首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A spontaneous point mutation in the coding region of the carboxypeptidase E (CPE) gene results in a loss of CPE activity that correlates with the development of late onset obesity (Nagert, J. K., Fricker, L. D., Varlamov, O., Nishina, P. M., Rouille, Y., Steiner, D. F., Carroll, R. J., Paigen, B. J., and Leiter, E. H. (1995) Nat. Genet. 10, 135-142). Examination of the level of neuropeptides in these mice showed a decrease in mature bioactive peptides as a result of a decrease in both carboxypeptidase and prohormone convertase activities. A defect in CPE is not expected to affect endoproteolytic processing. In this report we have addressed the mechanism of this unexpected finding by directly examining the expression of the major precursor processing endoproteases, prohormone convertases PC1 and PC2 in Cpe(fat) mice. We found that the levels of PC1 and PC2 are differentially altered in a number of brain regions and in the pituitary. Since these enzymes have been implicated in the generation of neuroendocrine peptides (dynorphin A-17, beta-endorphin, and alpha- melanocyte-stimulating hormone) involved in the control of feeding behavior and body weight, we compared the levels of these peptides in Cpe(fat) and wild type animals. We found a marked increase in the level of dynorphin A-17, a decrease in the level of alpha-melanocyte-stimulating hormone, and an alteration in the level of C-terminally processed beta-endorphin. These results suggest that the impairment in the level of these and other peptides involved in body weight regulation is mainly due to an alteration in carboxypeptidase and prohormone convertase activities and that this may lead to the development of obesity in these animals.  相似文献   

2.
ProSAAS is a newly discovered protein with a neuroendocrine distribution generally similar to that of prohormone convertase 1 (PC1), a peptide-processing endopeptidase. Several proSAAS-derived peptides were previously identified in the brain and pituitary of the Cpe(fat)/Cpe(fat) mouse based on the accumulation of C-terminally extended peptides due to the absence of enzymatically active carboxypeptidase E, a peptide-processing exopeptidase. In the present study, antisera against different regions of proSAAS were used to develop radioimmunoassays and examine the processing profile of proSAAS in wild type and Cpe(fat)/Cpe(fat) mouse tissues following gel filtration and reverse phase high performance liquid chromatography. In wild type mouse brain and pituitary, the majority of proSAAS is processed into smaller peptides. These proSAAS-derived peptides elute from the reverse-phase column in the same positions as synthetic peptides that correspond to little SAAS, PEN, and big LEN. Mass spectrometry revealed the presence of peptides with the expected molecular masses of little SAAS and big LEN in the fractions containing immunoreactive peptides. The processing of proSAAS is slightly impaired in Cpe(fat)/Cpe(fat) mice, relative to wild-type mice, leading to the accumulation of partially processed peptides. One of these peptides, the C-terminally extended form of PEN, is known to inhibit PC1 activity and this could account for the reduction in enzymatically active PC1 seen in Cpe(fat)/Cpe(fat) mice. The observation that little SAAS and big LEN are the major forms of these peptides produced in mouse brain and pituitary raises the possibility that these peptides function as neurotransmitters or hormones.  相似文献   

3.
Cpe(fat/fat) mice are obese, diabetic, and infertile. They have a mutation in carboxypeptidase E (CPE), an enzyme that converts prohormone intermediates to bioactive peptides. The Cpe(fat) mutation leads to rapid degradation of the enzyme. To test whether pro-thyrotropin-releasing hormone (TRH) conversion to TRH involves CPE, processing was examined in the Cpe(fat/fat) mouse. Hypothalamic TRH is depressed by at least 75% compared with wild-type controls. Concentrations of pro-TRH forms are increased in homozygotes. TRH-[Gly(4)-Lys(5)-Arg(6)] and TRH-[Gly(4)-Lys(5)] represent approximately 45% of the total TRH-like immunoreactivity in Cpe(fat/fat) mice; they constitute approximately 1% in controls. Levels of TRH-[Gly(4)] were depressed in homozygotes. Because the hypothalamus contains some TRH, another carboxypeptidase must be responsible for processing. Immunocytochemical studies indicate that TRH neurons contain CPE- and carboxypeptidase D-like immunoreactivity. Recombinant CPE or carboxypeptidase D can convert synthetic TRH-[Gly(4)-Lys(5)] and TRH-[Gly(4)-Lys(5)-Arg(6)] to TRH-[Gly(4)]. When Cpe(fat/fat) mice are exposed to cold, they cannot maintain their body temperatures, and this loss is associated with hypothalamic TRH depletion and reduction in thyroid hormone. These findings demonstrate that the Cpe(fat) mutation can affect not only carboxypeptidase activity but also endoproteolysis. Because Cpe(fat/fat) mice cannot sustain a cold challenge, and because alterations in the hypothalamic-pituitary-thyroid axis can affect metabolism, deficits in pro-TRH processing may contribute to the obese and diabetic phenotype in these mice.  相似文献   

