首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Golgi complex functions in transport of molecules from the endoplasmic reticulum (ER) to the plasma membrane and other distal organelles as well as in retrograde transport to the ER. The fungal metabolite brefeldin A (BFA) promotes dissociation of ADP-ribosylation-factor-1 (ARF1) and the coatomer protein complex-I (COP-I) from Golgi membranes, followed by Golgi tubulation and fusion with the ER. Here we demonstrate that the cationic ionophore monensin inhibited the BFA-mediated Golgi redistribution to the ER without interfering with ARF1 and COP-I dissociation. Preservation of a perinuclear Golgi despite COP-I and ARF1 dissociation enables addressing the involvement of these proteins in anterograde ER to Golgi transport. The thermo-reversible folding mutant of vesicular stomatitis virus G protein (VSVGtsO45) was retained in the ER in the presence of both monensin and BFA, thus supporting ARF1/COP-I participation in ER-exit processes. Live-cell imaging revealed that BFA-induced Golgi tubulation persisted longer in the presence of monensin, suggesting that monensin inhibits tubule fusion with the ER. Moreover, monensin also augmented Golgi-derived tubules that contained the ER-Golgi-intermediate compartment marker, p58, in the absence of BFA, signifying the generality of this effect. Taken together, we propose that monensin inhibits membrane fusion processes in the presence or absence of BFA.  相似文献   

2.
Golgi inheritance under a block of anterograde and retrograde traffic   总被引:1,自引:0,他引:1  
In mitosis, the Golgi complex is inherited following its dispersion, equal partitioning and reformation in each daughter cell. The state of Golgi membranes during mitosis is controversial, and the role of Golgi-intersecting traffic in Golgi inheritance is unclear. We have used brefeldin A (BFA) to perturb Golgi-intersecting membrane traffic at different stages of the cell cycle and followed by live cell imaging the fate of Golgi membranes in those conditions. We observed that addition of the drug on cells in prometaphase prevents mitotic Golgi dispersion. Under continuous treatment, Golgi fragments persist throughout mitosis and accumulate in a Golgi-like structure at the end of mitosis. This structure localizes at microtubule minus ends and contains all classes of Golgi markers, but is not accessible to cargo from the endoplasmic reticulum or the plasma membrane because of the continuous BFA traffic block. However, it contains preaccumulated cargo, and intermixes with the reforming Golgi upon BFA washout. This structure also forms when BFA is added during metaphase, when the Golgi is not discernible by light microscopy. Together the data indicate that independent Golgi fragments that contain all classes of Golgi markers (and that can be isolated from other organelles by blocking anterograde and retrograde Golgi-intersecting traffic) persist throughout mitosis.  相似文献   

3.
Clofibrate-induced retrograde Golgi membrane movement was blocked or retarded when NRK cells were treated with sodium azide/2-deoxyglucose, nocodazole, taxol, and destruxin B, indicating that it depends on energy, and the dynamic state of microtubules, and being acidic or vacuolar-type ATPase function. PDMP and phospholipase A2 inhibitors also blocked it. These characteristics are similar to those of brefeldin A (BFA) and nordihydroguaiaretic acid (NDGA), inducers of retrograde Golgi membrane movement. However, clofibrate was distinguished from BFA in that BFA action was insensitive to phospholipase A2 inhibitors and from NDGA in that NDGA stabilized microtubules against nocodazole and its action was almost insensitive to taxol. The trans Golgi network (TGN) was resistant to clofibrate, while BFA and NDGA dispersed it. To our knowledge, clofibrate is the first drug to show such different effects on the Golgi and TGN and, therefore, is expected to be a useful tool to distinguish their architecture and/or membrane dynamics.  相似文献   

