首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
何斌  葛庆华 《生理学报》1991,43(4):405-409
For evaluating the role of prostacyclin (PGI2) and thromboxane A2 (TXA2) in the metabolism of salt and water, the metabolic products of PGI2 and TXA2 (6-keto-PGF1 alpha and TXB2 respectively) were measured by radioimmunoassay in salt-loaded rabbits. 36 normal rabbits were randomly divided into 3 groups: 1. normal control group; 2. 3h salt-loading group (3 h group); 3. 24 h salt-loading group (24 h group). Both the 3 h and 24 h groups were given 0.9% NaCl solution by subcutaneous injection to the hind legs. The kidneys were dissected into 4 slices: outer cortex, inner cortex, outer medulla and inner medulla. The plasma 6-keto-PGF1 alpha in the 3 h group was increased from the control value of 46.61 +/- 19.04 pg/ml to 111.63 +/- 58.36 pg/ml (P less than 0.01). All of the dissected renal slices also showed significant increase of 6-keto-PGF1 alpha synthesis in both the 3 h and the 24 h groups (P less than 0.001 vs. normal). The urinary sodium concentrations have a good correlation with 6-keto-PGF1 alpha in plasma or in kidney tissues. Plasma TXB2 in normal group was 499.27 +/- 197.86 pg/ml, but no significant change was found in the 3h group. However, in the 24 h group it decreased significantly to 218.76 +/- 114.54 pg/ml (P less than 0.05 vs. normal group). Although the TXB2 increment was significant only in inner medulla, all other dissected renal slices showed some increase of TXB2 synthesis too. It is concluded that salt-loading can cause increase of PGI1 and TXA2 synthesis in normal renal tissues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We determined the effects of extracorporeal perfusion with a constant flow (75 ml . min-1 . kg-1) of autologous blood on hemodynamics and fluid balance in sheep lungs isolated in situ. After 5 min, perfusate leukocyte and platelet counts fell by two-thirds. Pulmonary arterial pressure (Ppa) increased to a maximum of 32.0 +/- 3.4 Torr at 30 min and thereafter fell. Lung lymph flow (QL), measured from the superior thoracic duct, and perfusate thromboxane B2 (TXB2) concentrations followed similar time courses but lagged behind Ppa, reaching maxima of 4.1 +/- 1.2 ml/h and 2.22 +/- 0.02 ng/ml at 60 min. Lung weight gain, measured as the opposite of the weight change of the extracorporeal reservoir, and perfusate 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) concentration increased rapidly during the first 60 min and then more gradually. After 210 min, weight gain was 224 +/- 40 g and 6-keto-PGF1 alpha concentration, 4.99 +/- 0.01 ng/ml. The ratio of lymph to plasma oncotic pressure (pi L/pi P) at 30 min was 0.61 +/- 0.06 and did not change significantly. Imidazole (5 mM) reduced the changes in TXB2, Ppa, QL, and weight and platelet count but did not alter 6-keto-PGF1 alpha, pi L/pi P, or leukocyte count. Indomethacin (0.056 mM) reduced TXB2, 6-keto-PGF1 alpha, and the early increases in weight, Ppa, and QL but did not alter the time courses of leukocyte or platelet counts. Late in perfusion, however, Ppa and QL were greater than in either untreated or imidazole-treated lungs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
This study was designed to investigate the role of eicosanoids, thromboxane A2 (TXA2) and prostacyclin (PGI2) as well as their relationship with endothelin-1 (ET-1) in the pathogenesis of renal parenchymal hypertension. Uremic rats were prepared by renal mass ablation and compared with sham-operated controls. The stable metabolites of TXA2 (TXB2) and PGI2 (6-keto-PGF1alpha) and immunoreactive ET-1 concentrations were measured by specific RIAs in biological fluids and in vascular and renal tissues. To investigate the functional role of TXA2 in the progression of hypertension and renal failure, a group of uremic rats were treated with ridogrel (25 mg/kg/day), a TXA2 synthase inhibitor and receptor antagonist. Renal preproET-1 expression was assessed by Northern blot analysis. Systolic blood pressure (SBP), serum creatinine and proteinuria were found to be higher in uremic rats as compared to sham-operated controls (P < 0.01). TXB2 and ET-1 concentrations were increased in blood vessels, the renal cortex and in urine (P < 0.05). 6-keto-PGF1alpha concentrations were also increased in blood vessels and the renal cortex but decreased in urine (P < 0.05). Ridogrel significantly lowered SBP and proteinuria (P < 0.05) and blunted the increase of serum creatinine. Treatment with ridogrel resulted in a marked fall in vascular, renal and urine TXA2 concentrations, while ET-1 and 6-keto-PGF1alpha concentrations remained unchanged. The preproET-1 expression was higher in uremic rats than in the controls and was unaffected by ridogrel. These results suggest that TXA2 is involved in the pathogenesis of hypertension and renal failure progression in rats with subtotal 5/6 nephrectomy and that this effect is independent of the ET-1 system.  相似文献   

