Immunohistochemistry on adult mouse bone showed Recql4 protein localization in active osteoblasts around growth plate, but not in fully differentiated osteocytes. Consistent with this finding, Recql4 gene expression was high in proliferating mouse osteoblastic MC3T3.E1 cells and decreased as cells progressively lost their proliferation activity during differentiation. Recql4 overexpression in osteoblastic cells exhibited higher proliferation activity, while its depletion impeded cell growth. In addition, bone marrow stromal cells from male Recql4+/- mice had fewer progenitor cells, including osteoprogenitors, indicated by reduced total fibroblast colony forming units (CFU-f) and alkaline phosphatase-positive CFU-f colonies concomitant with reduced bone mass. These findings provide evidence that Recql4 functions as a regulatory protein during osteoprogenitor proliferation, a critical cellular event during skeleton development.  相似文献   

13.
Regulation of skeletogenic differentiation in cranial dermal bone   总被引:1,自引:0,他引:1  
Although endochondral ossification of the limb and axial skeleton is relatively well-understood, the development of dermal (intramembranous) bone featured by many craniofacial skeletal elements is not nearly as well-characterized. We analyzed the expression domains of a number of markers that have previously been associated with endochondral skeleton development to define the cellular transitions involved in the dermal ossification process in both chick and mouse. This led to the recognition of a series of distinct steps in the dermal differentiation pathways, including a unique cell type characterized by the expression of both osteogenic and chondrogenic markers. Several signaling molecules previously implicated in endochondrial development were found to be expressed during specific stages of dermal bone formation. Three of these were studied functionally using retroviral misexpression. We found that activity of bone morphogenic proteins (BMPs) is required for neural crest-derived mesenchyme to commit to the osteogenic pathway and that both Indian hedgehog (IHH) and parathyroid hormone-related protein (PTHrP, PTHLH) negatively regulate the transition from preosteoblastic progenitors to osteoblasts. These results provide a framework for understanding dermal bone development with an aim of bringing it closer to the molecular and cellular resolution available for the endochondral bone development.  相似文献   

14.
The mechanisms behind the influence of PHPT on the skeleton are closely connected with bone turnover. Throughout life, the skeleton is continuously renewed by bone remodeling, a process which serves the purpose of repairing damaged bone and adapting the skeleton to changes in physical load. In this process, old bone is removed by osteoclastic resorption and new bone is laid down by osteoblastic formation. Bone mass increases with growth in the first decades of life, and around the age of 30 years the peak bone mass is reached. Thereafter, as a result of mechanisms involving bone remodeling, a net bone loss is seen: 1) A reversible bone loss because of increase in the remodeling space, i.e., the amount of bone resorped but not yet reformed during the remodeling cycle. This mechanism leads to decrease in average trabecular thickness and cortical width, and to increase in cortical porosity. 2) An irreversible bone loss caused by negative bone balance, where the amount of bone formed by the osteoblasts is exceeded by the amount of bone resorbed by the osteoclasts at the same remodeling site. Consequently, progressive thinning of trabecular elements, reduced cortical width and increased cortical porosity is seen. 3) Finally, perforation of trabecular plates by deep resorption lacunae leads to complete irreversible removal of structural bone components. Parathyroid hormone, together with vitamin D, are the principal modulators in calcium homeostasis. The main actions of PTH are executed in bone and kidneys. In the kidneys, PTH increases the tubular re-absorption of calcium, thereby tending to increase serum calcium. PTH also induces increased conversion of 25(OH)-D to 1,25(OH)2-D. This last action, enhances intestinal calcium absorption and increased skeletal calcium mobilization, which further adds to the circulating calcium pool. In bone, the "acute" regulatory actions of PTH on serum calcium are probably accompliced via activation of osteocytes and lining cells. A second mechanism of PTH in bone is the regulation of bone remodeling. The action seems to be an increased recruitment from osteoblastic precursor cells and activation of mature osteoclasts. It is supposed that these responses are predominantly mediated indirectly through actions on osteoblast-like or nonosteoblast-like stromal cells, as osteoclasts themselves to not have PTH receptors. Bone metabolism and bone mass are studied by biochemical bone markers, bone histomorphometry, and densitometry. As bone markers and bone histomorphometry give information on bone metabolism from different points of view, these methods are preferably combined. Histomorphometry gives detailed information about bone turnover on cellular level, the whole remodeling sequence is described, and the bone balance can be calculated. However, they focus on a small volume, and may, therefore, not be representative for the whole skeleton. On the other hand, studies of bone markers supply general information about turnover in the whole skeleton, but they do not give facts on the bone turnover on the cellular or tissue level and bone balance. Bone densitometry is the principal method in studying bone mass, but valuable information concerning bone structure also comes from histomorphometry. Bone remodeling is considerably increased in PHPT. Studies of bone markers show increase in both resorptive and formative markers, and the increases seem to be of equivalent size. This is in agreement with histomorphometric findings and shows that the coupling between resorption and formation is preserved. By histomorphometry on iliac crest biopsies, trabecular bone remodeling is found increased by 50%, judged by the increase in activation frequency; a measure of how often new remodeling is initiated on the trabecular bone surface. In PHPT, such remodeling activity is repeated about once every year. Reconstruction of the whole remodeling sequence does not show major deviations in lengths of the resorptive and formative periods compared to normal. Furthermore, the amount of bone removed by the osteoclasts during the resorptive phase is matched by the amount of new bone formed by the osteoblasts leading to a bone balance very close to zero. Compared with trabecular bone, the turnover rate in cortical bone is considerably lower, around 10%. Remodeling of the cortical bone takes place at the endocortical, the pericortical, and the Haversian surfaces. Endocortical bone remodeling activities are very similar to trabecular remodeling activities with good correlation between individual parameters. Periosteal remodeling activity is negligible in PHPT, as it is in the normal state. Cortical porosity, which reflects the remodeling activity on the Haversian surface, is increased by 30-65% in PHPT. (ABSTRACT TRUNCATED)  相似文献   