4.
Quantitative peptidomics was used to compare levels of peptides in wild type (WT) and Cpefat/fat mice, which lack carboxypeptidase E (CPE) activity because of a point mutation. Six different brain regions were analyzed: amygdala, hippocampus, hypothalamus, prefrontal cortex, striatum, and thalamus. Altogether, 111 neuropeptides or other peptides derived from secretory pathway proteins were identified in WT mouse brain extracts by tandem mass spectrometry, and another 47 peptides were tentatively identified based on mass and other criteria. Most secretory pathway peptides were much lower in Cpefat/fat mouse brain, relative to WT mouse brain, indicating that CPE plays a major role in their biosynthesis. Other peptides were only partially reduced in the Cpefat/fat mice, indicating that another enzyme (presumably carboxypeptidase D) contributes to their biosynthesis. Approximately 10% of the secretory pathway peptides were present in the Cpefat/fat mouse brain at levels similar to those in WT mouse brain. Many peptides were greatly elevated in the Cpefat/fat mice; these peptide processing intermediates with C‐terminal Lys and/or Arg were generally not detectable in WT mice. Taken together, these results indicate that CPE contributes, either directly or indirectly, to the production of the majority of neuropeptides.  相似文献   

5.
Carboxypeptidase E is a major enzyme in the biosynthesis of numerous neuroendocrine peptides. Previously, we developed a technique for the isolation of neuropeptide-processing intermediates from mice that lack carboxypeptidase E activity (Cpe fat/fat mice) due to a naturally occurring point mutation. In the present study, we used a differential labeling procedure with stable isotopic tags and mass spectrometry to quantitate the relative changes in a number of hypothalamic peptides in Cpe fat/fat mice in two different paradigms that each cause an approximately 10% decrease in body mass. One paradigm involved a 2-day fast under normal sedentary conditions (i.e. standard mouse cages); the other involved giving mice access to an exercise wheel for 4 weeks with free access to food. Approximately 50 peptides were detected in both studies, and over 80 peptides were detected in at least one of the two studies. Twenty-eight peptides were increased >50% by food deprivation, and some of these were increased by 2- to 3-fold. In contrast, only three peptides were increased >50% in the group with exercise wheels, and many peptides showed a slight 15-30% decrease upon exercise. Approximately one-half of the peptides detected in both studies were identified by tandem mass spectrometry. Peptides found to be elevated by food deprivation but not exercise included a number of fragments of proenkephalin, prothyrotropin-releasing hormone, secretogranin II, chromogranin B, and pro-SAAS. Taken together, the differential regulation of these peptides in the two paradigms suggests that the regulation is not due to the lower body weight but to the manner in which the paradigms achieved this lower body weight.  相似文献   