4.
Plasma levels of thromboxane B2 (TXB2) and 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), stable metabolites of two prostanoids with opposing biological effects, TXA2 and prostacyclin, were measured by radioimmunoassay in normal pregnancy (controls) and pregnancy complicated by hypertension (PIH) from 32 to 36 (Period 1; P1) and from 36 to 40 (Period 2; P2) weeks of gestation. The plasma concentration of each compound in the control subjects was 265.6 +/- 58.4 (TXB2), 132.4 +/- 16.5 (6-keto-PGF1 alpha) for P1 (n = 10) and 142.6 +/- 11.8 (TXB2), 68.5 +/- 5.2 (6-keto-PGF1 alpha) for P2 (n = 10) respectively (pg/ml, mean +/- s.e). In the patients with PIH, TXB2 concentrations increased moderately for P1 (419.2 +/- 21.2; n = 7) and significantly (p less than 0.005) for P2 (452.8 +/- 31.0; n = 7) respectively (pg/ml, mean +/- s.e), while the plasma levels of 6-keto-PGF1 alpha revealed a slight to moderate decrease both for P1 (84.5 +/- 4.0; n = 7) and P2 (59.7 +/- 8.1; n = 7) respectively (pg/ml, mean +/- s.e). The physiological balance of TXB2 to 6-keto-PGF1 alpha was significantly greater (p less than 0.005) in the patients with PIH, where the TXB2/6-keto-PGF1 alpha ratio was 5.2 +/- 0.7 for P1 and 9.4 +/- 2.3 for P2 respectively (mean +/- s.e) compared with that of the controls, where it was 2.4 +/- 0.4 for P1 and 2.0 +/- 0.2 for P2 respectively (mean +/- s.e).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Isolated rat lungs were ventilated and perfused by saline-Ficoll perfusate at a constant flow. The baseline perfusion pressure (PAP) correlated with the concentration of 6-keto-PGF1 alpha the stable metabolite of PGI2 (r = 0.83) and with the 6-keto-PGF1 alpha/TXB2 ratio (r = 0.82). A bolus of 10 micrograms exogenous arachidonic acid (AA) injected into the arterial cannula of the isolated lungs caused significant decrease in pulmonary vascular resistance (PVR) which was followed by a progressive increase of PVR and edema formation. Changes in perfusion pressure induced by AA injection also correlated with concentrations of the stable metabolites (6-keto-PGF1 alpha: r = -0.77, TxB2: -0.76), and their ratio: (6-keto-PGF1 alpha/TXB2: r = -0.73). Injection of 10 and 100 micrograms of PGF2 alpha into the pulmonary artery stimulated the dose-dependent production of TXB2 and 6-keto-PGF1 alpha. No significant correlations were found between the perfusion pressure (PAP) which was increased by the PGF2 alpha and the concentrations of the former stable metabolites. The results show that AA has a biphasic effect on the isolated lung vasculature even in low dose. The most potent vasoactive metabolites of cyclooxygenase, prostacyclin and thromboxane A2 influence substantially not only the basal but also the increased tone of the pulmonary vessels.  相似文献   

