首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The radular muscles of the amphineuran molluscs Amaurochiton glaucus and Sipharochiton pelliserpentis contain both a dimeric and a monomeric form of myoglobin. The dimeric form of the protein is composed of two polypeptide chains covalently linked to each other via one or more disulphide bonds. The dimeric protein shows co-operative O2-binding curves. Kinetic investigations indicate that CO binding is co-operative in the dimeric protein, subsequent to full photolysis, but mono-exponential following 10% photolysis. O2 recombination following part photolysis is mono-exponential in the dimeric form, whereas O2 dissociation kinetics indicates the presence of chain heterogeneity. The monomeric form of the protein exhibits mono-exponential time courses in all the experimental situations explored. Although the rate constants associated with the reactions of individual dimer and monomer molecular species are very different, the two species of chiton investigated show remarkably similar properties when compared with each other. All the reactions studied are pH-independent in the range pH 6-8. Amino acid analysis indicates that the monomeric units that combine to form the dimeric species are not identical with the naturally occurring monomeric form. A comparison is made between the chiton myoglobins and other similar O2-binding proteins.  相似文献   

2.
Using the double mixing method we have studied the reactions of the partially liganded species (Hb4, Hb4L1, Hb4L2, Hb4L3) of normal human hemoglobin with carbon monoxide. In the first mixing, oxygen is removed from the species Hb4(O2) chi (CO) gamma and at the second mixing the species Hb4(CO) gamma reacts with CO. At 90% saturation of oxyHb with CO the main intermediate species are Hb4(CO)3 and Hb4(CO)2, and at 10% saturation Hb4 and Hb4(CO). The four CO-combination rate constants determined are: l'1 = 1 X 10(5) M-1 S-1, l'2 = 7 X 10(5) M-1 S-1, l'3 = 2 X 10(5) M-1 S-1 and l'4 = 4.8 X 10(6) M-1 S-1. The results indicate that there is no monotonic increase in the successive CO-combination rate constants. It is difficult to explain these results on the basis of the two-state model (Monod et al., 1965) or the stereochemical model of Perutz (1970).  相似文献   

3.
The reaction of human hemoglobin with carbon monoxide has been investigated near the equilibrium isosbestic wavelength (i.e. 426 nm). As previously reported by others [Gray, R.D. & Gibson, Q. H. (1971) J. Biol. Chem. 246, 5176-5178], in the presence of 0.1 M phosphate pH 7.0 a rise-and-fall kinetic pattern can be observed at this wavelength, which indicates the presence of at least one spectroscopically detectable intermediate species. In this paper we demonstrate that (a) the intermediate species is thermodynamically stable; (b) both phases refer to bimolecular processes; (c) only the initial fast phase is observed when deoxyhemoglobin is reacted with substoichiometric amounts of CO (i.e. final [CO]/[heme] less than or equal to 0.5); (d) only the second slow phase is observed when hemoglobin that is partially saturated with CO (Y less than or equal to 0.5) is reacted with saturating CO concentrations; (e) the CO dissociation rate constant measured on the intermediate formed after a partial CO saturation at a final Y approximately 0.4 has a value similar to that observed starting from the fully liganded form. These results can be accounted for by a two-state allosteric model [Monod, J., Wyman, J. & Changeux, J.-P. (1965) J. Mol. Biol. 12, 88-118] under the assumption that either (a) 426 nm is an isosbestic wavelength for the T0-R spectral changes but not for the T0-T liganded reaction; or (b) a functional heterogeneity of the two types of subunits is present in the T state and at this wavelength this feature is spectroscopically detectable.  相似文献   