6.
ProSAAS is the precursor of a number of peptides that have been proposed to function as neuropeptides. Because proSAAS mRNA is highly expressed in the arcuate nucleus of the hypothalamus, we examined the cellular localization of several proSAAS-derived peptides in the mouse hypothalamus and found that they generally colocalized with neuropeptide Y (NPY), but not α-melanocyte stimulating hormone. However, unlike proNPY mRNA, which is upregulated by food deprivation in the mediobasal hypothalamus, neither proSAAS mRNA nor proSAAS-derived peptides were significantly altered by 1-2 days of food deprivation in wild-type mice. Furthermore, while proSAAS mRNA levels in the mediobasal hypothalamus were significantly lower in Cpe(fat/fat) mice as compared to wild-type littermates, proNPY mRNA levels in the mediobasal hypothalamus and in other subregions of the hypothalamus were not significantly different between wild-type and Cpe(fat/fat) mice. Intracerebroventricular injections of antibodies to two proSAAS-derived peptides (big LEN and PEN) significantly reduced food intake in fasted mice, while injections of antibodies to two other proSAAS-derived peptides (little LEN and little SAAS) did not. Whole-cell patch clamp recordings of parvocellular neurons in the hypothalamic paraventricular nucleus, a target of arcuate NPY projections, showed that big LEN produced a rapid and reversible inhibition of synaptic glutamate release that was spike independent and abolished by blocking postsynaptic G protein activity, suggesting the involvement of a postsynaptic G protein-coupled receptor and the release of a retrograde synaptic messenger. Taken together with previous studies, these findings support a role for proSAAS-derived peptides such as big LEN as neuropeptides regulating food intake.  相似文献   

7.
8.
Defects in the gene encoding carboxypeptidase E (CPE) in either mouse or human lead to multiple endocrine disorders, including obesity and diabetes. Recent studies on Cpe-/- mice indicated neurological deficits in these animals. As a model system to study the potential role of CPE in neurophysiology, we carried out electroretinography (ERG) and retinal morphological studies on Cpe-/- and Cpe fat/fat mutant mice. Normal retinal morphology was observed by light microscopy in both Cpe-/- and Cpe(fat/fat) mice. However, with increasing age, abnormal retinal function was revealed by ERG. Both Cpe-/- and Cpe fat/fat animals had progressively reduced ERG response sensitivity, decreased b-wave amplitude and delayed implicit time with age, while maintaining a normal a-wave amplitude. Immunohistochemical staining showed specific localization of CPE in photoreceptor synaptic terminals in wild-type (WT) mice, but in both Cpe-/- and Cpe fat/fat mice, CPE was absent in this layer. Bipolar cell morphology and distribution were normal in these mutant mice. Electron microscopy of retinas from Cpe fat/fat mice revealed significantly reduced spherule size, but normal synaptic ribbons and synaptic vesicle density, implicating a reduction in total number of vesicles per synapse in the photoreceptors of these animals. These results suggest that CPE is required for normal-sized photoreceptor synaptic terminal and normal signal transmission to the inner retina.  相似文献   

9.
The identification of the fat mutation, which causes obesity in mice, as a defect in carboxypeptidase E (CPE) has raised more questions than answers. CPE is required for the processing of numerous neuroendocrine peptides and a mutation that inactivates CPE was predicted to be lethal. However, Cpe(fat) mutated mice live and become obese. So, why are mice with the Cpe(fat) mutation viable, and why does obesity develop as a consequence of the pleiotropic effects of this mutant allele? Recently, several new members of the carboxypeptidase family have been discovered, of which at least one, CPD, can partially compensate by contributing to neuroendocrine peptide processing. Obesity due to the Cpe(fat) mutation is not caused by increased food consumption but, rather, is a result of defective nutrient partitioning, the exact mechanism of which remains to be elucidated.  相似文献   

10.
We reported previously that mice obese as a result of leptin deficiency (ob/ob) have enhanced ozone (O3)-induced airway hyperresponsiveness (AHR) and inflammation compared with wild-type (C57BL/6) controls. To determine whether this increased response to O3 was independent of the modality of obesity, we examined O3-induced AHR and inflammation in Cpe(fat) mice. These mice are obese as a consequence of a mutation in the gene encoding carboxypeptidase E (Cpe), an enzyme important in processing prohormones and proneuropeptides involved in satiety and energy expenditure. Airway responsiveness to intravenous methacholine, measured by forced oscillation, was increased in Cpe(fat) vs. wild-type mice after air exposure. In addition, compared with air exposure, airway responsiveness was increased 24 h after O3 exposure (2 ppm for 3 h) in Cpe(fat) but not in wild-type mice. Compared with air-exposed controls, O3 exposure increased bronchoalveolar lavage fluid (BALF) protein, IL-6, KC, MIP-2, MCP-1, and soluble TNF receptors (sTNFR1 and sTNFR2) as well as BALF neutrophils. With the exception of sTNFR1 and sTNFR2, all of these outcome indicators were greater in Cpe(fat) vs. wild-type mice. Serum sTNFR1, sTNFR2, MCP-1, leptin, and blood leukocytes were elevated in Cpe(fat) compared with wild-type mice even in the absence of O3 exposure, similar to the chronic systemic inflammation observed in human obesity. These results indicate that increased O3-induced AHR and inflammation are consistent features of obese mice, regardless of the modality of obesity. These results also suggest that chronic systemic inflammation may enhance airway responses to O3 in obese mice.  相似文献   