6.
T Kobayashi 《Prostaglandins》1986,31(3):469-475
Effects of 10 ppm nitrogen dioxide (NO2) exposure on the contents of prostaglandins (PGs) and thromboxane (TX) B2 in bronchoalveolar lavage (BAL) of rats were studied. In the BAL of normal rats, the amounts of PGs and TXB2 in the whole lavage were 6-keto-PGF1 alpha (38.0 +/- 6.4 ng) greater than TXB2 (11.8 +/- 4.0 ng) greater than PGF2 alpha (5.7 +/- 1.6 ng) much greater than PGE (0.5 +/- 0.3 ng). Rats were exposed to NO2 for 1,3,5,7 and 14 days. The NO2 exposure decreased in the level of 6-keto-PGF1 alpha by about 35% throughout the exposure. The level of TXB2 was higher in the day 5 exposure group (155%). The contents of PGF2 alpha and PGE first, decreased and then transiently increased on days 3 and 5. PG 15-hydroxy-dehydrogenase activity of lung homogenate decreased correspondingly on day 3 and 5. Then the contents PGF2 alpha and PGE decreased on day 7 and 14. 6-keto-PGF1 alpha and TXB2 are stable metabolites of PGI2, a strong bronchorelaxant and TXA2, a strong bronchoconstrictor respectively. Therefore the results suggested that the decrease in 6-keto-PGF1 alpha, a major prostanoid in the BAL and the increase in TXB2 may correlate with broncho constriction by NO2 exposure.  相似文献   

7.
Prostaglandin E2 (PGE2), thromboxane B2 (TXB2; as a stable metabolite of TXA2), prostaglandin F2 alpha (PGF2 alpha) and 6-keto-PGF1 alpha (as a stable end product of prostacyclin) have been measured by using specific radioimmunoassay in the plasma of the cord artery immediately after delivery before the cord was clamped. Plasma prostanoid concentrations in normal deliveries (n = 8, as controls) were 24.8 +/- 2.6 (PGE2), 246.8 +/- 37.0 (TXB2), 122.2 +/- 13.3 (PGF2 alpha) and 82.1 +/- 7.7 (6-keto-PGF1 alpha) respectively (pg/ml, mean +/- s.e). On the other hand, in fetal distressed deliveries showing continuous bradycardia (n = 6), they increased significantly to 275.4 +/- 20.1 (PGE2), 948.6 +/- 102.5 (TXB2), 218.0 +/- 21.4 (PGF2 alpha) and 1498.6 +/- 298.4 (6-keto-PGF1 alpha) respectively (pg/ml, mean +/- s.e, p less than 0.005). However, both PGF2 alpha/PGE2 and TXB2/6-keto-PGF1 alpha ratios declined significantly from 4.70 +/- 0.33 to 0.68 +/- 0.05 and from 3.07 +/- 0.37 to 0.68 +/- 0.12 respectively (mean +/- s.e, p less than 0.005) in the fetal distressed group compared with those of the controls. From these results, it may be concluded that the cord artery, which is known as the patent source for the production of PGE2 and prostacyclin, did exert a sufficiently strong reaction to overcome the undesirable haemodynamic changes to maintain the fetal well-being in utero.  相似文献   