4.
Microtubules are central to the spatial organization of diverse membrane-trafficking systems. Here, we report that Hook proteins constitute a novel family of cytosolic coiled coil proteins that bind to organelles and to microtubules. The conserved NH(2)-terminal domains of Hook proteins mediate attachment to microtubules, whereas the more divergent COOH-terminal domains mediate the binding to organelles. Human Hook3 bound to Golgi membranes in vitro and was enriched in the cis-Golgi in vivo. Unlike other cis-Golgi-associated proteins, however, a large fraction of Hook3 maintained its juxtanuclear localization after Brefeldin A treatment, indicating a Golgi-independent mechanism for Hook3 localization. Because overexpression of Hook3 caused fragmentation of the Golgi complex, we propose that Hook3 participates in defining the architecture and localization of the mammalian Golgi complex.  相似文献   

5.
The Golgi apparatus is part of the secretory pathway and of central importance for modification, transport and sorting of proteins and lipids. ADP‐ribosylation factors, whose activation can be blocked by brefeldin A (BFA), play a major role in functioning of the Golgi network and regulation of membrane traffic and are also involved in proliferation and migration of cancer cells. Due to high cytotoxicity and poor bioavailability, BFA has not passed the preclinical stage of drug development. Recently, AMF‐26 and golgicide A have been described as novel inhibitors of the Golgi system with antitumor or bactericidal properties. We provide here further evidence that AMF‐26 closely mirrors the mode of action of BFA but is less potent. Using several human cancer cell lines, we studied the effects of AMF‐26, BFA and golgicide A on cell homeostasis including Golgi structure, endoplasmic reticulum (ER) stress markers, secretion and viability, and found overall a significant correlation between these parameters. Furthermore, modulation of ADP‐ribosylation factor expression has a profound impact on Golgi organization and survival in response to Golgi stress inducers.   相似文献   

6.
We have fused the signal anchor sequences of a rat sialyl transferase and a human galactosyl transferase along with the Arabidopsis homologue of the yeast HDEL receptor (AtERD2) to the jellyfish green fluorescent protein (GFP) and transiently expressed the chimeric genes in tobacco leaves. All constructs targeted the Golgi apparatus and co-expression with DsRed fusions along with immunolabelling of stably transformed BY2 cells indicated that the fusion proteins located all Golgi stacks. Exposure of tissue to brefeldin A (BFA) resulted in the reversible redistribution of ST-GFP into the endoplasmic reticulum. This effect occurred in the presence of a protein synthesis inhibitor and also in the absence of microtubules or actin filaments. Likewise, reformation of Golgi stacks on removal of BFA was not dependent on either protein synthesis or the cytoskeleton. These data suggest that ER to Golgi transport in the cell types observed does not require cytoskeletal-based mechanochemical motor systems. However, expression of an inhibitory mutant of Arabidopsis Rab 1b (AtRab1b(N121I) significantly slowed down the recovery of Golgi fluorescence in BFA treated cells indicating a role for Rab1 in regulating ER to Golgi anterograde transport.  相似文献   

7.
8.
Reticulons (RTNs) constitute a family of endoplasmic reticulum (ER)-associated proteins with a reticular distribution. Despite the implication of their neuronal isoforms in axonal regeneration, the function of their widely expressed isoforms is largely unknown. In this study, we examined the role of the ubiquitously expressed RTN3 in membrane trafficking. Ectopically expressed RTN3 exhibited heterogeneous patterns; filamentous, reticular, and granular distributions. The ER morphology changed accordingly. In cells where RTN3 displayed a filamentous/reticular distribution, protein transport between the ER and Golgi was blocked, and Golgi proteins were dispersed. In contrast, ERGIC-53, a marker for the ER-Golgi intermediate compartment, accumulated at the perinuclear region, and remained there even after cells were treated with agents that induce redistribution of Golgi proteins to the ER, indicating an inhibition of Golgi-to-ER transport of ERGIC-53. These results suggest that RTN3 plays a role in membrane trafficking in the early secretory pathway.  相似文献   