11.
Production of bioactive peptides in an in vitro system   总被引:1,自引:0,他引:1  
An in vitro system for the preparation of bioactive peptides is described. This system couples three different posttranslational modification enzymes, prohormone convertases (PCs), carboxypeptidase E, and peptidyl alpha-amidating enzyme, to transform recombinant precursors into bioactive peptides. Three different precursors, mouse proopiomelanocortin (mPOMC), rat proenkephalin (rPE), and human proghrelin, were used as model systems. The conversion of mPOMC and rPE to smaller peptide products was measured by radioimmunoassay. After optimization of the system, excellent efficiency was obtained: about 85% of starting mPOMC was converted to des-acetyl alpha-melanocyte-stimulating hormone (alpha-MSH). For proenkephalin, 75 and 96% yields were obtained for the opioid peptides Met-RGL and Met-enk, respectively. Cell-based assays demonstrated that in-vitro-generated des-acetyl alpha-MSH successfully activated the melanocortin 4 receptor. Proghrelin digestion was used to screen the specificity of PC cleavage and to confirm the cleavage site by mass spectroscopy. Mature ghrelin was produced by human furin, mouse prohormone convertase 1, and human prohormone convertase 7 but not by mouse prohormone convertase 2. These results demonstrate that our in vitro system (1) can produce peptides in quantities sufficient to carry out functional analyses, (2) can be used to determine the specificity of proprotein convertases on recombinant precursors, and (3) has the potential to identify novel peptide functions on both known and orphan G-protein-coupled receptors.  相似文献   

12.
Prohormone convertase 2 is widely co-localized with cholecystokinin in rodent brain. To examine its role in cholecystokinin processing, cholecystokinin levels were measured in dissected brain regions from prohormone convertase 2 knock-out mice. Cholecystokinin levels were lower in hippocampus, septum, thalamus, mesencephalon, and pons in knock-out mice than wild-type mice. In cerebral cortex, cortex-related structures and olfactory bulb, cholecystokinin levels were higher than wild type. Female mice were more affected by the loss of prohormone convertase 2 than male mice. The decrease in cholecystokinin levels in these brain regions shows that prohormone convertase 2 is important for cholecystokinin processing. Quantitative polymerase chain reaction measurements were performed to examine the relationship between peptide levels and cholecystokinin and enzyme expression. They revealed that cholecystokinin and prohormone convertase 1 mRNA levels in cerebral cortex and olfactory bulb were actually lower in knock-out than wild type, whereas their expression in other brain regions of knock-out mouse brain was the same as wild type. Female mice frequently had higher expression of cholecystokinin and prohormone convertase 1, 2, and 5 mRNA than male mice. The loss of prohormone convertase 2 alters CCK processing in specific brain regions. This loss also appears to trigger compensatory mechanisms in cerebral cortex and olfactory bulb that produce elevated levels of cholecystokinin but do not involve increased expression of cholecystokinin, prohormone convertase 1 or 5 mRNA.  相似文献   