8.
We evaluated the effects of an abrupt increase in flow and of a subsequent sympathetic nerve stimulation on the pulmonary production of prostacyclin (PGI2) and thromboxane A2 (TXA2) in canine isolated left lower lobes perfused in situ with pulsatile flow. When flow was abruptly increased from 50 +/- 3 to 288 +/- 2 ml/min, mean pulmonary arterial pressure (Ppa) increased by 15 +/- 2 Torr and then declined by 2.4 Torr over the next 5 min. This secondary decrease in Ppa was associated with a significant 0.26 +/- 0.11 ng/ml increase in the pulmonary venous concentration of the stable PGI2 hydrolysis product 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) as determined by radioimmunoassay. Stimulation of the left stellate ganglion usually resulted in an increase in Ppa which peaked at 1.1 +/- 0.6 Torr above its prestimulus level and then declined over the next 5 min. Associated with this decline was a 0.24 +/- 0.11 ng/ml increase in 6-keto-PGF1 alpha at 1 min. We suggest that the decline in Ppa is due to the synthesis and release of PGI2 by the endothelial cells in response to an increase in perfusion pressure.  相似文献   

9.
Three newly established human melanoma cell lines (WU-BI, PN-JC, MJ-ZJ) of different morphology and different stage of malignancy were incubated with ionophore A23187 (2.5 to 40 microM) or arachidonic acid (AA, 6.25 to 100 microM). PGF2 alpha, 6-keto-PGF1 alpha, PGE2, TXB2 and 2,3-dinor-TXB2 from isolated cells and supernatants were measured by negative ion chemical ionization gas chromatography/mass spectrometry (GC/MS). PGE2 decreased in the fibroblastoid MJ-ZJ cells from 36.7 ng/mg cell protein about 70% (A23187) and about 20% (AA), respectively. However, in the cell supernatant PGE2 increased up to 295.4 +/- 66.5 ng/mg cell protein. Production of PGF2 alpha and PGE2 increased up to 5.7 +/- 1.2 ng/mg cell protein for polydendritic WU-BI cells and spindle shaped PN-JC cells. Up to 9.3 +/- 4.3 ng PGF2 alpha and 13.4 +/- 4.7 ng PGE2 was measured for WU-BI and PN-JC in the cell supernatants. All three melanoma cell lines completely lacked formation of 6-keto-PGF1 alpha, TXB2, and 2,3-dinor-TXB2.  相似文献   

10.
Peripheral plasma concentrations of 6-keto-PGF1 alpha and TXB2 were measured in patients with benign and malignant tumours of the breast, in patients with non-gynecological diseases, and in healthy female controls. The values were significantly higher in female patients with malignant tumours of the breast than in healthy controls (146 +/- 28 vs 13 +/- 2.5 pg/ml for 6-keto-PGF1 alpha p less than 0.01 and 78 +/- 17 vs 11 +/- 2 pg/ml for TXB2, p less than 0.01). Benign tumours of the breast were also associated with significantly raised plasma levels of 6-keto-PGF1 alpha and TXB2 compared to normal controls (52 +/- 5 vs 13 +/- 2.5 pg/ml for 6-keto-PGF1 alpha, p less than 0.01 and 26 +/- 5 vs 11 +/- 2 pg/ml for TXB2, p less than 0.05). The high levels of 6-keto-PGF1 alpha and TXB2 were not found to be correlated with clinical and histopathological data. The surgical removal of the primary tumour has apparently no effect on the plasma concentrations of 6-keto-PGF1 alpha and TXB2 over a follow-up period of 9 days after operation. The lack of alterations in the ratio of TXB2:6-keto-PGF1 alpha in the cancer patients and other subjects studied before and after surgery is indicative of the regulatory power of metabolic systems to preserve the homeostatic balance.  相似文献   

