首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The negative impact of anthropogenic disturbance and land-use changes on large mammals is generally recognized within conservation biology. In southeastern Norway, both moose (Alces alces) and roe deer (Capreolus capreolus) occur throughout human-modified landscapes, facilitating an interesting comparative study of their habitat use. By using pellet group counts, we looked at the importance of forest structure, vegetation characteristics and human disturbance (e.g., distance to the nearest house, nearest paved road, and nearest edge between field and forest) in shaping the winter distribution of both species at multiple spatial scales, in non-agricultural habitats. Moose occurred more often in areas with higher densities of heather and Vaccinium sp. in the ground layer, and used areas with more open forest structure. The proportion of built-up areas, within a 1,000-m buffer, negatively influenced moose occurrence. Roe deer occurred more often in areas with deciduous trees and patches with juniper and Vaccinium sp. in the ground layer, used areas near roads less, but were significantly associated with areas near the field–forest ecotone. The proportion of built-up areas positively influenced roe deer distribution within a 2,500-m buffer. Roe deer seem to be able to persist in more human-dominated landscapes, possibly due to the availability of field–forest edges providing both high-quality fodder and cover in close proximity. Moose, on the contrary, did not show any preference for areas associated with human disturbance, and their distribution was only associated with patches providing food.  相似文献   

2.
The eastern massasauga rattlesnake (Sistrurus catenatus catenatus) has experienced population declines throughout its range and is now a candidate for federal protection. However, little is known about massasauga habitat selection in Michigan, particularly in actively managed landscapes. Our objectives were to: 1) quantify whether massasaugas in southwestern Michigan select certain vegetation types disproportionately to their availability and 2) quantify whether the vegetation structure associated with snake locations differed between managed (e.g., burning, woody species removal) and unmanaged stands. We implanted radio transmitters in 51 snakes from 2004 to 2005 and 2008 to 2009. We quantified second-order resource selection using compositional analysis, and modeled the effect of habitat management efforts on vegetation using 4 structural variables. All snakes selected cover types disproportionately to their availability (P = 0.001); a ranking matrix ordered the vegetation types, from most to least used, as: early-mid successional deciduous wetland > early-mid successional deciduous upland > developed > late successional mixed lowland forest > late successional deciduous upland forest. We found that snakes in managed areas were associated with greater amounts of dead herbaceous cover (P = 0.005) and less woody stem density (P < 0.001) and tree dominance (P < 0.001) than were snakes in unmanaged areas; however, live herbaceous cover was comparable. Our results can be used by regional managers to provide early and mid successional habitat with structure similar to that selected by snakes in Michigan. © 2011 The Wildlife Society.  相似文献   

3.
4.
Nestbox provision is a technique used to increase nest-site availability for secondary cavity-nesting birds. However, little is known about the demographic consequences of nestbox provision in different habitat types. To assess how nestbox provision affects the density of hole-nesting birds simultaneously in two contrasting habitats, we compared the breeding density of Great Tits along transects without nestboxes with that in transects where nestboxes were provided. Although the initial density of breeders was considerably higher in the deciduous habitat than in the coniferous habitat, provision of nestboxes increased density by a similar number of additional pairs in each habitat type. Thus, the provision of nestboxes in managed coniferous forests may be as effective in increasing the breeding opportunities of cavity nesters as in deciduous stands. Moreover, previous research showed that pairs in deciduous habitat with nestboxes have consistently lower breeding success than those in coniferous habitat with nestboxes. It is possible that the addition of nestboxes in the preferred habitat increased density to such an extent that density-dependent effects became apparent.  相似文献   