13.
ProSAAS is the precursor for some of the most abundant peptides found in mouse brain and other tissues, including peptides named SAAS, PEN, and LEN. Both SAAS and LEN are found in big and little forms due to differential processing. Initial processing of proSAAS is mediated by furin (and/or furin-like enzymes) and carboxypeptidase D, while the smaller forms are generated by secretory granule prohormone convertases and carboxypeptidase E. In mouse hypothalamus, PEN and big LEN colocalize with neuropeptide Y. In the present study, little LEN and SAAS were detected in mouse hypothalamus but not in cell bodies of neuropeptide Y-expressing neurons. PEN and big LEN show substantial colocalization in hypothalamus, but big LEN and little LEN do not. An antiserum to SAAS that detects both big and little forms of this peptide did not show substantial colocalization with PEN or big LEN. To further study this, the AtT-20 cells mouse pituitary corticotrophic cell line was transfected with rat proSAAS and the distribution of peptides examined. As found in mouse hypothalamus, only some of the proSAAS-derived peptides colocalized with each other in AtT-20 cells. The two sites within proSAAS that are known to be efficiently cleaved by furin were altered by site-directed mutagenesis to convert the P4 Arg into Lys; this change converts the sequences from furin consensus sites into prohormone convertase consensus sites. Upon expression of the mutated form of proSAAS in AtT-20 cells, there was significantly more colocalization of proSAAS-derived peptides PEN and SAAS. Taken together, these results indicate that proSAAS is initially cleaved in the Golgi or trans-Golgi network by furin and/or furin-like enzymes and the resulting fragments are sorted into distinct vesicles and further processed by additional enzymes into the mature peptides.  相似文献   

14.
Sample preparation for neuropeptidomic studies is a critical issue since protein degradation can produce high levels of peptides that obscure the endogenous neuropeptides. We compared different extraction conditions for the recovery of neuropeptides and the formation of protein breakdown fragments from mouse hypothalami. Sonication and heating in water (70 degrees C for 20 min) followed by cold acid and centrifugation enabled the efficient extraction of many neuropeptides without the formation of protein degradation fragments seen with hot acid extractions. The hot water/cold acid extraction procedure resulted in the reproducible recovery of many hypothalamic peptides, including several novel peptides.  相似文献   

15.
Biologically active peptides are synthesized from inactive pre-proproteins or peptide precursors by the sequential actions of processing enzymes. Proprotein convertases cleave the precursor at pairs of basic amino acids, which are then removed from the carboxyl terminus of the generated fragments by a specific carboxypeptidase. Caenorhabditis elegans strains lacking proprotein convertase EGL-3 display a severely impaired neuropeptide profile (Husson et al. 2006, J. Neurochem.98, 1999-2012). In the present study, we examined the role of the C. elegans carboxypeptidase E orthologue EGL-21 in the processing of peptide precursors. More than 100 carboxy-terminally extended neuropeptides were detected in egl-21 mutant strains. These findings suggest that EGL-21 is a major carboxypeptidase involved in the processing of FMRFamide-like peptide (FLP) precursors and neuropeptide-like protein (NLP) precursors. The impaired peptide profile of egl-3 and egl-21 mutants is reflected in some similar phenotypes. They both share a severe widening of the intestinal lumen, locomotion defects, and retention of embryos. In addition, egl-3 animals have decreased intestinal fat content. Taken together, these results suggest that EGL-3 and EGL-21 are key enzymes for the proper processing of neuropeptides that control egg-laying, locomotion, fat storage and the nutritional status.  相似文献   

16.
Husson SJ  Schoofs L 《FEBS letters》2007,581(22):4288-4292
Cellular synthesis of naturally occurring, bioactive peptides requires the proprotein convertase PC2/EGL-3 for cleavage from the larger peptide precursors. A neuroendocrine chaperone 7B2 is needed for the proteolytical activation of proPC2, as extensively studied in mouse models. To determine the role of its orthologue in Caenorhabditis elegans, we analyzed wild-type and 7B2-null strains by HPLC and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, which allowed the identification of a novel neuropeptide gene, flp-33. The presence and/or absence of some neuropeptides in 7B2-null animals strongly differs form the peptide profile in wild-type, suggesting a specific and determined action of 7B2 in C. elegans.  相似文献   