11.
We investigated effects of exogenous leukotrienes (C4, D4, or E4) on levels of prostanoids in cerebrospinal fluid in newborn pigs (1-5 days). A "closed" cranial window was placed over the parietal cortex. Pial arterial diameter was measured with a microscope and electronic micrometer system. Levels in cerebrospinal fluid (CSF) of 6-keto-Prostaglandin F1 alpha (6-keto-PGF1 alpha), Thromboxane B2 (TXB2), and Prostaglandin E2 (PGE2) were measured by radioimmunoassay. Topical application of leukotrienes C4, D4, or E4 (5,000 ng/ml) similarly constricted pial arteries by 15 +/- 2% (n = 14) (mean +/- SEM). In addition, leukotrienes increased levels of 6-keto-PGF1 alpha from 806 +/- 136 to 1,612 +/- 304 pg/ml (n = 13), TXB2 from 161 +/- 31 to 392 +/- 81 pg/ml (n = 10), and PGE2 from 2,271 +/- 342 to 4,636 +/- 740 pg/ml (n = 13). Each type of leukotriene had similar effects on prostanoid synthesis. In other experiments (n = 5), we found that 2.0 ng/ml PGE2 in CSF dilated pial arteries by 24 +/- 8% and that 1.0 ng/ml PGI2 dilated pial arteries by 15 +/- 6%. These results indicate that leukotrienes are able to increase levels of prostanoids in cerebral cortex.  相似文献   

12.
We previously reported that thromboxane (TX)A2 synthesis and receptor blockade prevented recombinant human erythropoietin (rhEPO)-induced hypertension in chronic renal failure rats. The present study was designed to investigate the effect of a cyclooxygenase inhibitor, acetylsalicylic acid (ASA), on blood pressure, renal function, and the concentration of eicosano?ds and endothelin-1 (ET-1) in vascular and renal tissues of rhEPO-treated or rhEPO-untreated uremic rats. Renal failure was induced by a 2-stage 5/6 renal mass ablation. Rats were divided into 4 groups: vehicle, rhEPO (100 U/kg, s.c., 3 times per week), ASA (100 mg x kg(-1) x day(-1), and rhEPO + ASA; all animals were administered drugs for 3 weeks. The TXA2- and prostacyclin (PGI2)-stable metabolites (TXB2 and 6-keto-PGF1alpha, respectively), as well as ET-1, were measured in renal cortex and either the thoracic aorta or mesenteric arterial bed. The uremic rats developed anemia, uremia, and hypertension. They also exhibited a significant increase in vascular and renal TXB2 (p < 0.01) and 6-keto-PGF1alpha (p < 0.01) concentrations. rhEPO therapy corrected the anemia but aggravated hypertension (p < 0.05). TXB2 and ET-1 tissue levels further increased (p < 0.05) whereas 6-keto-PGF1alpha was unchanged in rhEPO-treated rats compared with uremic rats receiving the vehicle. ASA therapy did not prevent the increase in systolic blood pressure nor the progression of renal disease in rhEPO-treated or rhEPO-untreated uremic rats, but suppressed both TXB2 and 6-keto-PGF1alpha tissue concentrations (p < 0.05). ASA had no effect on vascular and renal ET-1 levels. Cyclooxygenase inhibition had no effect on rhEPO-induced hypertension owing, in part, to simultaneous inhibition of both TXA2 and its vasodilatory counterpart PGI2 synthesis, whereas the vascular ET-1 overproduction was maintained. These results stress the importance of preserving PGI2 production when treating rhEPO-induced hypertension under uremic conditions.  相似文献   

