首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A bacteriophage T4 gene which functions to inhibit Escherichia coli Lon protease has been identified. This pin (proteolysis inhibition) gene was selected for its ability to support plaque formation by a lambda Ots vector at 40 degrees C. Southern blot experiments indicated that this T4 gene is included within the 4.9-kilobase XbaI fragment which contains gene 49. Subcloning experiments showed that T4 gene 49.1 (designated pinA) is responsible for the ability of the Ots vector to form plaques at 40 degrees C. Deficiencies in Lon protease activity are the only changes known in E. coli that permit lambda Ots phage to form plaques efficiently at 40 degrees C. lon+ lysogens of the lambda Ots vector containing pinA permitted a lambda Ots phage to form plaques efficiently at 40 degrees C. Furthermore, these lysogens, upon comparison with similar lysogens lacking any T4 DNA, showed reduced levels of degradation of puromycyl polypeptides and of canavanyl proteins. The lon+ lysogens that contained pinA exhibited other phenotypic characteristics common to lon strains, such as filamentation and production of mucoid colonies. Levels of degradation of canavanyl proteins were essentially the same, however, in null lon lysogens which either contained or lacked pinA. We infer from these data that the T4 pinA gene functions to block Lon protease activity; pinA does not, however, appear to block the activity of proteases other than Lon that are involved in the degradation of abnormal proteins.  相似文献   

2.
3.
The ATP-binding component (Component II, hereafter referred to as ClpA) of a two-component, ATP-dependent protease from Escherichia coli has been purified to homogeneity. ClpA is a protein with subunit Mr 81,000. It has an intrinsic ATPase activity and activates degradation of protein substrates only in the presence of a second component (Component I, hereafter referred to as ClpP), Mg2+, and ATP. The amount of ClpA varies by less than a factor of 2 in cells grown in different media and at temperatures from 30 to 42 degrees C. ClpA does not appear to be a heat-shock protein since its synthesis is not dependent on htpR. Antibodies against purified ClpA were used to identify lambda transducing phage bearing the clpA gene. The cloned gene contains a DNA sequence expected to code for the first 28 amino acids of ClpA, which were determined by protein sequencing of purified ClpA. The clpA gene in the phage was mutated by insertion of delta kan defective transposons and the mutations were transferred to E. coli by homologous recombination. The clpA gene was mapped to 19 min on the E. coli chromosome. Mutant cells with insertions early in the gene produce no ClpA protein detectable in Western blots, and extracts of such mutant cells have no detectable ClpA activity. clpA- mutants grow well under all conditions tested and are not defective in turnover of proteins during nitrogen starvation nor in the turnover of such highly unstable proteins as the lambda proteins O, N, and cII, or the E. coli proteins SulA, RcsA, and glutamate dehydrogenase. The degradation of abnormal canavanine-containing proteins is defective in clpA mutants especially in cells that also have a lon- mutation. Extracts of clpA- lon- cells have ATP-dependent casein degrading activity.  相似文献   

4.
Lon is an ATP-dependent protease of Escherichia coli. The lon mutation has a pleiotropic phenotype: UV sensitivity, mucoidy, deficiency for lysogenization by bacteriophage lambda and P1, and lower efficiency in the degradation of abnormal proteins. All of these phenotypes are correlated with the loss of protease activity. Here we examine the effects of overproduction of one Lon substrate, SulA, and show that it protects two other substrates from degradation. To better understand this protection, we mutagenized the sulA gene and selected for mutants that have partially or totally lost their ability to saturate the Lon protease and thus can no longer protect another substrate. Some of the SulA mutants lost their ability to protect RcsA from degradation but could still protect the O thermosensitive mutant protein (Ots). All of the mutants retained their capacity to induce cell division inhibition. It was also found that deletion of the C-terminal end of SulA affected its activity but did not affect its susceptibility to Lon. We propose that Lon may have more than one specificity for peptide cleavage.  相似文献   

5.
W Ebel  G J Vaughn  H K Peters  rd    J E Trempy 《Journal of bacteriology》1997,179(21):6858-6861
Capsule gene (cps) expression, which normally occurs at low levels in Escherichia coli lon+ cells, increased 38-fold in lon+ cells carrying a Tn10::delta kan insertion mapping to 24 min on the E. coli chromosome. Null mutations in rcsA, rcsB, or rcsC abolished the effect of the Tn10::delta kan insertion. Sequencing of both sides of the Tn10::delta kan insertion localized the insertion to the previously reported mdoH gene, which encodes a protein involved in biosynthesis of membrane-derived oligosaccharides (MDOs). A model suggesting that the periplasmic levels of MDOs act to signal RcsC to activate cps expression is proposed.  相似文献   