5.
During winter, ungulates in boreal forests must cope with high energetic costs related to locomotion in deep snow and reduced forage abundance and quality. At high density, ungulates face additional constraints, because heavy browsing reduces availability of woody browse, the main source of forage during winter. Under these severe conditions, large herbivores might forage on alternative food sources likely independent of browsing pressure, such as litterfall or windblown trees. We investigated the influence of alternative food sources on winter habitat selection, by studying female white-tailed deer (Odocoileus virginianus) living in 2 landscapes with contrasted browse abundance, recently logged and regenerated landscapes, in a population at high density and on a large island free of predators. We fitted 21 female white-tailed deer with Global Positioning System (GPS) collars and delineated winter home ranges and core areas. We measured snow conditions in different habitat categories and sampled vegetation in the core areas and in the rest of the home ranges to determine how forage abundance, protective cover, and snow conditions influenced habitat selection within the home range. In both landscapes, deer were less likely to use open habitat categories as snow accumulated on the ground. At a finer scale, deer inhabiting the regenerated landscape intensively used areas where balsam fir cover was intermediate with greater balsam fir browse density than in the rest of the home range. In the recently logged landscape, deer were more likely to be found near edges between clear-cuts and balsam fir stands and in areas where windblown balsam fir trees were present; the latter being the most influential variable. Although balsam fir browse was sparse and mainly out of reach in this landscape, deer increased the use of areas where it was present. Our results offer novel insights into the resource selection processes of northern ungulates, as we showed that access to winter forage, such as woody browse and alternative food sources, depends on climatic conditions and stochastic events, such as abundant compacted snow or windthrows. To compensate for these scarce and unpredictable food supplies, deer selected habitat categories, but mostly areas within those habitat categories, where the likelihood of finding browse, litterfall, and windblown trees was greatest. © 2011 The Wildlife Society.  相似文献   

6.
Abstract The Eurasian lynx (Lynx lynx) causes large loss of free-ranging domestic sheep in Norway. We tested whether the observed higher kill rates by male lynx than female lynx were related to an association between the availability of the main natural prey, as measured by roe deer (Capreolus capreolus) habitat suitability, presence of sheep, and habitat selection of male and female lynx. We found that lynx selected areas with high roe deer suitability during summer and winter. Moreover, during summer, compared to male lynx, females had greater selection for roe deer areas and a stronger avoidance for sheep grazing areas, which suggests that previously observed differences in kill rates between male and female lynx can be attributed to sex-specific habitat use during summer. The connection between lynx habitat use and roe deer also was reflected in a positive relationship between the roe deer suitability of a sheep grazing area and the total loss of lambs, which suggests that livestock, rather than being actively selected, are mainly killed by lynx incidentally when encountered during other lynx activities (e.g., searching for natural prey species). Therefore, any management practice that separates lynx and sheep, such as concentrating livestock into small patches or less preferred habitats, may reduce depredation.  相似文献   

7.
Common species are fundamental to the structure and function of their communities and may enhance community stability through intraspecific functional diversity (iFD). We measured among‐habitat and within‐habitat iFD (i.e., among‐ and within‐plant community types) of two common small mammal species using stable isotopes and functional trait dendrograms, determined whether iFD was related to short‐term population stability and small mammal community stability, and tested whether spatially explicit trait filters helped explain observed patterns of iFD. Southern red‐backed voles (Myodes gapperi) had greater iFD than deer mice (Peromyscus maniculatus), both among habitats, and within the plant community in which they were most abundant (their “primary habitat”). Peromyscus maniculatus populations across habitats differed significantly between years and declined 78% in deciduous forests, their primary habitat, as did the overall deciduous forest small mammal community. Myodes gapperi populations were stable across habitats and within coniferous forest, their primary habitat, as was the coniferous forest small mammal community. Generalized linear models representing internal trait filters (e.g., competition), which increase within‐habitat type iFD, best explained variation in M. gapperi diet, while models representing internal filters and external filters (e.g., climate), which suppress within‐habitat iFD, best explained P. maniculatus diet. This supports the finding that M. gapperi had higher iFD than P. maniculatus and is consistent with the theory that internal trait filters are associated with higher iFD than external filters. Common species with high iFD can impart a stabilizing influence on their communities, information that can be important for conserving biodiversity under environmental change.  相似文献   

8.
Abstract: We related winter habitat selection by Canada lynx (Lynx canadensis), relative abundance of snowshoe hares (Lepus americanus), and understory stem densities to evaluate whether lynx select stands with the greatest snowshoe hare densities or the greatest prey accessibility. Lynx (3 F, 3 M) selected tall (4.4-7.3 m) regenerating clear-cuts (11-26 yr postharvest) and established partially harvested stands (11-21 yr postharvest) and selected against short (3.4-4.3 m) regenerating clear-cuts, recent partially harvested stands (1-10 yr), mature second-growth stands (>40 yr), and roads and their edges (30 m on either side of roads). Lynx selected stands that provided intermediate to high hare density and intermediate cover for hares (i.e., prey access) but exhibited lower relative preference for stand types with highest hare densities where coniferous saplings exceeded 14,000 stems/ha.  相似文献   