15.
戴魁戎 《生命科学》2009,(2):208-211
生物力学主要探讨力学刺激与细胞的形态、结构和功能之间的关系。骨组织改变其形态和结构以适应力学刺激,表现为骨的适应性重建。骨的生长是骨塑形和骨重建两个过程协同作用的结果,以调整骨的形状、大小和组成,适应其所处的力学环境。骨组织工程的目的就是修复骨组织的正常生物力学功能。近年来,骨组织工程的研究主要集中于模拟骨生长的在体生理条件,从而刺激细胞形成有功能的骨组织。生物反应器能够模拟体内生理状态,为种子细胞在生物支架材料上生长提供一个适宜的力学环境。  相似文献   

16.
Lactoferrin is a pleiotropic factor with potent antimicrobial and immunomodulatory activities. In recent years, studies have shown that lactoferrin also acts on the skeleton to promote bone growth. Lactoferrin stimulates the proliferation and differentiation of the bone forming cells, the osteoblasts, and acts as a survival factor for these cells. Lactoferrin also inhibits osteoclastogenesis, reducing the number of cells that can actively resorb bone, thus producing a greater overall increase in bone volume. In vivo, local injection of lactoferrin results in substantial increases in bone area, establishing lactoferrin as an effector molecule in the skeleton. Investigations of the mechanism of action of lactoferrin in bone cells showed that the mitogenic effect of lactoferrin in osteoblasts is mediated mainly through LRP1, a member of the low density lipoprotein receptor-related proteins. Lactoferrin induces activation of p42/44 MAPK signaling as well as PI3-kinase-dependent phosphorylation of Akt in osteoblasts. Differential gene expression studies indicated a possible role for the activation of IGF1, Ptgs2 and Nfatc1 in mediating the mitogenic activity of lactoferrin in osteoblasts. Lactoferrin is a positive regulator of bone with a possible physiological role in bone growth and healing. There is a growing interest in the potential use of lactoferrin for the improvement of bone health, and in a number of recent studies dietary lactoferrin supplementation improved bone mineral density and bone strength. Lactoferrin appears to be a promising candidate for the development of an anabolic therapeutic factor for osteoporosis.  相似文献   