6.
The lon gene of Escherichia coli encodes the ATP-dependent serine protease La and belongs to the family of sigma 32-dependent heat shock genes. In this paper, we report the cloning and characterization of the lon gene from the gram-positive bacterium Bacillus subtilis. The nucleotide sequence of the lon locus, which is localized upstream of the hemAXCDBL operon, was determined. The lon gene codes for an 87-kDa protein consisting of 774 amino acid residues. A comparison of the deduced amino acid sequence with previously described lon gene products from E. coli, Bacillus brevis, and Myxococcus xanthus revealed strong homologies among all known bacterial Lon proteins. Like the E. coli lon gene, the B. subtilis lon gene is induced by heat shock. Furthermore, the amount of lon-specific mRNA is increased after salt, ethanol, and oxidative stress as well as after treatment with puromycin. The potential promoter region does not show similarities to promoters recognized by sigma 32 of E. coli but contains sequences which resemble promoters recognized by the vegetative RNA polymerase E sigma A of B. subtilis. A second gene designated orfX is suggested to be transcribed together with lon and encodes a protein with 195 amino acid residues and a calculated molecular weight of 22,000.  相似文献   

7.
Nonrandom orientation of transposon Tn5supF insertions in phage lambda.   总被引:2,自引:0,他引:2  
D Kersulyte  B R Krishnan  D E Berg 《Gene》1992,114(1):91-96
  相似文献   

8.
A lambda phage (lambdaNK55) carrying the translocatable element Tn10, conferring tetracycline resistance (Tetr), has been utilized to isolate glutamine auxotrophs of Escherichia coli K-12. Such strains lack uridylyltransferase as a result of an insertion of the TN10 element in the glnD gene. The glnD::Tn10 insertion has been mapped at min 4 on the E. coli chromosome and 98% contransducible by phage P1 with dapD. A lambda transducing phage carrying the glnD gene has been identified. A glnD::Tn10 strain synthesizes highly adenylylated glutamine synthetase under all conditions of growth and fails to accumulate high levels of glutamine synthetase in response to nitrogen limitation. However, this strain, under nitrogen-limiting conditions, allows synthesis of 10 to 20 milliunits of biosynthetically active glutamine synthetase per mg of protein, which is sufficient to allow slow growth in the absence of glutamine. The GlnD phenotype in E. coli can be suppressed by the presence of mutations which increase the quantity of biosynthetically active glutamine synthetase.  相似文献   

9.
lon gene product of Escherichia coli is a heat-shock protein   总被引:30,自引:15,他引:15  
The product of the pleiotropic gene lon is a protein with protease activity and has been tentatively identified as protein H94.0 on the reference two-dimensional gel of Escherichia coli proteins. Purified Lon protease migrated with the prominent cellular protein H94.0 in E. coli K-12 strains. Peptide map patterns of Lon protease and H94.0 were identical. A mutant form of the protease had altered mobility during gel electrophoresis. An E. coli B/r strain that is known to be defective in Lon function contained no detectable H94.0 protein under normal growth conditions. Upon a shift to 42 degrees C, however, the Lon protease was induced to high levels in K-12 strains and a small amount of protein became detectable at the H94.0 location in strain B/r. Heat induction of Lon protease was dependent on the normal allele of the regulatory gene, htpR, establishing lon as a member of the high-temperature-production regulon of E. coli.  相似文献   

10.
The Ion gene of E. coli controls the stability of two bacteriophage lambda proteins. The functional half-life of the phage N gene product, measured by complementation, is increased about 5-fold in Ion mutant strains, from 2 min to 10 min. The chemical half-life of N protein, determined by its disappearance on polyacrylamide gels following pulse-chase labeling, increases about three-fold in Ion cells. In contrast to its effect on the N protein, the Ion mutation produces a 50% decrease in the chemical half-life of cII protein. The decay rate of many other phage proteins, including the unstable gene O product, remains unaffected by a host Ion defect. A Ion mutation alters lambda physiology in two ways. First, upon infection, the phage enters the lytic pathway predominantly. This may result from the deficiency of cII protein caused by its decreased stability, since cII product is required for establishment of lysogeny. Second, brief thermal induction of a Ion (lambda c1857) lysogen leads irreversibly to lysis; repression cannot be restablished and the treated cells are committed to forming infective centers. Although N product is normally required for rapid commitment, Ion lysogens become committed more rapidly than Ion+ lysogens, even in the absence of N function. These results identify for the first time native proteins whose stability is affected by the Lon proteolytic pathway. They also indicate that the Lon system may be important in regulating gene expression in E. coli.  相似文献   