9.
Nest boxes are a popular management tool to increase nest site availability for hole-nesting birds, but biological consequences of this technique in different habitats are poorly studied. In our study area in southwestern Estonia, nest boxes for small passerines were set up in deciduous and coniferous woods. Great tits Parus major preferred the food-rich deciduous habitat for breeding, as judged by higher nest-box occupation, earlier egg-laying and larger clutches and eggs. However, in coniferous habitat more and heavier young fledged per nest, and the return rate of both fledglings and adults was higher. We propose two mutually non-exclusive explanations, both related to the maladaptive outcome of the provision of nest boxes: (i) in the preferred habitat, nest boxes caused a supra-optimal breeding density leading to an ecological trap; (ii) boxes drastically improved the non-preferred habitat, but birds were unable to exploit the breeding habitat fully. One should be careful in providing large numbers of artificial nest sites in preferred habitats. Sometimes it would be more preferable to improve less favourable habitats by removing critical constraints.  相似文献   

10.
食源植物的分布与食物的可获得性影响灵长类动物的家域动态。研究灵长类动物家域利用及其影响因素,对揭示野生动物的生态适应性与行为复杂性有重要意义。2020年9月—2021年8月,利用GPS技术、直接跟踪观察等方法,对黄山低海拔地区的野生藏酋猴群的家域范围进行研究。结果发现藏酋猴家域面积从春季到冬季依次递减,分别为7.16 km2、5.09 km2、3.85 km2、0.35 km2,面积与食物资源可得性呈显著正相关;猴群月平均漫游距离 (d= 1735.67 m ± 288.35 m, n = 12) 与食物可得性呈正相关,且月平均漫游距离在7月最长、1月最短。猴群偏好利用的生境类型为针阔混交林和常绿落叶阔叶混交林,春季主要偏好利用毛竹林和常绿落叶阔叶混交林,夏季和冬季为针阔混交林 (马尾松),秋季为常绿落叶阔叶混交林。结果表明,藏酋猴会根据食物资源分布、食物可得性等因素来优化家域的时空利用以适应低海拔地区。  相似文献   

11.
Tack W  Madder M  Baeten L  DE Frenne P  Verheyen K 《Parasitology》2012,139(10):1273-1281
SUMMARY The mainstream forestry policy in many European countries is to convert coniferous plantations into (semi-natural) deciduous woodlands. However, woodlands are the main habitat for Ixodes ricinus ticks. Therefore, assessing to what extent tick abundance and infection with Borrelia spirochetes are affected by forest composition and structure is a prerequisite for effective prevention of Lyme borreliosis. We selected a total of 25 pine and oak stands, both with and without an abundant shrub layer, in northern Belgium and estimated tick abundance between April and October 2008-2010. Additionally, the presence of deer beds was used as an indicator of relative deer habitat use. Borrelia infections in questing nymphs were determined by polymerase chain reactions. The abundance of larvae, nymphs, and adults was higher in oak stands compared to pine stands and increased with increasing shrub cover, most likely due to differences in habitat use by the ticks' main hosts. Whereas tick abundance was markedly higher in structure-rich oak stands compared to homogeneous pine stands, the Borrelia infection rates in nymphs did not differ significantly. Our results indicate that conversion towards structure-rich deciduous forests might create more suitable tick habitats, but we were unable to detect an effect on the infection rate.  相似文献   

12.
Abstract: Ruffed grouse (Bonasa umbellus) is a popular small game species in northeastern North America. We assessed female ruffed grouse habitat characteristics during winter of 2001-2002 and 2002-2003 in a region dominated by mixed softwood-hardwood forests by comparing used and random locations. We followed 23 radiotagged adult females in 2 forest sites of the Réserve faunique de Portneuf, Québec, Canada, from late November to mid-April. We described grouse habitat using ground surveys and identified selected habitat characteristics using analysis of variance and logistic regression. Females preferred mixed softwood-hardwood stands > 17 m tall and 61-120 years old. Compared with random locations, grouse locations had more well-developed total canopy cover (>4m;75%), canopy (>4m;35%), midstory (1-4 m tall; 35%), and lower-story (<1 m tall; 23%) coniferous cover, and higher coniferous stem density and tree basal area (dbh > 9 cm; 343 stems/ha and 9.0 m2/ha, respectively). Forest management should maintain mature mixed softwood-hardwood stands (50% coniferous), which are adequate winter habitat for ruffed grouse.  相似文献   