9.
Caenorhabditis elegans hid-1 gene was first identified in a screen for mutants with a high-temperature-induced dauer formation (Hid) phenotype. Despite the fact that the hid-1 gene encodes a novel protein (HID-1) which is highly conserved from Caenorhabditis elegans to mammals, the domain structure, subcellular localization, and exact function of HID-1 remain unknown. Previous studies and various bioinformatic softwares predicted that HID-1 contained many transmembrane domains but no known functional domain. In this study, we revealed that mammalian HID-1 localized to the medial- and trans-Golgi apparatus as well as the cytosol, and the localization was sensitive to brefeldin A treatment. Next, we demonstrated that HID-1 was a peripheral membrane protein and dynamically shuttled between the Golgi apparatus and the cytosol. Finally, we verified that a conserved N-terminal myristoylation site was required for HID-1 binding to the Golgi apparatus. We propose that HID-1 is probably involved in the intracellular trafficking within the Golgi region.  相似文献   

10.
《Autophagy》2013,9(8):1269-1270
Autophagy is a cellular homeostatic response that involves degradation of self-components by the double-membraned autophagosome. The biogenesis of autophagosomes has been well described, but the ensuing processes after autophagosome formation are not clear. In our recent study, we proposed a model in which the Golgi complex contributes to the growth of autophagic structures, and that the Drosophila melanogaster membrane protein Ema promotes this process. In fat body cells of the D. melanogaster ema mutant, the recruitment of the Golgi complex protein Lava lamp (Lva) to autophagic structures is impaired and autophagic structures are very small. In addition, in the ema mutant autophagic turnover of SQSTM1/p62 and mitophagy are impaired. Our study not only identifies a role for Ema in autophagy, but also supports the hypothesis that the Golgi complex may be a potential membrane source for the biogenesis and development of autophagic structures.  相似文献   

11.
Models of Golgi apparatus biogenesis and maintenance are focused on two possibilities: one is self-assembly from the endoplasmic reticulum, and the other is nucleation by a stable template. Here, we asked in three different experimental situations whether assembly of the Golgi apparatus might be dynamically nucleated. During microtubule depolymerization, the integral membrane protein p27 and the peripheral Golgi protein GM130, appeared in newly formed, scattered Golgi elements before three different Golgi apparatus cisternal enzymes, whereas GRASP55, a medial peripheral Golgi protein, showed, if anything, a tendency to accumulate in scattered Golgi elements later than a cisternal enzyme. During Golgi formation after brefeldin A washout, endoplasmic reticulum exit of Golgi resident enzymes could be completely separated from that of p27 and GM130. p27 and GM130 accumulation was onto newly organized perinuclear structures, not brefeldin A remnants, and preceded that of a cisternal enzyme. Reassembly was completely sensitive to guanosine 5'-diphosphate-restricted Sar1p. When cells were microinjected with Sar1pWT DNA to reverse a guanosine 5'-diphosphate-restricted Sar1p endoplasmic reticulum-exit block phenotype, GM130 and p27 collected perinuclearly with little to no exit of a cisternal enzyme from the endoplasmic reticulum. The overall data strongly indicate that the assembly of the Golgi apparatus can be nucleated dynamically by GM130/p27 associated structures. We define dynamic nucleation as the first step in a staged organelle assembly process in which new component association forms a microscopically visible structure onto which other components add later, e.g. Golgi cisternae.  相似文献   

