首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.  相似文献   

2.
The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.  相似文献   

3.
In this study, we address the issue of performing meaningful pK(a) calculations using homology modeled three-dimensional (3D) structures and analyze the possibility of using the calculated pK(a) values to detect structural defects in the models. For this purpose, the 3D structure of each member of five large protein families of a bacterial nucleoside monophosphate kinases (NMPK) have been modeled by means of homology-based approach. Further, we performed pK(a) calculations for the each model and for the template X-ray structures. Each bacterial NMPK family used in the study comprised on average 100 members providing a pool of sequences and 3D models large enough for reliable statistical analysis. It was shown that pK(a) values of titratable groups, which are highly conserved within a family, tend to be conserved among the models too. We demonstrated that homology modeled structures with sequence identity larger than 35% and gap percentile smaller than 10% can be used for meaningful pK(a) calculations. In addition, it was found that some highly conserved titratable groups either exhibit large pK(a) fluctuations among the models or have pK(a) values shifted by several pH units with respect to the pK(a) calculated for the X-ray structure. We demonstrated that such case usually indicates structural errors associated with the model. Thus, we argue that pK(a) calculations can be used for assessing the quality of the 3D models by monitoring fluctuations of the pK(a) values for highly conserved titratable residues within large sets of homologous proteins.  相似文献   

4.
Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the "rocker switch" may apply to certain MFS transporters, intermediate "tilted" states may exist under certain circumstances or as transitional structures. Although wet lab experimental confirmation is required, our results suggest that transport mechanisms in this transporter family should probably not be assumed to be conserved simply based on standard structural homology considerations. Furthermore, steered molecular dynamics elucidating energetic interactions of ligands with amino acid residues in an appropriately modeled transporter may have predictive value in understanding the impact of mutations and/or polymorphisms on transporter function.  相似文献   

5.
The quality of three-dimensional homology models derived from protein sequences provides an independent measure of the suitability of a protein sequence for a certain fold. We have used automated homology modeling and model assessment tools to identify putative nuclear hormone receptor ligand-binding domains in the genome of Caenorhabditis elegans. Our results indicate that the availability of multiple crystal structures is crucial to obtaining useful models in this receptor family. The majority of annotated mammalian nuclear hormone receptors could be assigned to a ligand-binding domain fold by using the best model derived from any of four template structures. This strategy also assigned the ligand-binding domain fold to a number of C.elegans. sequences without prior annotation. Interestingly, the retinoic acid receptor crystal structure contributed most to the number of sequences that could be assigned to a ligand-binding domain fold. Several causes for this can be suggested, including the high quality of this protein structure in terms of our assessment tools, similarity between the biological function or ligand of this receptor and the modeled genes and gene duplication in C.elegans.  相似文献   

6.
The urate transporter, GLUT9, is responsible for the basolateral transport of urate in the proximal tubule of human kidneys and in the placenta, playing a central role in uric acid homeostasis. GLUT9 shares the least homology with other members of the glucose transporter family, especially with the glucose transporting members GLUT1-4 and is the only member of the GLUT family to transport urate. The recently published high-resolution structure of XylE, a bacterial D-xylose transporting homologue, yields new insights into the structural foundation of this GLUT family of proteins. While this represents a huge milestone, it is unclear if human GLUT9 can benefit from this advancement through subsequent structural based targeting and mutagenesis. Little progress has been made toward understanding the mechanism of GLUT9 since its discovery in 2000. Before work can begin on resolving the mechanisms of urate transport we must determine methods to express, purify and analyze hGLUT9 using a model system adept in expressing human membrane proteins. Here, we describe the surface expression, purification and isolation of monomeric protein, and functional analysis of recombinant hGLUT9 using the Xenopus laevis oocyte system. In addition, we generated a new homology-based high-resolution model of hGLUT9 from the XylE crystal structure and utilized our purified protein to generate a low-resolution single particle reconstruction. Interestingly, we demonstrate that the functional protein extracted from the Xenopus system fits well with the homology-based model allowing us to generate the predicted urate-binding pocket and pave a path for subsequent mutagenesis and structure-function studies.  相似文献   

7.
The three-dimensional structure of rubredoxin from the hyperthermophilic archaebacterium, Pyrococcus furiosus, has been modeled from the X-ray crystal structures of three homologous proteins from Clostridium pasteurianum, Desulfovibrio gigas, and Desulfovibrio vulgaris. All three homology models are similar. When comparing the positions of all heavy atoms and essential hydrogen atoms to the recently solved crystal structure (Day, M. W., et al., 1992, Protein Sci. 1, 1494-1507) of the same protein, the homology model differ from the X-ray structure by 2.09 A root mean square (RMS). The X-ray and the zinc-substituted NMR structures (Blake, P. R., et al., 1992b, Protein Sci. 1, 1508-1521) show a similar level of difference (2.05 A RMS). On average, the homology models are closer to the X-ray structure than to the NMR structures (2.09 vs. 2.42 A RMS).  相似文献   