17.
18.
The recent finding that Cpe(fat)/Cpe(fat) mice, which lack carboxypeptidase E (CPE) activity because of a point mutation, are still capable of a reduced amount of neuroendocrine peptide processing suggested that additional carboxypeptidases (CPs) participate in this processing reaction. Searches for novel members of the CPE gene family led to the discovery of CPD, CPZ, AEBP1, and CPX-2. In the present report, we describe mouse CPX-1, another novel member of this gene family. Like AEBP1 and CPX-2, CPX-1 contains an N-terminal region of 160 amino acids with sequence similarity to the discoidin domain of a variety of proteins. The 410-residue CP-like domain of CPX-1 has 54% to 62% amino acid sequence identity with AEBP1 and CPX-2 and 33% to 49% amino acid identity with other members of the CPE subfamily. However, several active-site residues that are important for catalytic activity of other CPs are not conserved in CPX-1. Furthermore, CPX-1 expressed in either the baculovirus system or the mouse AtT-20 cell line does not cleave standard CP substrates. Northern blot analysis showed the highest levels of CPX-1 mRNA in testis and spleen and lower levels in salivary gland, brain, heart, lung, and kidney. In situ hybridization of CPX-1 mRNA in embryonic and fetal mouse tissue showed expression throughout the head and thorax, with abundance in primordial cartilage and skeletal structures. In the head, high levels of CPX-1 mRNA were associated with the nasal mesenchyme, primordial cartilage structures in the ear, and the meninges. In the thorax, CPX-1 mRNA was expressed in multiple developing skeletal structures, including chondrocytes and perichondrial cells of the rib, vertebral, and long-bone primordia. Taken together, these findings suggest that it is unlikely that CPX-1 functions in the processing of neuroendocrine peptides. Instead, CPX-1 may have a role in development, possibly mediating cell interactions via its discoidin domain.  相似文献   

19.
Certain general principles determine the biosynthesis of most biologically active peptides, including the opioid peptides, from large protein precursors. In almost all instances, the active peptide is embedded in the precursor flanked on both sides by pairs of basic amino acids. The first step in processing involves a trypsinlike enzyme, cleaving to the carboxyl terminus of basic amino acids, and leaving the active peptide with a basic amino acid on the carboxyl terminus. A carboxy-peptidase peptidase B-like enzyme then removes the remaining basic amino acid. It has been unclear whether any endopeptidases with trypsinlike activity are selective for one or another basic amino acid. Recently a soluble endopeptidase has been identified that can cleave to both the carboxyl and amino termini of basic amino acids. Enkephalin convertase (carboxypeptidase E, H) (EC 3.4.17.10) has considerable selectivity, and appears to be physiologically associated with the biosynthesis of enkephalin as well as a limited number of other neuropeptides. The turnover of opioid peptides and other neuropeptides is most effectively ascertained by measuring levels of mRNA either biochemically or by in situ hybridization. Striking dynamic alterations include a pronounced increase in levels of proenkephalin mRNA in the corpus striatum after blockade of dopamine receptors, but changes in opioid peptide mRNA after opiate addiction are less clear.  相似文献   

20.
Aquaporins (AQPs), a family of water channels expressed in epithelial cells, function to transport water in a bidirectional manner to facilitate transepithelial fluid absorption and secretion. Additionally, AQP1 and AQP5 are found in pancreatic zymogen granules and synaptic vesicles and are involved in vesicle swelling and exocytosis in exocrine cells and neurons. Here, we show AQP1 is in dense-core secretory granule (DCSG) membranes of endocrine tissue: pituitary and adrenal medulla. The need for AQP1 in endocrine cell function was examined by stable transfection of AQP1 antisense RNA into AtT20 cells, a pituitary cell line, to down-regulate AQP1 expression. These AQP1-deficient cells showed more than 60% depletion of DCSGs and significantly decreased DCSG protein levels, including proopiomelanocotin/pro-ATCH and prohormone convertase 1/3, but not non-DCSG proteins. Pulse-chase studies revealed that whereas DCSG protein synthesis was unaffected, approximately 50% of the newly synthesized proopiomelanocortin was degraded within 1 h. Low levels of ACTH were released upon stimulation, indicating that the small number of DCSGs that were made in the presence of the residual AQP1 were functionally competent for exocytosis. Analysis of anterior pituitaries from AQP1 knockout mice showed reduced prohormone convertase 1/3, carboxypeptidase E, and ACTH levels compared to wild-type mice demonstrating that our results observed in AtT20 cells can be extended to the animal model. Thus, AQP1 is important for maintaining DCSG biogenesis and normal levels of hormone secretion in pituitary endocrine cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号