12.
CHLAMYDOMONAS NOCTIGAMA has a non-motile Golgi apparatus consisting of several Golgi stacks adjacent to transitional ER. These domains are characterized by vesicle-budding profiles and the lack of ribosomes on the side of the ER proximal to the Golgi stacks. Immunogold labelling confirms the presence of COPI-proteins at the periphery of the Golgi stacks, and COPII-proteins at the ER-Golgi interface. After addition of BFA (10 microg/ml) a marked increase in the number of vesicular profiles lying between the ER and the Golgi stacks is seen. Serial sections of cells do not provide any evidence for the existence of tubular connections between the ER and the Golgi stacks, supporting the notion that COPI- but not COPII-vesicle production is affected by BFA. The fusion of COPII-vesicles at the CIS-Golgi apparatus apparently requires the presence of retrograde COPI-vesicles. After 15 min the cisternae of neighbouring Golgi stacks begin to fuse forming "mega-Golgis", which gradually curl before fragmenting into clusters of vesicles and tubules. These are surrounded by the transitional ER on which vesicle-budding profiles are still occasionally visible. Golgi remnants continue to survive for several hours and do not completely disappear. Washing out BFA leads to a very rapid reassembly of Golgi cisternae. At first, clusters of vesicles are seen adjacent to transitional ER, then "mini Golgis" are seen whose cisternae grow in length and number to produce "mega Golgis". These structures then divide by vertical fission to produce Golgi stacks of normal size and morphology roughly 60 min after drug wash-out.  相似文献   

13.
Golgins are a family of coiled-coil proteins that are associated with the Golgi apparatus. They are necessary for tethering events in membrane fusion and may act as structural support for Golgi cisternae. Here we report on the identification of an Arabidopsis golgin which is a homologue of CASP, a known transmembrane mammalian and yeast golgin. Similar to its homologues, the plant CASP contains a long N-terminal coiled-coil region protruding into the cytosol and a C-terminal transmembrane domain with amino acid residues which are highly conserved across species. Through fluorescent protein tagging experiments, we show that plant CASP localizes at the plant Golgi apparatus and that the C-terminus of this protein is sufficient for its localization, as has been shown for its mammalian counterpart. In addition, we demonstrate that the plant CASP is able to localize at the mammalian Golgi apparatus. However, mutagenesis of a conserved tyrosine in the transmembrane domain revealed that it is necessary for ER export and Golgi localization of the Arabidopsis CASP in mammalian cells, but is not required for its correct localization in plant cells. These data suggest that mammalian and plant cells have different mechanisms for concentrating CASP in the Golgi apparatus.†These authors have contributed equally to the work  相似文献   

14.
Formation of coated carrier vesicles, such as COPI-coated vesicles from the cis -Golgi, is triggered by membrane binding of the GTP-bound form of ADP-ribosylation factors. This process is blocked by brefeldin A, which is an inhibitor of guanine nucleotide exchange factors for ADP-ribosylation factor. GBF1 is one of the guanine nucleotide-exchange factors for ADP-ribosylation factor and is localized in the Golgi region. In the present study, we have determined the detailed subcellular localization of GBF1. Immunofluorescence microscopy of cells treated with nocodazole or incubated at 15 °C has suggested that GBF1 behaves similarly to proteins recycling between the cis -Golgi and the endoplasmic reticulum. Immunoelectron microscopy has revealed that GBF1 localizes primarily to vesicular and tubular structures apposed to the cis -face of Golgi stacks and minor fractions to the Golgi stacks. GBF1 overexpressed in cells causes recruitment of class I and class II ADP-ribosylation factors onto Golgi membranes. Furthermore, overexpressed GBF1 antagonizes various effects of brefeldin A, such as inhibition of membrane recruitment of ADP-ribosylation factors and the COPI coat, and redistribution of Golgi-resident and itinerant proteins. These observations indicate that GBF1 is involved in the formation of COPI-coated vesicles from the cis -Golgi or the pre-Golgi intermediate compartment through activating ADP-ribosylation factors.  相似文献   

