首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is generally accepted that the protection effect of biological tissues by vitamin E is due to its radical scavenging potency in membranes, thereby being transformed to a vitamin E radical. A deficiency of appropriate reductants, which recycle vitamin E radicals back to its antioxidative active form, causes an irreversible degradation of vitamin E leading to tocopheryl quinone (TQ). TQ-like compounds were shown to result from both vitamin E and corresponding hydrophilic analogues of this antioxidant in vitro. In vivo elevated concentrations of tocopheryl quinones were detected after oxidative stress and TQ supplementation as well. Quinones in general are known to be efficient one-electron donors and acceptors. Therefore the question arises whether TQ-like compounds can undergo redox-cycling in conjunction with redox-active enzymes in the heart, thereby producing harmful oxygen radicals, or whether these compounds exhibit antioxidant properties. In order to elucidate this question we focused our interest on the interaction of TQ and a corresponding short-chain homologue (TQ(0)) with xanthine oxidase and heart mitochondria. Furthermore, we tested the influence of TQ on the recovery of isolated perfused rat hearts after ischemia/reperfusion. Our experiments revealed that hydrophilic TQ(0) was univalently reduced by xanthine oxidase (XOD) yielding semiquinone radicals in the absence of oxygen. However, under aerobic conditions TQ(0) enhanced the O(2)(*)(-) radical output of XOD. In the mitochondrial respiratory chain TQ was shown to interact with high potential cytochrome b in the bc(1) complex specifically. In contrast to the system XOD/TQ(0), lipophilic TQ in submitochondrial particles decreased the O(2)(*)(-) radical release during regular respiration possibly due to its interaction with b-cytochromes in the mitochondrial respiratory chain. In isolated rat hearts perfused with liposomes containing lipophilic TQ, it was efficiently accumulated in the heart tissue. When hearts were subjected to conditions of ischemia/reperfusion, infusion of TQ prior to ischemia significantly improved the recovery of hemodynamic parameters. Our results demonstrate that TQ derivatives may induce pro-oxidative and antioxidative effects depending on the distribution of TQ derivatives in the heart tissue and the interacting redox system.  相似文献   

2.
The effects of alpha-tocopherol and its derivatives (alpha-tocopherylquinone, its short-chained analog--alpha-tocopheronolactone--and short-chained alpha-tocopherylacetate) on the levels of ubiquinone, its cyclic isomer--ubichromenol--and vitamin E in the liver and heart of vitamin E-deficient rats were studied. After injection of alpha-tocopherol derivatives the levels of ubichromenol and ubiquinone in rat liver and heart were increased, while their ratio was decreased. alpha-Tocopheronolactone was found to exert the strongest action, which is probably due to its direct effect on ubiquinone metabolism in rat tissues.  相似文献   

3.
For the elucidation of the mechanism of membrane stabilization by vitamin E, the effects of alpha-tocopherol and its model compounds on either retinol-induced hemolysis of rabbit erythrocytes or the permeability and fluidity of liposomal membranes have been studied. Retinol-induced rabbit erythrocyte hemolysis has been found not to be caused by the oxidative disruption of erythrocyte membrane lipids initiated by retinol oxidation, but rather to arise from physical damage of the membrane micelle induced by penetration of retinol molecules. In suppressing hemolysis, alpha-tocopherol was more effective than other naturally occurring tocopherols. alpha-Tocopheryl acetate, nicotinate, and 6-deoxy-alpha-tocopherol were more effective than alpha-tocopherol itself. The inhibitory effects of alpha-tocopherol model compounds having side chains with at least two isoprene units or a long straight chain instead of the isoprenoid side chain were similar to those of alpha-tocopherol. These data suggest that for protection of membranes against retinol-induced damage, the hydroxyl group of alpha-tocopherol is not critical, but rather the chroman ring, three methyl groups on the aromatic ring, and the long side chain are necessary. To verify the mechanism of the inhibitory effect on hemolysis, not only the effect of vitamin E and its model compounds on the membrane permeability and fluidity, but also the mobility of alpha-tocopherol molecule in membranes has been investigated using bilayer liposomes as the model membranes. Addition of alpha-tocopherol to membranes produced a greater decrease in the permeability and fluidity of rat liver phosphatidylcholine liposomes compared with egg yolk phosphatidylcholine liposomes. In dipalmitoylphosphatidylcholine liposomes, however, alpha-tocopherol was less effective, that is, the more unsaturated the lipids, the more they interact with alpha-tocopherol. 2,2,5,7,8-Pentamethyl-6-chromanol with no isoprenoid side chain and phytol without the chromanol moiety had no effect. The measurement of 13C NMR relaxation times revealed that the mobility of methyl groups on the aromatic ring of alpha-tocopherol in membranes is significantly restricted. In contrast, the methyl groups at positions 4'a and 8'a on the isoprenoid side chain have high degrees of motional freedom in the lipid core of membranes. Furthermore, it was found that alpha-tocopherol in membranes interacts with chromate ions added as potassium chromate outside the membranes, resulting in an increase in membrane fluidity. These results are compatible with those of the inhibitory effect on retinol-induced erythrocyte hemolysis. On the basis of the results obtained here, a possible mechanism for membrane stabilization by vitamin E is proposed.  相似文献   