11.
Deg phenotype of Escherichia coli lon mutants.   总被引:60,自引:31,他引:29       下载免费PDF全文
Deg. one of the Escherichia coli systems for degrading abnormal polypeptides (e.g., nonsense fragments), is also involved in the degradation of some classes of missense proteins. Both missense proteins of beta-galactosidase and temperature-sensitive phage products appear to be degraded by the Deg system. Mutations in the Deg system are indistinguishable from mutations classically called lon or capR; all map near proC, all are mucoid, defective in protein degradation, sensitive to radiomimetic agents, and defective in P1 lysogenization. All are able to propagate temperature-sensitive phage better than lon+ parental strains. Mutations that suppress the radiation sensitivity of these strains (sul) also suppress the P1 lysogenization defect, but do not affect mucoidy or the degradation defect.  相似文献   

12.
The gene encoding the Lon protease of Erwinia amylovora has been cloned by complementation of an Escherichia coli lon mutant. Analysis of the determined nucleotide sequence of the lon gene revealed extensive homology to the nucleotide sequences of cloned lon genes from E. coli, Myxococcus xanthus, and Bacillus brevis. The predicted amino acid sequence of the E. amylovora Lon protease was 94, 59, and 54% identical to the predicted amino acid sequences of the Lon proteases of E. coli, M. xanthus, and B. brevis, respectively. The -10 and -35 promoter regions of the cloned lon gene had extensive homology to the respective consensus sequences of E. coli heat shock promoters. Promoter mapping of the lon gene located the start site 7 bases downstream of the -10 region. Cloning of the lon promoter upstream of a cat reporter gene demonstrated that expression of the E. amylovora lon gene was inducible by a heat shock. This is the first demonstration of a heat shock-regulated gene in E. amylovora. Site-directed mutagenesis of the -10 region of the lon promoter confirmed that the heat shock expression of the E. amylovora lon gene may be mediated by a sigma 32-like factor. Insertional inactivation of the E. amylovora chromosomal lon gene confirmed that the lon gene was not essential for either vegetative growth or infection of apple seedlings. E. amylovora lon mutants had increased sensitivity to UV irradiation and elevated levels of extracellular polysaccharide, suggesting comparable roles for the Lon proteases in both E. amylovora and E. coli.  相似文献   

13.
Genetic analysis of the rnc operon of Escherichia coli.   总被引:19,自引:9,他引:10       下载免费PDF全文
RNase III, an Escherichia coli double-stranded endoribonuclease, is known to be involved in maturation of rRNA and regulation of several bacteriophage and Escherichia coli genes. Clones of the region of the E. coli chromosome containing the gene for RNase III (rnc) were obtained by screening genomic libraries in lambda with DNA known to map near rnc. A phage clone with the rnc region was randomly mutagenized with a delta Tn10 element, and the insertions were recombined onto the chromosome, generating a series of strains with delta Tn10 insertions in the rnc region. Two insertions that had Rnc- phenotypes were located. One of them lay in the rnc gene, and one was in the rnc leader sequence. Polarity studies showed that rnc is in an operon with two other genes, era and recO. The sequence of the recO gene beyond era indicated it could encode a protein of approximately 26 kilodaltons and, like rnc and era, had codon usage consistent with a low level of expression. Experiments using antibiotic cassettes to disrupt the genes rnc, era, and recO showed that era is essential for E. coli growth but that rnc and recO are dispensable.  相似文献   

14.
N Tojo  S Inouye    T Komano 《Journal of bacteriology》1993,175(8):2271-2277
The lon gene of Escherichia coli is known to encode protease La, an ATP-dependent protease associated with cellular protein degradation. A lon gene homolog from Myxococcus xanthus, a soil bacterium which differentiates to form fruiting bodies upon nutrient starvation, was cloned and characterized by use of the lon gene of E. coli as a probe. The nucleotide sequence of the M. xanthus lon gene was determined. It contains an open reading frame that encodes a 92-kDa protein consisting of 817 amino acid residues. The deduced amino acid sequence of the M. xanthus lon gene product showed 60 and 56% identity with those of the E. coli and Bacillus brevis lon gene products, respectively. Analysis of an M. xanthus strain carrying a lon-lacZ operon fusion suggested that the lon gene is similarly expressed during vegetative growth and development in M. xanthus. In contrast to that of E. coli, the M. xanthus lon gene was shown to be essential for cell growth, since a null mutant could not be isolated.  相似文献   