4.
M Wind  A Stern  S Simon  L Law 《Biochemistry》1976,15(23):5161-5167
The pH dependence of several functional properties of human fetal and adult hemoglobins have been studied to determine the relative stabilities of the high and low affinity (R and T) quaternary conformations of the two proteins under different conditions. Fetal aqumethemoglobin undergoes changes in sulfhydryl reactivity, absorption spectrum, and circular dichroism in the presence of insitol hexaphospahte which are consistent with a transition from the R to T quaternary state, but only at pH values below 6.8. In adult hemoglobin this transition can be induced pH values below 7.2. Even in the absence of phosphates, the ultraviolet (uv) circular dichroism spectrum of fetal aquomethemoglobin at low pH indicates the presence of some T conformation. The initial value for the second-order rate constant for combination of fetal deoxyhemoglobin with carbon monoxide is comparable to that for adult hemoglobin in the absence of organic phosphates and is not reduced by organic phosphates as much as that for the adult protein. The apparent first-order rate constant for dissociation of CO from fully liganded fetal hemoglobin, measured by replacement with NO, increases threefold in the absence of organic phosphates, and fourfold in the presence of organic phosphates, with decreasing pH; the midpoint of the pH dependent transition occurs around 6.8. A similar increase in the apparent first-order rate constant for O2 dissociation as measured by replacement with CO, can also be seen with decreasing pH. NO-hemoglobin F can be converted to the T state even when fully liganded simply by lowering the pH, as judged by uv circular dichroism, visible difference spectrum in the region of the alpha and beta bands, and a dramatic increase in the rate of NO dissociation, measured by replacement with CO in the presence of dithionite. These results are all consistent with a model for fetal hemoglobin in which the organic phosphate site may be functionally weakened by replacement of a residue involved in ionic interactions with the negatively charged phosphate groups, but in which the low affinity T conformation is intrinsically more stable than that of adllt hemoglobin. According to this model,the differences between fetal and adult hemoglobin can be accounted for primarily in terms of the relative stabilities of R and T conformations in each of the proteins with differences in the intrinsic properties of the individual conformations contributing effects of only secondary importance.  相似文献   

5.
Association and dissociation rate constants for O2, CO, and methyl isocyanide binding to native and distal pocket mutants of R state human hemoglobin were measured using ligand displacement and partial photolysis techniques. Individual rate constants for the alpha and beta subunits were resolved by comparisons between the kinetic behavior of the native and mutant proteins. His-E7 was replaced with Gly and Gln in both alpha and beta subunits and with Phe in beta subunits alone. In separate experiments Val-E11 was replaced with Ala, Leu, and Ile in each globin chain. The parameters describing ligand binding to R state alpha subunits are sensitive to the size and polarity of the amino acids at positions E7 and E11. The distal histidine in this subunit inhibits the bimolecular rate of binding of both O2 and CO, sterically hinders bound CO and methyl isocyanide, and stabilizes bound O2 by hydrogen bonding. The Val-E11 side chain in alpha chains also appears to be part of the kinetic barrier to O2 and CO binding since substitution with Ala causes approximately 10-fold increases in the association rate constants for the binding of these diatomic ligands. However, substitution of Val-E11 by Ile produces only small decreases in the rates of ligand binding to alpha subunits. For R state beta subunits, the bimolecular rates of O2 and CO binding are intrinsically large, approximately 2-5-fold greater than those for alpha subunits, and with the exception of Val-E11----Ile mutation, little affected by substitutions at either the E7 or E11 positions. For the beta Val-E11----Ile mutant the association rate and equilibrium constants for all three ligands decreased 10-50-fold. All of these results agree with Shaanan's conclusions that the distal pocket in liganded beta subunits is more open whereas in alpha subunits bound ligands are more sterically hindered by adjacent distal residues (Shaanan, B. (1983) J. Mol. Biol. 171, 31-59). In the case of O2 binding to alpha subunits, the unfavorable steric effects are compensated by the formation of a hydrogen bond between the nitrogen atom of His-E7 and bound dioxygen.  相似文献   