8.
Opioid receptors are the principal targets for opioids, which have been used as analgesics for centuries. Opioid receptors belong to the rhodopsin family of G-protein coupled receptors (GPCRs). In the absence of crystal structures of opioid receptors, 3D homology models have been reported with bovine rhodopsin as a template, though the sequence homology is low. Recently, it has been reported that use of multiple templates results in a better model for a target having low sequence identity with a single template. With the objective of carrying out a comparative study on the structural quality of the 3D models based on single and multiple templates, the homology models for opioid receptors (mu, delta and kappa) were generated using bovine rhodopsin as single template and the recently deposited crystal structures of squid rhodopsin, turkey β-1 and human β-2 adrenoreceptors along with bovine rhodopsin as multiple templates. In this paper we report the results of comparison between the refined 3D models based on multiple sequence alignment (MSA) and models built with bovine rhodopsin as template, using validation programs PROCHECK, PROSA, Verify 3D, Molprobity and docking studies. The results indicate that homology models of mu and kappa with multiple templates are better than those built with only bovine rhodopsin as template, whereas, in many aspects, the homology model of delta opioid receptor with single template is better with respect to the model based on multiple templates. Three nonselective ligands were docked to both the models of mu, delta and kappa opioid receptors using GOLD 3.1. The results of docking complied well with the pharamacophore, reported for nonspecific opioid ligands. The comparison of docking results for models with multiple templates and those with single template have been discussed in detail. Three selective ligands for each receptor were also docked. As the crystallographic structures are not yet known, this comparison will help in choosing better homology models of opioid receptors for studying ligand receptor interactions to design new potent opioid antagonists.  相似文献   

9.
UreE is a metallo-chaperone assisting the incorporation of two adjacent Ni(2+) ions in the active site of urease. This study describes an attempt to distill general information on this protein using a computational post-genomic approach for the understanding of the structural details of the molecular function of UreE in nickel trafficking. The two crystal structures recently determined for UreE from Bacillus pasteurii (BpUreE) and Klebsiella aerogenes (KaUreE) were comparatively analyzed. This analysis provided insights into the protein structural and conformational features. A structural database of UreE proteins from a large number of different genomes was built using homology modeling. All available sequences of UreE were retrieved from protein and cDNA databases, and their structures were modeled on the crystal structures of BpUreE and KaUreE. A self-consistent iterative protocol was devised for multiple sequence alignment optimization involving secondary structure prediction and evaluation of the energy features of the obtained modeled structures. The quality of all models was tested using standard assessment procedures. The final optimized structure-based multiple alignment and the derived model structures provided insightful information on the evolutionary conservation of key residues in the protein sequence and surface patches presumably involved in protein recognition during the urease active site assembly.  相似文献   

10.
The structures of membrane transporters are still mostly unsolved. Only recently, the first two high-resolution structures of transporters of the major facilitator superfamily (MFS) were published. Despite the low sequence similarity of the two proteins involved, lactose permease and glycerol-3-phosphate transporter, the reported structures are highly similar. This leads to the hypothesis that all members of the MFS share a similar structure, regardless of their low sequence identity. To test this hypothesis, we generated models of two other members of the MFS, the Tn10-encoded metal-tetracycline/H(+) antiporter (TetAB) and the rat vesicular monoamine transporter (rVMAT2). The models are based on the two MFS structures and on experimental data. The models for both proteins are in good agreement with the data available and support the notion of a shared fold for all MFS proteins.  相似文献   

11.
12.
Serotonin(1A) receptors are important neurotransmitter receptors and belong to the superfamily of G-protein coupled receptors (GPCRs). Although it is an important drug target, the crystal structure of the serotonin(1A) receptor has not been solved yet. Earlier homology models of the serotonin(1A) receptor were generated using rhodopsin as a template. We have used two recent crystal structures of the human β(2)-adrenergic receptor, one of which shows specific cholesterol binding site(s), as templates to model the human serotonin(1A) receptor. Since the sequence similarity between the serotonin(1A) receptor and β(2)-adrenergic receptor is considerably higher than the similarity between the serotonin(1A) receptor and rhodopsin, our model is more reliable. Based on these templates, we generated models of the serotonin(1A) receptor in the absence and presence of cholesterol. The receptor model appears more compact in the presence of cholesterol. We validated the stability of 'compactness' using coarse-grain MD simulation. Importantly, all ligands exhibit higher binding energies when docked to the receptor in the presence of cholesterol, thereby implying that membrane cholesterol facilitates ligand binding to the serotonin(1A) receptor. To the best of our knowledge, this is one of the first reports in which lipid-specific receptor conformations have been modeled by homology modeling.  相似文献   