13.
ABSTRACT In the Adirondack region of northern New York, USA, severe weather and deep snow typically force white-tailed deer (Odocoileus virginianus) to congregate in areas of dense coniferous cover and along watercourses at lower elevations. We examined 16 yards in the Adirondacks and explored the observation that deer have changed their movement behavior to incorporate residential communities within their wintering areas. We compared locations of deer herds in 2003 and 2004 to deer wintering areas mapped during the 1960s and 1970s. Deer were predominantly absent in 9 of 16 historical yards but were present in residential communities within the same drainage. Yarding areas to which deer shifted contained more residential, deciduous, and mixed cover than yards where no shift occurred, indicating that deer in residential areas were using conifer and mixed cover at a finer scale than deer in nonresidential areas. Smaller winter ranges and core areas of marked deer in a residential winter yard further imply greater concentration of resources available in these areas. Marked deer demonstrated flexibility in core winter range fidelity, a behavior that allows for more permanent shifts as habitat and food resources change or as new areas with appropriate resources are encountered. Our study suggests that low-density residential areas in lowland conifer forests may provide an energetic advantage for deer during winter due to the assemblage of quality habitat interspersed with open areas and a variety of potential food sources in environments where movement is typically constrained by deep snow. Managers should consider the potential for changes in use of deer wintering areas prior to land conservation efforts and may need to adapt management strategies to reduce conflicts in communities occupied by deer during winter.  相似文献   

14.
Climate warming is affecting the Arctic in multiple ways, including via increased dominance of deciduous shrubs. Although many studies have focused on how this vegetation shift is altering nutrient cycling and energy balance, few have explicitly considered effects on tundra fauna, such as the millions of migratory songbirds that breed in northern regions every year. To understand how increasing deciduous shrub dominance may alter breeding songbird habitat, we quantified vegetation and arthropod community characteristics in both graminoid and shrub dominated tundra. We combined measurements of preferred nest site characteristics for Lapland longspurs (Calcarius lapponicus) and Gambel's White‐crowned sparrows (Zonotrichia leucophrys gambelii) with modeled predictions for the distribution of plant community types in the Alaskan arctic foothills region for the year 2050. Lapland longspur nests were found in sedge‐dominated tussock tundra where shrub height does not exceed 20 cm, whereas White‐crowned sparrows nested only under shrubs between 20 cm and 1 m in height, with no preference for shrub species. Shrub canopies had higher canopy‐dwelling arthropod availability (i.e. small flies and spiders) but lower ground‐dwelling arthropod availability (i.e. large spiders and beetles). Since flies are the birds' preferred prey, increasing shrubs may result in a net enhancement in preferred prey availability. Acknowledging the coarse resolution of existing tundra vegetation models, we predict that by 2050 there will be a northward shift in current White‐crowned sparrow habitat range and a 20–60% increase in their preferred habitat extent, while Lapland longspur habitat extent will be equivalently reduced. Our findings can be used to make first approximations of future habitat change for species with similar nesting requirements. However, we contend that as exemplified by this study's findings, existing tundra modeling tools cannot yet simulate the fine‐scale habitat characteristics that are critical to accurately predicting future habitat extent for many wildlife species.  相似文献   

15.
We studied feeding activity and dietary components of hand-reared European roe deer (Capreolus capreolus) in Israel. Our ultimate goal was to assess habitat suitability for future reintroduction of the species, which has been locally extinct for nearly a century. Activity patterns, diet composition, and body mass of four does were monitored in two (fenced) typical east Mediterranean habitats: mature forest and scrubland recovering from fire. Food supplements were provided between trials. Throughout the year, the deer exhibited diurnal and nocturnal activity, mostly at dawn and dusk. Diet composition varied considerably between seasons and habitats, demonstrating the opportunistic flexibility of the deer. In both habitats, the deer fed on over 85% of the plant species but preferred a particular plant species or parts. In summer and early autumn, fruits and seeds became the dominant portion of their diet. In our semi-natural experimental setup, deer maintained body mass through the winter and spring. Weight loss occurred as the dry season advanced, but the animals rapidly regained mass when annuals and grasses became available following the first rains. In the east Mediterranean habitats, water availability seems more problematic for deer survival than food availability.  相似文献   