4.
Changes in potential-dependent fluorescence were studied, using fluorescent probe di-S-C3-(5), in synaptosome suspensions exposed to phospholipase A2, alpha-tocopherol and its derivatives. Phospholipase A2 increased potential-dependent fluorescence, i.e. depolarization of synaptosome membranes. The damaging phospholipase A2 effect was prevented and/or abolished by alpha-tocopherol added to synaptosome suspensions before and after phospholipase A2. Alpha-tocopherol derivatives (2,2,5,7,8-pentamethyl-6-hydroxychromane and alpha-tocopheryl-acetate as well as 4-methyl-2,6-di-tert-butylphenol) failed to exert a protective effect on synaptosome membranes modified by phospholipase A2. It is suggested that alpha-tocopherol effect is determined by its interaction with fatty acids, with 6-hydroxy groups of chromanol nucleus and phytol chain being essential for the complex formation.  相似文献   

5.
The extent of chemically induced injury to isolated hepatocytes has been previously shown to depend on the content of alpha-tocopherol in the cells, the levels of which are influenced by the concentration of extracellular calcium. Investigations into the effect of calcium on the alpha-tocopherol content of nonchemically exposed cells demonstrated that incubation of isolated hepatocytes in a calcium-deficient medium decreased cell calcium content to 10% of initial levels, and resulted in the depletion of endogenous alpha-tocopherol. This loss in alpha-tocopherol was not accounted for by alpha-tocopherylquinone formation. After supplementation of the cell incubation medium with alpha-tocopheryl succinate, the decreased cell calcium content was associated with higher levels of cellular alpha-tocopherol than in calcium-adequate cells. This was the result of greater intracellular hydrolysis of the tocopheryl ester in the calcium-depleted cells, and not an effect of extracellular calcium concentration on the uptake of alpha-tocopheryl succinate into the cells or on the extracellular hydrolysis of the ester. Uptake studies indicated a much greater achievable level of alpha-tocopherol in hepatocytes after incubation with alpha-tocopherol than with the alpha-tocopheryl ester. These data provide substantial support for the hypotheses that the content of extracellular calcium per se is not the determinant in toxic injury to hepatocytes, but that cell calcium content affects the intracellular metabolism of alpha-tocopherol and its esters, which may subsequently govern the outcome of a toxic challenge.  相似文献   

6.
alpha-Tocopherol inhibits glutathione S-transferase P1-1 (GST P1-1) (R.I.M. van Haaften, C.T.A. Evelo, G.R.M.M. Haenen, A. Bast, Biochem. Biophys. Res. Commun. 280 (2001)). In various cosmetic and dietary products alpha-tocopherol is added as a tocopherol ester. Therefore we have studied the effect of various tocopherol derivatives on GST P1-1 activity. It was found that GST P1-1 is inhibited, in a concentration dependent manner, by these compounds. Of the compounds tested, the tocopherols were the most potent inhibitors of GST P1-1; the concentration giving 50% inhibition (IC(50)) is <1 microM. The esterified tocopherols and alpha-tocopherol quinone also inhibit the GST P1-1 activity at a very low concentration: for most compounds the IC(50) was below 10 microM. RRR-alpha-Tocopherol acetate lowered the V(max) values, but did not affect the K(m) for either 1-chloro-2,4-dinitrobenzene or GSH. This indicates that the GST P1-1 enzyme is non-competitively inhibited by RRR-alpha-tocopherol acetate. The potential implications of GST P1-1 inhibition by tocopherol and alpha-tocopherol derivatives are discussed.  相似文献   