15.
The fungal toxin brefeldin A (BFA) dissociates coat proteins from Golgi membranes, causes the rapid disassembly of the Golgi complex and potently stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 kDa. These proteins have been identified as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a novel guanine nucleotide binding protein (BARS-50), respectively. The role of ADP-ribosylation in mediating the effects of BFA on the structure and function of the Golgi complex was analyzed by several approaches including the use of selective pharmacological blockers of the reaction and the use of ADP-ribosylated cytosol and/or enriched preparations of the BFA-induced ADP-ribosylation substrates, GAPDH and BARS-50.A series of blockers of the BFA-dependent ADP-ribosylation reaction identified in our laboratory inhibited the effects of BFA on Golgi morphology and, with similar potency, the ADP-ribosylation of BARS-50 and GAPDH. In permeabilized RBL cells, the BFA-dependent disassembly of the Golgi complex required NAD+ and cytosol. Cytosol that had been previously ADP-ribosylated (namely, it contained ADP-ribosylated GAPDH and BARS-50), was instead sufficient to sustain the Golgi disassembly induced by BFA.Taken together, these results indicate that an ADP-ribosylation reaction is part of the mechanism of action of BFA and it might intervene in the control of the structure and function of the Golgi complex.  相似文献   

16.
Brefeldin A (BFA) is a useful tool for studying protein trafficking and identifying organelles in the plant secretory and endocytic pathways. At low concentrations (5–10 μg ml?1), BFA caused both the Golgi apparatus and trans‐Golgi network (TGN), an early endosome (EE) equivalent in plant cells, to form visible aggregates in transgenic tobacco BY‐2 cells. Here we show that these BFA‐induced aggregates from the Golgi apparatus and TGN are morphologically and functionally distinct in plant cells. Confocal immunofluorescent and immunogold electron microscope (EM) studies demonstrated that BFA‐induced Golgi‐ and TGN‐derived aggregates are physically distinct from each other. In addition, the internalized endosomal marker FM4‐64 co‐localized with the TGN‐derived aggregates but not with the Golgi aggregates. In the presence of the endocytosis inhibitor tyrphostin A23, which acts in a dose‐ and time‐dependent manner, SCAMP1 (secretory carrier membrane protein 1) and FM4‐64 are mostly excluded from the SYP61‐positive BFA‐induced TGN aggregates, indicating that homotypic fusion of the TGN rather than de novo endocytic trafficking is important for the formation of TGN/EE‐derived BFA‐induced aggregates. As the TGN also serves as an EE, continuously receiving materials from the plasma membrane, our data support the notion that the secretory Golgi organelle is distinct from the endocytic TGN/EE in terms of its response to BFA treatment in plant cells. Thus, the Golgi and TGN are probably functionally distinct organelles in plants.  相似文献   

17.
B2-1 is a human protein that contains both a Sec7 and a pleckstrin homology domain. The yeast Sec7 protein was previously shown to be involved in vesicle formation in the Golgi and endoplasmic reticulum. Recently, several groups have shown that B2-1 and highly similar proteins (e.g., ARNO, ARNO3) have varied cellular functions and subcellular locations. One of these is an association of the B2-1 Sec7 domain with the plasma membrane, binding to the cytoplasmic portion of the integrin beta2 chain (CD18) and is postulated to be involved in inside-out signaling. Other groups have shown that B2-1 and these related proteins are guanine nucleotide-exchange factors that act upon ADP ribosylation factors (ARFs) and are localized to the Golgi or plasma membrane. Here we report the subcellular localization of B2-1 protein. Interestingly, B2-1 does not localize to the plasma membrane but rather associates with a distinct Golgi complex compartment. B2-1's distribution can be disrupted by brefeldin A, a drug that rapidly disrupts the Golgi apparatus by inhibiting ARF activity. Furthermore, transient transfection of GFP-tagged B2-1 shows Golgi complex targeting. Excessive overexpression of transfected B2-1 causes partial Golgi dispersion.  相似文献   