13.
MdfA is an Escherichia coli multidrug transporter of the major facilitator superfamily (MFS) of secondary transporters. Although several aspects of multidrug recognition by MdfA have been characterized, better understanding the detailed mechanism of its function requires structural information. Previous studies have modeled the 3D structures of MFS proteins, based on the X-ray structure of LacY and GlpT. However, because of poor sequence homology, between LacY, GlpT, and MdfA additional constraints were required for a reliable homology modeling. Using an algorithm that predicts the angular orientation of each transmembrane helix (TM) (kPROT), we obtained a remarkably similar pattern for the 12 TMs of MdfA and those of GlpT and LacY, suggesting that they all have similar helix packing. Consequently, a 3D model was constructed for MdfA by structural alignment with LacY and GlpT, using the kPROT results as an additional constraint. Further refinement and a preliminary evaluation of the model were achieved by correlated mutation analysis and the available experimental data. Surprisingly, in addition to the previously characterized membrane-embedded glutamate at position 26, the model suggests that Asp34 and Arg112 are located within the membrane, on the same face of the cavity as Glu26. Importantly, Arg112 is evolutionarily conserved in secondary drug transporters, and here we show that a positive charge at this position is absolutely essential for multidrug transport by MdfA.  相似文献   

14.
Tumor cells rely on elevated glucose consumption and metabolism for survival and proliferation. Glucose transporters mediating glucose entry are key proximal rate-limiting checkpoints. Unlike GLUT1 that is highly expressed in cancer and more ubiquitously expressed in normal tissues, GLUT4 exhibits more limited normal expression profiles. We have previously determined that insulin-responsive GLUT4 is constitutively localized on the plasma membrane of myeloma cells. Consequently, suppression of GLUT4 or inhibition of glucose transport with the HIV protease inhibitor ritonavir elicited growth arrest and/or apoptosis in multiple myeloma. GLUT4 inhibition also caused sensitization to metformin in multiple myeloma and chronic lymphocytic leukemia and a number of solid tumors suggesting the broader therapeutic utility of targeting GLUT4. This study sought to identify selective inhibitors of GLUT4 to develop a more potent cancer chemotherapeutic with fewer potential off-target effects. Recently, the crystal structure of GLUT1 in an inward open conformation was reported. Although this is an important achievement, a full understanding of the structural biology of facilitative glucose transport remains elusive. To date, there is no three-dimensional structure for GLUT4. We have generated a homology model for GLUT4 that we utilized to screen for drug-like compounds from a library of 18 million compounds. Despite 68% homology between GLUT1 and GLUT4, our virtual screen identified two potent compounds that were shown to target GLUT4 preferentially over GLUT1 and block glucose transport. Our results strongly bolster the utility of developing GLUT4-selective inhibitors as anti-cancer therapeutics.  相似文献   

15.
The putative Major Facilitator Superfamily (MFS) transporter, SV2A, is the target for levetiracetam (LEV), which is a successful anti-epileptic drug. Furthermore, SV2A knock out mice display a severe seizure phenotype and die after a few weeks. Despite this, the mode of action of LEV is not known at the molecular level. It would be extremely desirable to understand this more fully in order to aid the design of improved anti-epileptic compounds. Since there is no structure for SV2A, homology modelling can provide insight into the ligand-binding site. However, it is not a trivial process to build such models, since SV2A has low sequence identity to those MFS transporters whose structures are known. A further level of complexity is added by the fact that it is not known which conformational state of the receptor LEV binds to, as multiple conformational states have been inferred by tomography and ligand binding assays or indeed, if binding is exclusive to a single state. Here, we explore models of both the inward and outward facing conformational states of SV2A (according to the alternating access mechanism for MFS transporters). We use a sequence conservation analysis to help guide the homology modelling process and generate the models, which we assess further with Molecular Dynamics (MD). By comparing the MD results in conjunction with docking and simulation of a LEV-analogue used in radioligand binding assays, we were able to suggest further residues that line the binding pocket. These were confirmed experimentally. In particular, mutation of D670 leads to a complete loss of binding. The results shed light on the way LEV analogues may interact with SV2A and may help with the on-going design of improved anti-epileptic compounds.  相似文献   