7.
Antioxidants are compounds that can delay, inhibit, or prevent the oxidation of materials that can be oxidized by scavenging free radicals and help in diminishing oxidative stress. They belong to different chemical classes. Recently there are studies related to pyridazinone derivatives for their antioxidant activities. Since there are evidences implicates reactive oxygen species and nitric oxide as mediators of inflammation and/or tissue damage in inflammatory and arthritic disorders it was though that compounds that have both antioxidant and anti-inflammatory activities would have been essential for the inflammatory diseases. Based on these findings a series of 2H-pyridazine-3-one and 6-chloropyridazine analogues that have anti-inflammatory activity was tested in vitro on superoxide formation and effects on lipid peroxidation were determined against alpha-tocopherol. Most of the compounds have strong inhibitory effect on superoxide anion (between 84% - 99%) at 10(- 3) M concentration. In addition, these compounds showed similar activity to alpha-tocopherol at 10(- 3) M concentrations.  相似文献   

8.
It is established, that alpha-tocopherol, alpha-tocopheryl acetate and tocopheryl quinone with carbon lateral chains shortened to 6 atoms inhibited the viability of primary culture rats thymocytes in a dose-dependent manner. Absence of the DNA internucleosomal degradation side by side with cytosolic lactate-dehydrogenase outlet from the cells testifies to the benefit of necrotic way of thymocytes destruction. The outlet from cells of acid phosphatase, lysosomal marker enzyme, testifies to destabilization of lysosomal membranes by the researched compounds. The possible mechanism of cytotoxication of vitamin E short-chain derivatives in cell cultures is offered, namely: their high permeability through a plasmatic membrane allows to create inside the cells a concentration, sufficient for detergent-like rupture of the lysosomal membranes, that results in the entering of lysosomal enzymes in cytosol and destruction of cells by necrosis.  相似文献   

9.
Investigation of effects produced by 26 various phenol and diphenol derivatives, including industrial and natural antioxidants (ionol, bis-phenol 2246, alpha-tocopherol), on final product yields of radiation-induced free-radical processes involving peroxyl, alkyl, alpha-hydroxyalkyl and alpha,beta-dihydroxyalkyl radicals has been performed. Ionol and bis-phenol 2246 have been shown to be more effective than alpha-tocopherol or diphenol derivatives in suppressing hydrocarbon oxidation processes. At the same time, alpha-tocopherol and its water-soluble analogues, as well as diphenol-based substances, are more effective than phenol derivatives in regulating various homolytic processes involving carbon-centered radicals. This fact can be accounted for by taking into consideration the contribution to formation of the final product set and the respective yields made by semiquinone radicals and compounds with quinoid structure arising in the course of homolytic transformations in systems containing diphenol derivatives.  相似文献   

10.
The antioxidant and free radical scavenging effects of dopamine, noradrenaline, tyramine, and tyrosine were investigated and compared with alpha-tocopherol. The antioxidant effect of dopamine and its related compounds on peroxidation of linoleic acid were in the order of dopamine > alpha-tocopherol = tyramine > tyrosine > noradrenaline as measured by the thiocyanate method. These amine compounds had reducing power, and a scavenging effect on reactive oxygen species, i.e., superoxide anion and hydroxyl radical. The results for reducing power and scavenging effect of these amine compounds had a similar trend as their inhibition of linoleic acid peroxidation. The antioxidant activity of these amine compounds in soybean oil was also evaluated by the Rancimat method. The induction time to reach 100 meq/kg peroxide value (POV) of soybean oil for dopamine, alpha-tocopherol, tyramine, tyrosine, noradrenaline, and control were 9.0, 8.2, 8.0, 6.4, 4.6, and 4.3 h, respectively. The antioxidant efficacy of amine compounds seems to be correlated with the numbers of hydroxy groups and their position on the phenolic ring.  相似文献   

11.
The effects of 2,5-diphenyloxazole ad its derivatives suggested as nontraditional radioprotectors on mice spleen DNA structure were studied. The effects of these compounds were studied on intraperitoneal injection with and without subsequent X-ray exposure of mice to a dose of 12 cGy. The formation of double-strand breaks and DNA conformation change (by adsorption on NC filters) were recorded. A genotoxic effect of 2,5-diphenyloxazole and its derivatives, a nonlinearity of their dose-response relationships and different effects depending on the substance concentration were found. Some of the compounds exhibited radioprotective properties in certain concentration.  相似文献   

12.
The induction of rat thymocyte apoptosis by actinomycin D was associated with the increased caspase-3 activity and DNA fragmentation, the both effects were attenuated by alpha-tocopherol. Apoptosis was also decreased by alpha-tocopheryl acetate, but these suppressive effects were less than those of alpha-tocopherol. Tocopheryl quinone had no pronounced antiapoptotic effect. It was proposed that the difference in antiapoptotic effects of alpha-tocopherol derivatives is attributed to structure properties of the chroman head group and to the ability for scavenging reactive oxygen species but it is not excluded that antiapoptotic activity of alpha-tocopherol may exceed that of a mere antioxidant.  相似文献   