13.
Uteroplacental production of eicosanoids in ovine pregnancy   总被引:3,自引:0,他引:3  
Dramatic cardiovascular alterations occur during normal ovine pregnancy which may be associated with increased prostaglandin production, especially of uteroplacental origin. To study this, we examined (Exp 1) the relationships between cardiovascular alterations, e.g., the rise in uterine blood flow and fall in systemic vascular resistance, and arterial concentrations of prostaglandin metabolites (PGEM, PGFM and 6-keto-PGF1 alpha) in nonpregnant (n = 4) and pregnant (n = 8) ewes. To determine the potential utero-placental contribution of these eicosanoids in pregnancy, we also studied (Exp 2) the relationship between uterine blood flow and the uterine venous-arterial concentration differences of PGE2, PGF2 alpha, PGFM, 6-keto-PGF1 alpha, and TxB2 in twelve additional late pregnant ewes. Pregnancy was associated with a 37-fold increase in uterine blood flow and a proportionate (27-fold) fall in uterine vascular resistance (p less than 0.01). Arterial concentrations of PGEM were similar in nonpregnant and pregnant ewes (316 +/- 19 and 245 +/- 38 pg/ml), while levels of PGFM and PGI2 metabolite 6-keto-PGF1 alpha were elevated 23-fold (31 +/- 14 to 708 +/- 244 pg/ml) and 14-fold (12 +/- 4 to 163 +/- 78 pg/ml), respectively (p less than 0.01). Higher uterine venous versus uterine arterial concentrations were observed for PGE2 (397 +/- 36 and 293 +/- 22 pg/ml) and 6-keto-PGF1 alpha (269 +/- 32 and 204 +/- 32 pg/ml), p less than 0.05, but not PGF2 alpha or TxB2. Although PGFM concentrations appeared to be greater in uterine venous (1197 +/- 225 pg/ml) as compared to uterine arterial (738 +/- 150 pg/ml) plasma, this did not reach significance (0.05 less than p less than 0.1). In normal ovine pregnancy arterial levels of PGI2 are increased, which may in part reflect increased uteroplacental production. Moreover the gravid ovine uterus also appears to produce PGE2 and metabolize PGF2 alpha.  相似文献   

14.
There is growing evidence that blood vessels generate TXA2 in addition to PGI2. We examined effluents from continuously perfused human umbilical vein and supernatants from umbilical vein rings for TXB2 and 6-keto-PGF1 alpha measurements (stable metabolites of TXA2 and PGI2, respectively). TXB2 and 6-keto-PGF1 alpha were identified in all samples. 6-keto-PGF1 alpha to TXB2 ratio was higher in intact vein effluents than in the venous ring supernatants (112:1 and 28:1, respectively, P less than 0.01). Arachidonate stimulation increased 6-keto-PGF1 alpha and TXB2 levels similarly in the intact vein effluent. In contrast, stimulation of the venous rings resulted in a relatively larger increase in TXB2 than in 6-keto-PGF1 alpha. This caused 6-keto-PGF1 alpha to TXB2 ratio to decline (p less than 0.01). The identity of TXB2 was confirmed in several different ways. These data suggest that 1) human umbilical veins produce TXA2 in addition to PGI2, 2) TXA2 release is more by venous rings than by the intact vein probably reflecting contribution from non-endothelial layers, and 3) arachidonate stimulation causes relatively greater release of TXA2 than of PGI2 from the venous rings, whereas release of PGI2 and TXA2 is similar from the intact vein.  相似文献   

15.
The low incidence of myocardial infarction in Greenland Eskimos has been related to their traditional marine diet rich in eicosapentaenoic acid. However, whether dietary eicosapentaenoic acid is indeed transformed in man to antiaggregatory PGI3 and weakly proaggregatory TXA3 has not been clarified. In our studies we ingested either cod liver oil or mackerel both rich in eicosapentaenoic acid. Formation of TXB3, the hydrolysis product of TXA3, in platelet-rich plasma stimulated ex vivo with collagen was traced by capillary GC/EIMS. Via external standard, TXB3 formation in platelets was estimated to be 5-15% of TXB2 formation. From urine we extracted dinor metabolites of PGI according to a selective method. We utilized delta 17-2,3-dinor-6-keto-PGF1 alpha (PGI3-M) as an index of total body production of PGI3 in analogy to 2,3-dinor-6-keto-PGF1 alpha (PGI2-M), the major urinary metabolite of PGI2. We separated PGI2-M and PGI3-M as the Me, MO, Me3Si derivatives by capillary gas chromatography and identified PGI3-M by EI mass spectrometry. Excretion of PGI3-M, which was not detectable under control conditions, was 83 +/- 25 ng/24 h (SD) after ingestion of cod liver oil and 134 +/- 38 ng/24 h after mackerel ingestion, while excretion of PGI2-M was 162 +/- 52 ng/24 h and 236 +/- 32 ng/24 h, respectively. Our findings with diets rich in EPA show that it is possible in man to change in vivo the spectrum of biologically active prostanoids by nutritional means and alter it in a favourable direction.  相似文献   