16.
We present a critical assessment of the performance of our homology model refinement method for G protein‐coupled receptors (GPCRs), called LITICon that led to top ranking structures in a recent structure prediction assessment GPCRDOCK2010. GPCRs form the largest class of drug targets for which only a few crystal structures are currently available. Therefore, accurate homology models are essential for drug design in these receptors. We submitted five models each for human chemokine CXCR4 (bound to small molecule IT1t and peptide CVX15) and dopamine D3DR (bound to small molecule eticlopride) before the crystal structures were published. Our models in both CXCR4/IT1t and D3/eticlopride assessments were ranked first and second, respectively, by ligand RMSD to the crystal structures. For both receptors, we developed two types of protein models: homology models based on known GPCR crystal structures, and ab initio models based on the prediction method MembStruk. The homology‐based models compared better to the crystal structures than the ab initio models. However, a robust refinement procedure for obtaining high accuracy structures is needed. We demonstrate that optimization of the helical tilt, rotation, and translation is vital for GPCR homology model refinement. As a proof of concept, our in‐house refinement program LITiCon captured the distinct orientation of TM2 in CXCR4, which differs from that of adrenoreceptors. These findings would be critical for refining GPCR homology models in future. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Three-dimensional structure models of the ligand-binding domain of the ecdysone receptor of Heliothis virescens were built by the homology modeling technique from the crystal structures of nuclear receptors. Two models were created based both on known ligand-binding domain structures of the receptors with the highest sequence identity to the ecdysone receptor, and on those of steroid hormone receptors. The latter model, which was found to have better stereochemical quality and be in good agreement with the binding of the steroidal framework of the endogenous agonist 20-hydroxyecdysone, was used for docking studies. The docking of 20-hydroxyecdysone to the receptor model revealed that the ligand molecule can interact with the receptor in a similar manner to other steroid hormone-receptor complexes. The docking of a dibenzoylhydrazine agonist, chromafenozide, was performed based on the correspondences between the molecule and 20-dydroxyecdysone expected by molecular comparison. The interactions of the ligands with the receptor in the complexes modeled were investigated and found to be consistent with known structure-activity relationships.  相似文献   

18.
Toll‐like receptors (TLRs) are innate immune pattern‐recognition receptors endowed with the capacity to detect microbial pathogens based on pathogen‐associated molecular patterns. The understanding of the molecular principles of ligand recognition by TLRs has been greatly accelerated by recent structural information, in particular the crystal structures of leucine‐rich repeat‐containing ectodomains of TLR2, 3, and 4 in complex with their cognate ligands. Unfortunately, for other family members such as TLR7, 8, and 9, no experimental structural information is currently available. Methods such as X‐ray crystallography or nuclear magnetic resonance are not applicable to all proteins. Homology modeling in combination with molecular dynamics may provide a straightforward yet powerful alternative to obtain structural information in the absence of experimental (structural) data, provided that the generated three‐dimensional models adequately approximate what is found in nature. Here, we report the development of modeling procedures tailored to the structural analysis of the extracellular domains of TLRs. We comprehensively compared secondary structure, torsion angles, accessibility for glycosylation, surface charge, and solvent accessibility between published crystal structures and independently built TLR2, 3, and 4 homology models. Finding that models and crystal structures were in good agreement, we extended our modeling approach to the remaining members of the TLR family from human and mouse, including TLR7, 8, and 9.  相似文献   

19.
Atypical microtubular structures of the protozoan parasite Entamoeba histolytica (Eh) have been attributed to amino acid sequence divergence of Eh tubulin. To investigate if this sequence divergence leads to significant differences in the tertiary structure of the Eh alphabeta-tubulin heterodimer, we have modeled alphabeta-tubulin heterodimer of Eh based on the crystal structure of mammalian tubulin. The predicted 3D homology model exhibits an overall resemblance with the known crystal structure of mammalian tubulin except for the 16 residue long carboxy terminal region of Eh beta-tubulin. We propose that this C-terminal region may provide steric hindrance in the polymerization of Eh alphabeta-tubulin for microtubule formation. Using docking studies, we have identified the binding sites for different microtubule specific drugs on Eh beta-tubulin. Our model provides a rational framework, both for understanding the contribution of Eh beta-tubulin C-terminal region to alphabeta-tubulin polymerization and design of new anti-protozoan drugs in order to control amoebiasis.  相似文献   

20.
The structure of the human erythrocyte facilitative glucose transporter (GLUT1) has been intensively investigated using a wide array of chemical and biophysical approaches. Despite the lack of a crystal structure for any of the facilitative monosaccharide transport proteins, detailed information regarding primary and secondary structure, membrane topology, transport kinetics, and functionally important residues has allowed the construction of a sophisticated working model for GLUT1 tertiary structure. The existing data support the formation of a central aqueous channel formed by the juxtaposition of several amphipathic transmembrane-spanning alpha-helices. The results of extensive mutational analysis of GLUT1 have elucidated many of the structural determinants of the glucose permeation pathway. Continued application of currently available technologies will allow further refinement of this working model. In addition to providing insights into the molecular basis of both normal and disordered glucose homeostasis, this detailed understanding of structure/function relationships within GLUT1 can provide a basis for understanding transport carried out by other members of the major facilitator superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号