13.
Li X  May JM 《Mitochondrion》2003,3(1):29-38
Vitamin E in the form of alpha-tocopherol is crucial for mitochondrial integrity. We studied the distribution of alpha-tocopherol in rat muscle mitochondria in relation to the capacity of the electron transport chain to recycle the vitamin. Fractionation studies showed that almost 90% of the alpha-tocopherol in mitochondria is located in the outer membrane. This distribution was confirmed with the finding that ferricytochrome c, which does not penetrate the outer membrane, oxidized 70-80% of mitochondrial alpha-tocopherol in a time- and concentration-dependent manner. Despite the predominant outer membrane distribution of alpha-tocopherol, succinate and other mitochondrial respiratory substrates spared alpha-tocopherol from oxidative loss by both agents. Sparing of alpha-tocopherol by succinate was prevented by 2-thenoyltrifluoroacetone, but not by myxothiazol, which suggests that ubiquinol is the electron donor. Ferricytochrome c significantly increased total F2-isoprostanes, an effect that was prevented by succinate. Most alpha-tocopherol in muscle mitochondria is located in the outer membrane, where it is susceptible to oxidative loss. Nonetheless, alpha-tocopherol is partially spared by ubiquinol in the electron transport chain.  相似文献   

14.
(+/-)-4-Methylthioamphetamine (MTA) was resolved into its enantiomers, and a series of N-alkyl derivatives of the parent compound, as well as its alpha-ethyl analogue, were prepared. The monoamine oxidase (MAO) inhibitory properties of these substances were evaluated in vitro, using a crude rat brain mitochondrial suspension as the source of enzyme. All compounds produced a selective, reversible and concentration-related inhibition of MAO-A. (+)-MTA proved to be the most potent inhibitor studied, while all the other derivatives were less active than the parent compound, with (-)-MTA being about 18 times less potent than the (+) isomer. The analysis of structure-activity relationships indicates that the introduction of alkyl substituents on the amino group of MTA leads to a reduction in the potency of the derivatives as MAO-A inhibitors, an effect which increases with the size of the substituent.  相似文献   

15.
1. The penetration of alpha-tocopherol and seven of its derivatives, and five compounds in the ubiquinone series, having differing chain lengths, into monolayers at the air/water interface of 11 different synthetic phospholipids and cholesterol was investigated; the properties of mixed monolayers of the tocopherols and of ubiquinones with phospholipids were also studied. 2. Penetration of alpha-tocopherol into diarachidonylglycerylphosphorycholine was approximately constant for molar ratios of tocopherol/phospholipid ranging from 0.4:1.0 to 2.0:1.0. 3. Tocopherols with shorter or longer side chains than alpha-tocopherol had a lesser ability to penetrate monolayers of phospholipid molecules with 16 or more carbon atoms in their acyl chains. 4. All the tocopherols penetrated more readily as unsaturation in the phospholipids was increased, and their penetration into mixed monolayers of phospholipids was greatly facilitated by the presence of relatively small quantities of unsaturated phospholipid molecules. 5. There was relatively little interaction between the tocopherols and cholesterol, or between the ubiquinones and phospholipids. 6. The possible significance of the observed interactions between alpha-tocopherol and polyunsaturated phospholipids is discussed in relation to the biochemical actions of alpha-tocopherol in vivo. 7. It is suggested that fluidity of the lipid bilayer in membranes containing polyunsaturated phospholipids may allow alpha-tocopherol to interact in a dynamic manner with a number of phospholipid molecules.  相似文献   

16.
Arsenic exists ubiquitously in our environment and various forms of arsenic circulate in air, water, soil and living organisms. Since arsenic compounds have shown to exert their toxicity chiefly by generating reactive oxygen species, we have evaluated the effect of antioxidants ascorbic acid and alpha-tocopherol on lipid peroxidation, antioxidants and mitochondrial enzymes in liver and kidney of arsenic exposed rats. A significant increase in the level of lipid peroxidation and decrease in the levels of antioxidants and in the activities of mitochondrial enzymes were observed in arsenic intoxicated rats. Co-administration of arsenic treated rats with ascorbic acid and alpha-tocopherol showed significant reduction in the level of lipid peroxidation and elevation in the levels of ascorbic acid, alpha-tocopherol, glutathione and total sulfhydryls and in the activities of isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, NADH-dehydrogenase and cytochrome c oxidase. From our results, we conclude that ascorbic acid and alpha-tocopherol alleviate arsenic- induced alterations in mitochondria.  相似文献   