16.
Abstract In March 2000, Canada lynx (Lynx canadensis) were listed as a federally threatened species in 14 states at the southern periphery of their range, where lynx habitat is disjunct and snowshoe hare (Lepus americanus) densities are low. Forest conditions vary across lynx range; thus, region-specific data on the habitat requirements of lynx are needed. We studied lynx in northern Maine, USA, from 1999 to 2004 to assess quality and potential for forests in Maine to sustain lynx populations. We trapped and radiocollared 43 lynx (21 M, 22 F) during this period and evaluated diurnal habitat selection by 16 resident adult lynx (9 M, 7 F) monitored in 2002. We evaluated lynx selection of 8 habitats at multiple spatial scales, and related lynx habitat selection to snowshoe hare abundance. Lynx preferred conifer-dominated sapling stands, which supported the highest hare densities on our study site (x̄ = 2.4 hares/ha), over all other habitats. The habitats where lynx placed their home ranges did not differ by sex. However, within their home ranges, males not only preferred conifer-dominated sapling stands, but also preferred mature conifer, whereas females singularly preferred conifer-dominated sapling stands. Approximately one-third of Maine's spruce-fir forest and nearly 50% of our study area was regenerating conifer or mixed-sapling forest, resulting from a disease event and intensive forest management (e.g., large clear-cuts). Our findings suggest that current habitat conditions in Maine are better than western montane regions and approach conditions in boreal forests during periods of hare abundance. We recommend that forest landowners maintain a mosaic of different-aged conifer stands to ensure a component of regenerating conifer-dominated forest on the landscape.  相似文献   

17.
Sensitivity of bats to land use change depends on their foraging ecology, which varies among species based on ecomorphological traits. Additionally, because prey availability, vegetative clutter, and temperature change throughout the year, some species may display seasonal shifts in their nocturnal habitat use. In the Coastal Plain of South Carolina, USA, the northern long-eared bat (Myotis septentrionalis), southeastern myotis (Myotis austroriparius), tri-colored bat (Perimyotis subflavus), and northern yellow bat (Lasiurus intermedius) are species of conservation concern that are threatened by habitat loss. Our objective was to identify characteristics of habitat used by these species during their nightly active period and compare use between summer and winter. We conducted acoustic surveys at 125 sites during May–August and at 121 of the same 125 sites December–March 2018 and 2019 in upland forests, bottomland forests, fields, ponds, and salt marsh and used occupancy models to assess habitat use. The northern long-eared bat and southeastern myotis (i.e., myotis bats) used sites that were closer to hardwood stands, pine stands, and fresh water year-round. We did not identify any strong predictors of tri-colored bat habitat use in summer, but during winter they used bottomland forests, fields, and ponds more than salt marsh and upland forests. During summer and winter, northern yellow bats used sites close to fresh water and salt marsh. Additionally, during summer they used fields, ponds, and salt marsh more than upland and bottomland forests, but in winter they used bottomland forests, fields, and ponds more than upland forest and salt marsh. Our results highlight important land cover types for bats in this area (e.g., bottomland forests, ponds, and salt marsh), and that habitat use changes between seasons. Accounting for and understanding how habitat use changes throughout the year will inform managers about how critical habitat features may vary in their importance to bats throughout the year. © 2021 The Wildlife Society.  相似文献   