17.
The postnatal skeleton undergoes growth, modeling, and remodeling. The human skeleton is a composite of diverse tissue types, including bone, cartilage, fat, fibroblasts, nerves, blood vessels, and hematopoietic cells. Fracture nonunion and bone defects are among the most challenging clinical problems in orthopedic trauma. The incidence of nonunion or bone defects following fractures is increasing. Stem and progenitor cells mediate homeostasis and regeneration in postnatal tissue, including bone tissue. As multipotent stem cells, skeletal stem cells (SSCs) have a strong effect on the growth, differentiation, and repair of bone regeneration. In recent years, a number of important studies have characterized the hierarchy, differential potential, and bone formation of SSCs. Here, we describe studies on and applications of SSCs and/or mesenchymal stem cells for bone regeneration.  相似文献   

18.
The increasing incidence of osteoporosis worldwide requires anabolic treatments that are safe, effective, and, critically, inexpensive given the prevailing overburdened health care systems. While vigorous skeletal loading is anabolic and holds promise, deficits in mechanotransduction accrued with age markedly diminish the efficacy of readily complied, exercise-based strategies to combat osteoporosis in the elderly. Our approach to explore and counteract these age-related deficits was guided by cellular signaling patterns across hierarchical scales and by the insight that cell responses initiated during transient, rare events hold potential to exert high-fidelity control over temporally and spatially distant tissue adaptation. Here, we present an agent-based model of real-time Ca2+/NFAT signaling amongst bone cells that fully described periosteal bone formation induced by a wide variety of loading stimuli in young and aged animals. The model predicted age-related pathway alterations underlying the diminished bone formation at senescence, and hence identified critical deficits that were promising targets for therapy. Based upon model predictions, we implemented an in vivo intervention and show for the first time that supplementing mechanical stimuli with low-dose Cyclosporin A can completely rescue loading induced bone formation in the senescent skeleton. These pre-clinical data provide the rationale to consider this approved pharmaceutical alongside mild physical exercise as an inexpensive, yet potent therapy to augment bone mass in the elderly. Our analyses suggested that real-time cellular signaling strongly influences downstream bone adaptation to mechanical stimuli, and quantification of these otherwise inaccessible, transient events in silico yielded a novel intervention with clinical potential.  相似文献   

19.
The oral cirri of amphioxus function as the first filter during feeding by eliminating unwanted large or noxious particulates. In this study, we were able to regenerate cirri following artificial amputation. This is the first firm observation of regeneration in amphioxus. Using this regeneration system, we studied skeletogenesis of the cellular skeleton of amphioxus oral cirri. During regeneration, the skeletal cells showed expression of fibrillar collagen and SoxE genes. These observations suggest that an evolutionarily conserved genetic regulatory system is involved in amphioxus cirrus and vertebrate cartilage skeletogenesis. In addition, Runx and SPARC/osteonectin expression were observed in regenerating cirral skeletal cells, indicating that cirral skeletogenesis is similar to vertebrate osteogenesis. We propose that the common ancestors of chordates possessed a genetic regulatory system that was the prototype of chondrogenesis and osteogenesis in vertebrates. Genome duplications caused divergence of this genetic regulatory system resulting in the emergence of cartilage and mineralized bone. The development of the vertebrate skeleton is an example of the functional segregation and subsequent recruitment of unique genetic materials that may account for the evolutionary diversification of novel cell types.  相似文献   

20.
鞘磷脂是哺乳动物细胞质膜的主要成分之一,在其代谢过程中,鞘氨醇激酶(sphingosine kinase, SPHK)是一个关键性的调节酶.鞘磷脂代谢产物鞘鞍醇经SPHK磷酸化作用产生的鞘氨醇-1-磷酸(S1P)是一种具有生物活性的脂类,参与调节骨骼、神经、免疫、血液系统等多种组织细胞的生物学过程.本文阐述了SPHK/S1P信号途径相关分子,并综述了SPHK/S1P通过调节骨组织细胞的形态结构、增殖、迁移、分化形成及凋亡等功能,进而调节骨重建平衡过程的生物学效应及其机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号