17.
The transport and secretion of vitamin E in lipoproteins have been studied in cynomolgus monkeys fed tocopherols labeled with different amounts of deuterium. The animals were fed a single dose of vitamin E containing 60 mumol of each 2R,4'R,8'R-alpha-(5,7-(C2H3)2)tocopheryl acetate (d6-RRR-alpha-tocopheryl acetate; alpha-tocopherol with natural stereochemistry), 2S,4'R,8'R-alpha-5-(C2H3)tocopheryl acetate (d3-SRR-alpha-tocopheryl acetate; alpha-tocopherol with unnatural stereochemistry), and 2R,4'R,8'R-gamma-(3,4-2H)tocopherol (d2-RRR-gamma-tocopherol; gamma-tocopherol with natural stereochemistry). Chylomicrons, as well as the other plasma lipoproteins, contained equal concentrations of all three tocopherols at the earliest time points after feeding suggesting that all three tocopherols were absorbed equally. At later times plasma lipoproteins became preferentially enriched in d6-RRR-alpha-tocopherol. This is likely to be due to hepatic secretion of VLDL (very low density lipoproteins) and other lipoproteins, which were enriched in d6-RRR-alpha-tocopherol, as demonstrated in the lipoproteins isolated from perfused livers that had been obtained 24 h following the administration of the deuterated tocopherols. Taken together these data demonstrate that the liver, not the intestine, is the likely site of discrimination between tocopherol isomers and that the liver secretes nascent lipoproteins preferentially enriched in d6-RRR-alpha-tocopherol.  相似文献   

18.
The effects of vitamin E (alpha-tocopherol) and its model compounds on the fluidity of liposomes composed of dipalmitoylphosphatidylcholin (DPPC) and fatty acids were investigated by the measurement of the fluorescent polarization (P) using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a plobe. Although all tocopherols decreased the fluidity of liposomes which was perturbed by the inclusion of an unsaturated fatty acid having more than one double bond, alpha-tocopherol was more effective than the others. The fluidity in arachidonic acid-containing liposomes was decreased most in the presence of alpha-tocopherol and was decreased considerably by the inclusion of model compounds having a side chain at least one isoprene unit or a long straight chain instead of isoprenoid side chain. However, the chromanol with methyl group instead of the above side chain, and phytol, having no chromanol moiety, had no effect. These results show that a structural requirement for a membrane stabilization is to be either the chromanol moiety with methyl groups born on its aromatic ring or a side chain of appropriate length; an isoprenoid side chain of full length or one containing 4'a- and 8'a-methyl groups is not necessarily needed.  相似文献   

19.
Fluoride curcumin derivatives: new mitochondrial uncoupling agents   总被引:1,自引:0,他引:1  
The mitochondrial effects of two fluoride curcumin derivatives were studied. They induced the collapse of mitochondrial membrane potential (DeltaPsi), increased mitochondrial respiration, and decreased O(2)*- production and promoted Ca(2+) release. These effects were reversed by the recoupling agent 6-Ketocholestanol, but not by cyclosporin A, an inhibitor of the permeability transition pore (PTP), suggesting that these compounds act as uncoupling agents. This idea was reinforced by the analysis of the physico-chemical properties of the compounds indicating, that they are mainly in the anionic form in the mitochondrial membrane. Moreover, they are able to induce PTP opening by promoting the oxidation of thiol groups and the release of cytochrome c, making these two molecules potential candidates for induction of apoptosis.  相似文献   

20.
Electromagnetic radiation (EMR) from wireless devices, particularly mobile phones, is a potentially growing public health concern. In this study, the neuronal effects of EMR on primary cortical neurons (PCNs) from neonatal rat cerebral cortex and the protective role of hispolon (HIS) and its derivatives were investigated as a measure of cranial exposure during mobile phone use. PCNs were isolated and cultured from day-old neonatal rats, then exposed for 2 h to EMR emitted by a mobile phone operating at a frequency of 2100 MHz with 1.6 W/Kg specific absorption rate (SAR) in call-answered mode treated with HIS and its derivatives. The induction of apoptosis through modulation of pro and anti-apoptotic genes via mitochondrial pathway and the protection by the test compounds was assessed. Pyrazole derivatives decreased apoptosis by modulating the levels of pro and anti-apoptotic genes by reducing the levels of reactive oxygen species (ROS) via mitochondrial damage, which was observed in the EMR exposed PCNs. The pyrazole compounds were found to have antioxidative and anti-apoptotic properties. Thus, the neuroprotective mechanisms of the pyrazole derivatives can be investigated further, which may make them appropriate as lead compounds in developing neuroprotective formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号