18.
The protein coat in membrane fusion: lessons from fission   总被引:2,自引:0,他引:2  
Multiple cell biological processes involve two opposite rearrangements of membrane configuration, referred to as fusion and fission. While membrane intermediates in protein-mediated fusion have been studied in some detail, the global force which drives sequential stages of the fusion reaction from early local intermediates to an expanding fusion pore remains unknown. Fusion proceeds via stages, which are analogous but in the opposite direction to that of membrane budding-off and fission driven by protein coats. On the basis of this analogy, we propose that an interconnected coat formed by membrane-bound activated fusion proteins surrounding the membrane contact zone generates the driving force for fusion. This fusion protein coat has a strongly curved intrinsic shape opposite to that of the protein coat driving fission. To relieve internal stresses, the fusion protein coat spontaneously bends out of the initial shape of the membrane surface. This bending produces elastic stresses in the underlying lipid bilayer and drives its fusion with the apposing membrane. The hypothesis that 'bystander' proteins (i.e. fusion proteins outside the contact zone) generate the driving force for fusion offers a new interpretation for a number of known features of the fusion reaction mediated by the prototype fusion protein, influenza hemagglutinin, and might bring new insights into mechanisms of other fusion reactions.  相似文献   

19.
Oligodendrocytes in murine shakeoff cultures elaborate extensive membrane sheets containing networks of microtubules. Several membrane components, including proteolipid protein (PLP) and sulfatide, are transported through the Golgi en route to the plasma membrane or myelin (1,2). This transport is essential for membrane assembly, but its role in continuing maintenance of the sheets is not known. We examined the stability of the membrane sheets following microtubule stabilization with taxol or block of transport into the Golgi with brefeldin A. Within one to three hours, both agents had marked effects on the membrane sheets. While some oligodendrocytes maintained regions of normal membrane sheets, many showed retraction of the sheets, with the majority now exhibiting multiple processes rather than sheets. The distribution of sulfatide, PLP and tubulin in cell bodies, processes and sheets was altered in treated cells, as analyzed by immunocytochemical staining with antibodies to these components. The Golgi apparatus also showed reorganization in the presence of taxol, as visualized by binding of wheat germ agglutinin, a lectin with high affinity for distal Golgi vesicles. All of these effects were reversible when the agents were removed after 3 hours. Thus, maintenance of membrane sheets by oligodendrocytes in culture is a dynamic process, requiring ongoing microtubule turnover and transport of molecules through the Golgi.Abbreviations PLP proteolipid protein - WGA wheat germ agglutinin Special issue dedicated to Dr. Bernard W. Agranoff.  相似文献   

20.
Dicumarol (3,3'-methylenebis[4-hydroxycoumarin]) is an inhibitor of brefeldin-A-dependent ADP-ribosylation that antagonises brefeldin-A-dependent Golgi tubulation and redistribution to the endoplasmic reticulum. We have investigated whether dicumarol can directly affect the morphology of the Golgi apparatus. Here we show that dicumarol induces the breakdown of the tubular reticular networks that interconnect adjacent Golgi stacks and that contain either soluble or membrane-associated cargo proteins. This results in the formation of 65-120-nm vesicles that are sometimes invaginated. In contrast, smaller vesicles (45-65 nm in diameter, a size consistent with that of coat-protein-I-dependent vesicles) that excluded cargo proteins from their lumen are not affected by dicumarol. All other endomembranes are largely unaffected by dicumarol, including Golgi stacks, the ER, multivesicular bodies and the trans-Golgi network. In permeabilized cells, dicumarol activity depends on the function of CtBP3/BARS protein and pre-ADP-ribosylation of cytosol inhibits the breakdown of Golgi tubules by dicumarol. In functional experiments, dicumarol markedly slows down intra-Golgi traffic of VSV-G transport from the endoplasmic reticulum to the medial Golgi, and inhibits the diffusional mobility of both galactosyl transferase and VSV-G tagged with green fluorescent protein. However, it does not affect: transport from the trans-Golgi network to the cell surface; Golgi-to-endoplasmic reticulum traffic of ERGIC58; coat-protein-I-dependent Golgi vesiculation by AlF4 or ADP-ribosylation factor; or ADP-ribosylation factor and beta-coat protein binding to Golgi membranes. Thus the ADP-ribosylation inhibitor dicumarol induces the selective breakdown of the tubular components of the Golgi complex and inhibition of intra-Golgi transport. This suggests that lateral diffusion between adjacent stacks has a role in protein transport through the Golgi complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号