6.
Molecular aspects of embryonic mouse haemoglobin ontogeny.   总被引:1,自引:1,他引:0       下载免费PDF全文
Embryos from C57BL/6J mice between the gestational ages of 9 and 16 days possess three embryonic haemoglobins EI, EII and EIII, the proportions of which change as a function of gestational age. Component EI, originally present at approx. 65% at day 9, decreases to approx. 20% by day 16, while component EII increases in an inverse manner to that of component EI. During this period component EIII remains essentially constant at approx. 25%. Separation of these species by ion-exchange chromatography has allowed the characterization of the Hill coefficient, Bohr effect, heat of oxygenation and binding of allosterically active organic phosphates for each component. The three components show marked functional heterogeneity and also differ from maternal haemoglobin. Oxygenation curves for whole embryonic blood show distinct deviations from simple binding behaviour. The presence of a high-affinity component within the blood samples may be accounted for by the presence of haemoglobin EI. By using parameters obtained from the study of the isolated components it has been possible to synthesize mathematically the O2-binding curves, obtained experimentally, throughout the gestational period. The characteristics of the isolated haemoglobin components of embryonic mouse blood are discussed in terms of the changing demands for O2 likely to be encountered by the developing embryo.  相似文献   

7.
Functional heterogeneity in O2 or CO binding of sites of dissociated molluscan hemocyanin polypeptide chains (Helix pomatia and Octopus vulgaris) has been estimated by an analysis of accurate noncooperative binding curves. Three types of experiments were performed: pure O2 or CO binding, competitive displacement of one ligand by the other, and simultaneous removal of both gases from protein partially saturated with O2 and CO. The data were analyzed in terms of a model which has two fractions of sites with different properties for O2 and CO. The relative proportion of the different binding sites and their affinity constant values were found by the combined use of the three different procedures. All species show a marked functional heterogeneity of sites for O2 binding, while for CO binding it has been observed only in the case of H. pomatia beta-hemocyanin. Moreover, in all three molluscan hemocyanins examined, the two classes of O2-binding sites, although present in different proportions within the polypeptide chains, display similar affinity constant values. The data reported show a good consistency with results obtained using digested and isolated domains, providing confidence in the analytical procedure used. From comparison of the O2/CO affinity ratios (KO2, KCO) of each class it may be suggested that the difference in O2 affinity of two kinds of binding sites is related to a different local structure of the active sites. The results, moreover, unequivocally confirm that binding and displacement of two gaseous ligands to hemocyanin occur by a simple competitive mechanism, although the binding site is structurally complex and the two ligands are bound with different geometries.  相似文献   

8.
The analysis of a chicken myosin heavy chain cDNA clone   总被引:1,自引:0,他引:1  
A cDNA library has been constructed in the plasmid pBR322 using a large size class of RNA derived from chicken embryonic leg muscle as the template material. A clone containing a 2350-base pair insert was selected and identified as coding for the myosin heavy chain sequence, based upon its ability to hybridize to genomic myosin heavy chain clones, and by direct nucleotide sequencing. Cross-hybridization experiments with myosin heavy chain genomic clones, and mRNAs derived from different muscle types were used to explore the heterogeneity of the various myosin heavy chain isoforms at the level of the coding sequences. Although extensive sequence homology with the other isoforms was observed, a fast white isoform-specific subclone was constructed, and used to demonstrate that different genes code for the adult and embryonic fast white myosin heavy chain proteins.  相似文献   