15.
L-glutamate dehydrogenase (GDH) is stable in exponentially growing Escherichia coli cells but is degraded at a rate of 20-30% per hour in cells starved for either nitrogen or carbon. GDH degradation is energy-dependent, and mutations in ATP-dependent proteases, ClpAP or Lon lead to partial stabilization. Degradation is inhibited by chloramphenicol and is completely blocked in relA mutant cells, suggesting that ribosome-mediated signaling may facilitate GDH degradation. Purified GDH has a single tight site for NADPH binding. Binding of NADPH in the absence of other ligands leads to destabilization of the enzyme. NADPH-induced instability and sensitivity to proteolysis is reversed by tri- and dicarboxylic acids or nucleoside di- and triphosphates. GTP and ppGpp bind to GDH at an allosteric site and reverse the destabilizing effects of NADPH. Native GDH is resistant to degradation by several purified ATP-dependent proteases: ClpAP, ClpXP, Lon, and ClpYQ, but denatured GDH is degraded by ClpAP. Our results suggest that, in vivo, GDH is sensitized to proteases by loss of a stabilizing ligand or interaction with an destabilizing metabolite that accumulates in starving cells, and that any of several ATP-dependent proteases degrade the sensitized protein.  相似文献   

16.
17.
Intracellular accumulation of the inducible cell division inhibitor SulA is modulated by proteases that ensure its degradation, namely, the Lon protease and another ATP-dependent protease(s). Lon- cells are UV sensitive because SulA is stable. We asked whether these ATP-dependent proteases are more active when lon cells are grown at high temperature or in synthetic medium since these conditions decrease the UV sensitivity of lon cells. We found that these growth conditions have no direct effect on Lon-independent degradation of SulA. They may, instead, decrease the SulA-FtsZ interaction.  相似文献   

18.
19.
When deprived of a carbon source, Escherichia coli induces the synthesis of a group of carbon starvation proteins. The degradation of proteins labeled during starvation was found to be an energy-dependent process which was inhibited by the addition of KCN and accelerated when cells were resupplied with a carbon source. The degradation of the starvation proteins did not require the ATP-dependent Lon protease or the energy-independent proteases protease I, protease IV, OmpT, and DegP. During starvation, mutants lacking either the ClpA or ClpP subunit of the ATP-dependent Clp protease showed a partial reduction in the degradation of starvation proteins. Strains lacking ClpP failed to increase degradation of starvation proteins when glucose was added to starving cells. The clpP mutants showed a competitive disadvantage compared with wild-type cells when exposed to repeated cycles of carbon starvation and growth. Surprisingly, the glucose-stimulated, ClpP-dependent degradation of starvation proteins did not require either the ClpA or ClpB protein. The patterns of synthesis of starvation proteins were similar in clpP+ and clpP cells. The clpP mutants had reduced rates of degradation of certain starvation proteins in the membrane fraction when a carbon source was resupplied to the starved cells.  相似文献   

20.
Lon protease degrades transfer-messenger RNA-tagged proteins   总被引:1,自引:0,他引:1       下载免费PDF全文
Bacterial trans translation is activated when translating ribosomes are unable to elongate or terminate properly. Small protein B (SmpB) and transfer-messenger RNA (tmRNA) are the two known factors required for and dedicated to trans translation. tmRNA, encoded by the ssrA gene, is a bifunctional molecule that acts both as a tRNA and as an mRNA during trans translation. The functions of tmRNA ensure that stalled ribosomes are rescued, the causative defective mRNAs are degraded, and the incomplete polypeptides are marked for targeted proteolysis. We present in vivo and in vitro evidence that demonstrates a direct role for the Lon ATP-dependent protease in the degradation of tmRNA-tagged proteins. In an endogenous protein tagging assay, lon mutants accumulated excessive levels of tmRNA-tagged proteins. In a reporter protein tagging assay with lambda-CI-N, the protein product of a nonstop mRNA construct designed to activate trans translation, lon mutant cells efficiently tagged the reporter protein, but the tagged protein exhibited increased stability. Similarly, a green fluorescent protein (GFP) construct containing a hard-coded C-terminal tmRNA tag (GFP-SsrA) exhibited increased stability in lon mutant cells. Most significantly, highly purified Lon preferentially degraded the tmRNA-tagged forms of proteins compared to the untagged forms. Based on these results, we conclude that Lon protease participates directly in the degradation of tmRNA-tagged proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号