16.
We examined whether ATP stimulation of P2X purinoceptors would raise blood pressure in decerebrate cats. Femoral arterial injection of the P2X receptor agonist alpha,beta-methylene ATP into the blood supply of the triceps surae muscle induced a dose-dependent increase in arterial blood pressure. The maximal increase in mean arterial pressure (MAP) evoked by 0.1, 0.2, and 0.5 mM alpha,beta-methylene ATP (0.5 ml/min injection rate) was 6.2 +/- 2.5, 22.5 +/- 4.4, and 35.2 +/- 3.9 mmHg, respectively. The P2X receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (2 mM ia) attenuated the increase in MAP elicited by intra-arterial alpha,beta-methylene ATP (0.5 mM), whereas the P2Y receptor antagonist reactive blue 2 (2 mM ia) did not affect the MAP response to alpha,beta-methylene ATP. In a second group of experiments, we tested the hypothesis that ATP acting through P2X receptors would sensitize muscle afferents and, thereby, augment the blood pressure response to muscle stretch. Two kilograms of muscle stretch evoked a 26.5 +/- 4.3 mmHg increase in MAP. This MAP response was enhanced when 2 mM ATP or 0.1 mM alpha,beta-methylene ATP (0.5 ml/min) was arterially infused 10 min before muscle stretch. Furthermore, this effect of ATP on the pressor response to stretch was attenuated by 2 mM pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (P < 0.05) but not by the P1 purinoceptor antagonist 8-(p-sulfophenyl)-theophylline (2 mM). These data indicate that activation of ATP-sensitive P2X receptors evokes a skeletal muscle afferent-mediated pressor response and that ATP at relatively low doses enhances the muscle pressor response to stretch via engagement of P2X receptors.  相似文献   

17.
Acute renal failure (ARF) induced with large doses of Gentamicin (GM) (an aminoglycoside) was associated with increased urinary TXB (TXA) excretion which provoked a decrease of the ratios of urinary PGE2/TXB2 and 6-keto-PGF1 alpha (PGI2)/TXB2 excretions. Furthermore, as indicated by light microscopy most of the epithelial cells lining the proximal tubules show obvious lesions varying from swelling of their cytoplasm to complete necrosis. Either the inhibitor, OKY-O46, of TXA-synthetase, or volume expansion (VE) with isotonic saline (IS) of the experimental animals diminished urinary TXB excretion which provoked 1) augmentation of the ratios of urinary PGE/TXB and 6-keto-PGF1 alpha/TXB excretions, 2) elevation of creatinine clearance (Ccr) and 3) diminution of proteinuria (PU). This protection against ARF-by OKY-O46 and VE can a can be seen in microscopic sections where necrosis of proximal tubules is almost absent. Only a few proximal tubules show swelling of their epithelial cells and some focal areas of tubule necrosis. We suggest that the metabolites of arachidonic acid (AA), TXA2 a (potent vasoconstrictor agent) and prostaglandins (PGE2 and PGI2), (potent vasodilator factors), play an important role in the development (TXA2) or in the prevention (PGs) of ARF induced by this antibiotic.  相似文献   