9.
Double mixing stopped-flow experiments have been performed to study the stability of asymmetric hemoglobin (Hb) hybrids, consisting of a deoxy and a liganded dimer. The doubly liganded [deoxy/cyano-met] hybrid (species 21) was reported to have an enhanced stability, with tetramer to dimer dissociation requiring over 100 seconds, based on a method that required an incubation of over two days. However, kinetic experiments revealed rapid ligand binding to species 21, as for triply liganded tetramers, which dissociate within a few seconds. For the present study, [deoxy dimer/azido-met dimer] hybrids are formed within 200 ms by stopped-flow mixing of dithionite with a solution containing oxyHb and azido-metHb. The dithionite scavenges oxygen, thus transforming oxyHb to deoxyHb, and the [oxy dimer/azido-met dimer] hybrid to the asymmetric [deoxy/azido-met] hybrid (species 21). After a variable aging time of the asymmetric hybrids, their allosteric state is probed by CO binding in a second mixing. As previously observed the freshly produced asymmetric hybrids bind CO rapidly as for R-state Hb. As the hybrids are aged from 0.1 to 10 seconds, the fraction of slow CO binding increases, consistent with a dissociation of the asymmetric hybrid to form the more stable deoxy Hb tetramer which reacts slowly with CO. Control experiments showed a predominantly slow phase for deoxy Hb, and fast rebinding for the symmetric hybrids.The kinetic data can be simulated with a tetramer to dimer dissociation rate for species 21 of 1.5/second at 100 mM NaCl (pH 7.2) and 1.9/second at 180 mM NaCl (pH 7.4). These values are similar to those reported for liganded Hb, as opposed to deoxy (T-state) tetramers which dissociate over four orders of magnitude more slowly. As expected from simulations of dimer exchange, the observed transition rate depends on the initial fractions of oxy- and metHb; this effect is not consistent with a slow R to T transition. These results, showing a lifetime of about one second for species 21, do not support the symmetry rule which is based on an enhanced stability of the asymmetric hybrid.  相似文献   

10.
Heme oxygenases have an increased binding affinity for O2 relative to CO. Such discrimination is critical to the function of HO enzymes because one of the main products of heme catabolism is CO. Kinetic studies of mammalian and bacterial HO proteins reveal a significant decrease in the dissociation rate of O2 relative to other heme proteins such as myoglobin. Here we report the kinetic rate constants for the binding of O2 and CO by the heme oxygenases from Neisseria meningitidis (nmHO) and Pseudomonas aeruginosa (paHO). A combination of stopped-flow kinetic and laser flash photolysis experiments reveal that nmHO and paHO both maintain a similar degree of ligand discrimination as mammalian HO-1 and the HO from Corynebacterium diphtheriae. However, in addition to the observed decrease in dissociation rate for O2 by both nmHO and paHO, kinetic analyses show an increase in dissociation rate for CO by these two enzymes. The crystal structures of nmHO and paHO both contain significant differences from the mammalian HO-1 and bacterial C. diphtheriae HO structures, which suggests a structural basis for ligand discrimination in nmHO and paHO.  相似文献   

11.
T-state hemoglobin with four ligands bound   总被引:8,自引:0,他引:8  
M C Marden  J Kister  B Bohn  C Poyart 《Biochemistry》1988,27(5):1659-1664
Flash photolysis kinetics have been measured for ligand recombination to hemoglobin (Hb) in the presence of two effectors: bezafibrate (Bzf) and inositol hexakisphosphate (IHP). The combined influence of the two independent effectors leads to predominantly T-state behavior. Samples equilibrated with 0.1 atm of CO are fully saturated, yet after photodissociation they show only T-state bimolecular recombination rates at all photolysis levels; this indicates that the allosteric transition from R to T occurs before CO rebinding and that the allosteric equilibrium favors the T-state tetramer with up to three ligands bound. Since all four ligands bind at the rate characteristic for the T-state, the return transition from T to R must occur after the fourth ligand was bound. At 1 atm of CO, rebinding to the initial R state competes with the allosteric transition resulting in a certain fraction of CO bound at the rate characteristic for the R state; this fraction is greater the smaller the percentage dissociation. Under 1 atm of oxygen, samples are not more than 93% saturated and show mainly T-state kinetics. The results show that all four hemes can bind oxygen or CO ligands in the T structure. The fraction of the kinetics occurring as geminate is less for partially liganded (T-state) samples than for fully liganded (R-state) Hb.  相似文献   

12.
A combined stopped flow-laser photolysis apparatus was used to measure the quantum efficiency for removal of carbon monoxide bound to human hemoglobin as a function of fractional CO saturation. This flow-flash technique allows the properties of partially liganded hemoglobin molecules, which are sparsely populated under equilibrium conditions, to be conveniently studied. Experiments performed at pH 7 and 20 degrees C both in the presence and absence of phosphates gave a similar dependence of quantum efficiency on fractional saturation. The observed quantum efficiency was 0.90 +/- 0.06 at 10% saturation and decreased to 0.47 +/- 0.02 as full saturation was approached. An allosteric model in which Hb(CO)1 has a quantum efficiency of 0.99 while other liganded species have quantum efficiencies of 0.47 was used to produce a good simulation of the results.  相似文献   