18.
Forest conversion from native deciduous forests to coniferous stands has been performed in many European regions and resulted in dramatic shifts in understorey plant community composition. However, the drivers for changes in specific understorey plant species remained unclear.Here, we experimentally determine the species-specific effects of light availability and chemical soil characteristics, on the vegetative and regenerative performance of five herbaceous forest understorey plants. Topsoil samples from both spruce and deciduous stands at four locations, with two levels of soil acidity, were collected and used in a common garden experiment. Additionally, three different light levels were applied, i.e., ‘light deciduous’, ‘dark deciduous’ (extra light reduction during summer) and ‘evergreen’ (light reduction during winter). In a second experiment we evaluated the germination of two of these species against the acidity and tree species at the site of origin of the soil samples.The light regime affected both the vegetative and regenerative performance of the understorey species: compared to light deciduous, Anemone nemorosa had a significantly lower performance under the evergreen light regime, Convallaria majalis under dark deciduous and Luzula luzuloides and Galium odoratum under both light regimes. The vegetative performance was lower in soil from acid sites for the acid-sensitive species G. odoratum and Primula elatior. Differences between the soils sampled under deciduous or spruce stands had no effect on the vegetative, or the regenerative performance of these species. By contrast, the germination of L. luzuloides and P. elatior was higher in soils sampled in deciduous stands and in neutral sites.Species-specific responses in vegetative and regenerative performance of adult plants to a changed light regime and soil acidification could be a reason for the changed vegetation composition in converted stands. Also lower germination and establishment of forest understorey species in spruce stands could influence the species distribution after conversion.  相似文献   

19.
Most birds have specific habitat requirements for breeding. The vegetation structure surrounding nest-sites is an important component of habitat quality, and can have large effects on avian breeding performance. We studied 13 years of Blue Tit Cyanistes caeruleus population data to determine whether characteristics of vegetation structure predict site occupancy, laying date and number of eggs laid. Measurements of vegetation structure included the density of English Oak Quercus robur, European Beech Fagus sylvatica, and other deciduous, coniferous and non-coniferous evergreen trees, within a 20-m radius of nest-boxes used for breeding. Trees were further sub-divided into specific classes of trunk circumferences to determine the densities for different maturity levels. Based on Principal Component Analysis (PCA), we reduced the total number of 17 measured vegetation variables to 7 main categories, which we used for further analyses. We found that the occupancy rate of sites and the number of eggs laid correlated positively with the proportion of deciduous trees and negatively with the density of coniferous trees. Laying of the first egg was advanced with a greater proportion of deciduous trees. Among deciduous trees, the English Oak appeared to be most important, as a higher density of more mature English Oak trees was associated with more frequent nest-box occupancy, a larger number of eggs laid, and an earlier laying start. Furthermore, laying started earlier and more eggs were laid in nest-boxes with higher occupancy rates. Together, these findings highlight the role of deciduous trees, particularly more mature English Oak, as important predictors of high-quality preferred habitat. These results aid in defining habitat quality and will facilitate future studies on the importance of environmental quality for breeding performance.  相似文献   

20.
ABSTRACT Conversion of native winter range into producing gas fields can affect the habitat selection and distribution patterns of mule deer (Odocoileus hemionus). Understanding how levels of human activity influence mule deer is necessary to evaluate mitigation measures and reduce indirect habitat loss to mule deer on winter ranges with natural gas development. We examined how 3 types of well pads with varying levels of vehicle traffic influenced mule deer habitat selection in western Wyoming during the winters of 2005–2006 and 2006–2007. Well pad types included producing wells without a liquids gathering system (LGS), producing wells with a LGS, and well pads with active directional drilling. We used 36,699 Global Positioning System locations collected from a sample (n = 31) of adult (>1.5-yr-old) female mule deer to model probability of use as a function of traffic level and other habitat covariates. We treated each deer as the experimental unit and developed a population-level resource selection function for each winter by averaging coefficients among models for individual deer. Model coefficients and predictive maps for both winters suggested that mule deer avoided all types of well pads and selected areas further from well pads with high levels of traffic. Accordingly, impacts to mule deer could probably be reduced through technology and planning that minimizes the number of well pads and amount of human activity associated with them. Our results suggested that indirect habitat loss may be reduced by approximately 38–63% when condensate and produced water are collected in LGS pipelines rather than stored at well pads and removed via tanker trucks. The LGS seemed to reduce long-term (i.e., production phase) indirect habitat loss to wintering mule deer, whereas drilling in crucial winter range created a short-term (i.e., drilling phase) increase in deer disturbance and indirect habitat loss. Recognizing how mule deer respond to different types of well pads and traffic regimes may improve the ability of agencies and industry to estimate cumulative effects and quantify indirect habitat losses associated with different development scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号