18.
The aim of this work was to evaluate the effects of BM-567 (N-pentyl-N'-[(2-cyclohexylamino-5-nitrobenzene)sulfonyl]urea), a torasemide derivative, on both thromboxane A(2) (TXA(2)) receptors (TP) and thromboxane synthase of human platelets. The drug affinity for TP receptors of human washed platelets has been determined. In this test, BM-567 showed a high affinity (IC(50): 1.1+/-0.1nM) for the TP receptors in comparison with BM-531 (IC(50): 7.8+/-0.7nM) and sulotroban (IC(50): 931+/-85nM), two TXA(2) antagonists. We also demonstrated that BM-567 prevented platelet aggregation induced by arachidonic acid (AA) (600 microM) (ED(100): 0.20+/-0.10 microM), U-46619, a stable TXA(2) agonist (1 microM) (ED(50): 0.30+/-0.04 microM) and collagen (1microgram ml(-1)) (% of inhibition: 44.3+/-4.3% at 10 microM) and inhibited the second wave of ADP (2microM). Moreover, when BM-567 was incubated in whole blood from healthy donors, the closure time measured by the Platelet Function analyzer (PFA-100((R))) was significantly prolonged (closure time: 215+/-21s) by using collagen/epinephrine cartridges. Finally, at the concentration of 1 microM, BM-567 completely reduced the TXB(2) production from human platelets stimulated with AA (600 microM). These results indicate that BM-567 is a novel combined TXA(2) receptor antagonist and thromboxane synthase inhibitor characterized by a powerful antiplatelet potency.  相似文献   

19.
Metabolism of arachidonic acid (AA) was studied in perfused lungs and kidneys of normal and atherosclerotic rabbits by determination of PGE2, PGF2 alpha and the stable metabolites of PGI2 (6-keto-PGF1 alpha) and TXA2 (TXB2). PGI2 was the main AA metabolite formed by normal lungs and kidneys. Atherosclerosis reduced the formation of PGI2 by about 50 % in both organs. TXA2 formation was similarily decreased in lungs. In kidneys, the decrease in PGI2 formation was accompanied by an increase in PGE2 formation.  相似文献   

20.
We examined the role of thromboxane A2 (TXA2) in LPS-induced hyperresponsiveness of hepatic portal circulation to endothelins (ETs) and whether Kupffer cells are the primary source of TXA2 release in response to ET-1 in endotoxemia. After 6 h of LPS (1 mg/kg body wt ip) or saline (control), liver was isolated and perfused with recirculating Krebs-Henseleit bicarbonate buffer at a constant flow rate (100 ml.min(-1).kg body wt(-1)). ET-1 (10 pmol/min) was infused for 10 min. Portal pressure (PP) was continuously monitored during perfusion. Perfusate was sampled for enzyme immunoassay of thromboxane B2 (TXB2; the stable metabolite of TXA2) and lactate dehydrogenase (LDH) assay. ET-1 infusion resulted in a significantly greater increase of PP in the LPS group than in controls. Both TXA2 synthase inhibitor furegrelate (Fureg) and TXA2 receptor antagonist SQ-29548 (SQ) substantially blocked enhanced increase of PP in the LPS group (4.9 +/- 0.4 vs. 3.6 +/- 0.5 vs. 2.6 +/- 0.6 mmHg for LPS alone, LPS + Fureg, and LPS + SQ, respectively; P < 0.05) while having no significant effect on controls. GdCl3 for inhibition of Kupffer cells had similar effects (4.9 +/- 0.4 mmHg vs. 2.9 +/- 0.4 mmHg for LPS alone and GdCl3 + LPS, respectively; P < 0.05). In addition, the attenuated PP after ET-1 was found concomitantly with significantly decreased releases of TXB2 and LDH in LPS rats treated with Fureg, SQ, and GdCl3 (886.6 +/- 73.4 vs. 110.8 +/- 0.8 vs. 114.8 +/- 54.7 vs. 135.2 +/- 45.2 pg/ml, respectively; P < 0.05). After 6 h of LPS, Kupffer cells in isolated cell preparations released a significant amount of TXA2 in response to ET-1. These results clearly indicate that hyperresponsiveness of hepatic portal circulation to ET-1 in endotoxemia is mediated at least in part by TXA2-induced receptor activation, and Kupffer cells are likely the primary source of increased TXA2 release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号