13.
The principal component of normal adult human hemoglobin Ao, was equilibrated under various conditions with 13CO2. In addition, derivatives containing specifically carbamylated NH2-terinal groups in alpha or beta chains, or both, were prepared by treatment with cyanate, and equilibrated likewise to allow the identification of specific resonances observed by 13C nuclear magnetic resonance. In deoxyhemoglobin, a resonanance at 29.2 ppm upfield of external CS2 was assigned to the alpha chain terminal adduct, and one at 29.8 ppm to the beta chain terminal adduct. In the liganded state as the CO derivative, the terminal adduct on both chains showed a common resonance position at 29.8 ppm. Small effects of pH on the resonance positions were observed. Under certain conditions, a resonance was observed at 33.4 ppm, probably not ascribable to a carbamino compound. A carbamino resonance that became prominent at higher pH was found at 28.4 ppm, and is tentatively ascribed to one or more adducts on epsilon amino groups. The beta chain resonances in particular are minimized by the presence of inositol hexaphosphate or 2,3-diphosphoglycerate. Quantitative analysis of the resonance intensities shows that the effects of conversion from the deoxy to the liganded state in reducing the degree of carbamino adduct is much more pronounced for the beta than for the alpha chains.  相似文献   

14.
Normal values of Bohr effect of oxygenation of partially oxidized hemoglobin A with ferrihemes liganded either with H2O and OH or with CN have been found in the range of pH values from 6.8 to 7.6 in 45 micrometer (Fe)-hemoglobin containing 36--38% of ferrihemes. As the changes of oxygen affinity of Hb A induced by changes of pH are due to the modifications of R state, this quaternary conformation is thought to be unchanged in the studied of R state, this quaternary conformation is thought to be unchanged in the studied forms of partially oxidized hemoglobin. It is suggested that interactions between ferric and ferrous hemes leading to the increased affinity of ferrous hemes to oxygen occur in deoxygenated form of partially oxidized hemoglobin. In partially oxidized hemoglobin with ferric hemes liganded with H2O asymmetry of oxygen binding curves has been noted, which is not observed in forms with ferric hemes liganded with OH ot CN. This shows the effect of ligands of ferric hemes on interactions between chains containing ferric and ferrous hemes.  相似文献   

15.
The ternary effects of transpiration rate on the rate of assimilation of carbon dioxide through stomata, and on the calculation of the intercellular concentration of carbon dioxide, are now included in standard gas exchange studies. However, the equations for carbon isotope discrimination and for the exchange of oxygen isotopologues of carbon dioxide ignore ternary effects. Here we introduce equations to take them into account. The ternary effect is greatest when the leaf-to-air vapour mole fraction difference is greatest, and its impact is greatest on parameters derived by difference, such as the mesophyll resistance to CO(2) assimilation, r(m) . We show that the mesophyll resistance to CO(2) assimilation has been underestimated in the past. The impact is also large when there is a large difference in isotopic composition between the CO(2) inside the leaf and that in the air. We show that this partially reconciles estimates of the oxygen isotopic composition of CO(2) in the chloroplast and mitochondria in the light and in the dark, with values close to equilibrium with the estimated oxygen isotopic composition of water at the sites of evaporation within the leaf.  相似文献   

16.
Stabilization of the T-state of hemoglobin   总被引:1,自引:0,他引:1  
The effect of inositol hexaphosphate and bezafibrate on binding of O2 and CO to HbAO at high concentrations (1 mM) has been evaluated using thin layer optical techniques. Data analysis shows 1) the occurrence of greatly reduced ligand dependent cooperativity (Hill slope of 2.23 for CO and 1.51 for O2), and 2) the presence of significant triply ligated species. The data fits a nested allosteric two-state MWC model in which the T state consists of two allosteric substrates, Tt and Tr, where Tt binds only to the alpha chains and Tr binds to both alpha and beta chains. The model indicates that the triply ligated species consists of a predominant amount of T form, agreeing with kinetic observations of CO ligated hemoglobin. The maximum amount of triply ligated R molecules (CO or O2) implicated is less than 1%, a result similar to that found previously for binding studies made in the absence of BZF and IHP.  相似文献   

17.
A number of group A streptococcal isolates have been compared for their nonimmune reactivity with each human IgG subclass, and rabbit, pig, or horse IgG. The results obtained demonstrate considerable heterogeneity in the expression of type II IgG-binding proteins among and within group A isolates. Extraction and analysis of type II IgG-binding proteins from selected strains demonstrate the existence of five functionally distinct IgG-binding proteins. The type IIo IgG binding protein displayed the greatest range of reactivities, binding to all four human IgG subclasses, and rabbit, pig, and horse IgG. A variant of this protein, designated type II'o, bound all four human subclasses and rabbit IgG, but failed to react with pig or horse IgG. A type IIa protein was recovered from certain group A strains which bound human IgG1, IgG2, IgG4, as well as reacting with rabbit, pig, and horse IgG. A functionally related type IIc activity that displayed all of the reactivities of the type IIa protein but did not bind with human IgG2 was also identified. The final functional form of group A IgG-binding protein, the type IIb protein, bound exclusively to human IgG3. Comparison of these functionally different type II IgG-binding proteins demonstrated no simple structure-function relationship. These studies underscore the heterogeneity of type II Ig-binding proteins expressed by different group A streptococci and document that a single strain can change its pattern of expression of type II IgG-binding protein both quantitatively and qualitatively.  相似文献   

18.
A monoclonal antibody, 2B6, has been prepared against the embryonic myosin heavy chain of rat skeletal muscle. On solid phase radioimmunoassay, 2B6 shows specificity to myosin isozymes known to contain the embryonic myosin heavy chain and on immunoblots of denatured contractile proteins and on competitive radioimmunoassay, it reacts only with the myosin heavy chain of embryonic myosin and not with the myosin heavy chain of neonatal or adult fast and slow myosin isozymes or with other contractile or noncontractile proteins. This specificity is maintained with cat, dog, guinea pig, and human myosins, but not with chicken myosins. 2B6 was used to define which isozymes in the developing animal contained the embryonic myosin heavy chain and to characterize the changes in embryonic myosin heavy chain in fast versus slow muscles during development. Finally, 2B6 was used to demonstrate that thyroid hormone hastens the disappearance of embryonic myosin heavy chain during development, while hypothyroidism retards its decrease. This confirmed our previous conclusion that thyroid hormones orchestrate changes in isozymes during development.  相似文献   

19.
Ligand uptake and release by the haemoglobin contained within adult mouse erythrocytes was studied by using dual-wavelength stopped-flow techniques. The rate of O2 uptake is very much lower than that expected for an equivalent concentration of haemoglobin in free solution. The O2-concentration-dependence found in uptake experiments is greater than first-order. CO uptake shows the same pattern of reactivity as does O2, but the associated rates of uptake are lower and the concentration-dependence of the CO rates is first-order. O2 release from the adult erythrocytes was measured by stopped-flow mixing with Na2S2O4. Under these circumstances the deoxygenation of intracellular haemoglobin shows accelerating time courses. The apparent rate-constant-dependence on dithionite concentration shows a rate limit at high reductant concentrations. Computer simulations of both ligand uptake and release processes were carried out by using a three-dimensional model. The simulations clearly indicate that in rapid-mixing experiments the rather slow experimentally observed O2 uptake rate is due to rate-limiting diffusion through an extracellular stagnant solvent layer. In the case of O2 release, however, the major rate-controlling process is the rate of O2 dissociation from the haemoglobin molecules, which accelerates during the deoxygenation process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号