首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The X-ray crystal structure of the cAMP-liganded D138L mutant of Escherichia coli catabolite gene activator protein (CAP) was determined at a resolution of 1.66?. This high resolution crystal structure reveals four cAMP binding sites in the homodimer. Two anti conformations of cAMPs (anti-cAMP) locate between the β-barrel and the C-helix of each subunit; two syn conformations of cAMPs (syn-cAMP) bind on the surface of the C-terminal domain. With two syn-cAMP molecules bound, the D138L CAP is highly symmetrical with both subunits assuming a "closed" conformation. These differences make the hinge region of the mutant more flexible. Protease susceptibility measurements indicate that D138L is more susceptible to proteases than that of wild type (WT) CAP. The results of protein dynamic experiments (H/D exchange measurements) indicate that the structure of D138L mutant is more dynamic than that of WT CAP, which may impact the recognition of specific DNA sequences.  相似文献   

3.
The cAMP receptor site in the regulatory subunit of adenosine 3':5'-monophosphate (cAMP)-dependent protein kinase type I was mapped using analogues of cAMP in which the ribose phosphate moiety was systematically modified. Electronical alteration of the cyclophosphate ring at the 3' and 5' positions by sulfur and nitrogen decreased the affinity of these analogues towards the kinase. Substituents at these positions are not tolerated. Testing the separated diastereomers of derivatives in which one of the exocyclic oxygens at the phosphorus has been substituted by sulfur, it was found that one diastereoisomer is preferentially recognized. Based on these results it is proposed that the hydrophylic cyclic phosphate-ribose moiety of cAMP is bound to the kinase via its 3' and 5'-oxygens, the 2'-hydroxy group and the negative charge in a fixed position. Based on our and other published results it is further proposed, that the adenine moiety is bound in a hydrophobic cleft without any hydrogen bond interactions. The chemical interactions between cAMP and the R subunit of protein kinase type I differ from those found for the binding of cAMP to the chemoreceptor of Dictyostelium discoideum [18].  相似文献   

4.
Escherichia coli NCR91 synthesizes a mutant form of catabolite gene activator protein (CAP) in which alanine 144 is replaced by threonine. This mutant, which also lacks adenylate cyclase activity, has a CAP phenotype; in the absence of cAMP it is able to express genes that normally require cAMP. CAP91 has been purified and crystallized with cAMP under the same conditions as used to crystallize the wild type CAP X cAMP complex. X-ray diffraction data were measured to 2.4-A resolution and the CAP91 structure was determined using initial model phases from the wild type structure. A difference Fourier map calculated between CAP91 and wild type showed the 2 alanine to threonine sequence changes in the dimer and also a change in orientation of cysteine 178 in one of the subunits. The CAP91 coordinates were refined by restrained least squares to an R factor of 0.186. Differences in the atomic positions of the wild type and mutant protein structures were analyzed by a vector averaging technique. There were small changes that included concerted motions in the small domains, in the hinge between the two domains and in an adjacent loop between beta-strands 4 and 5. The mutation at residue 144 apparently causes changes in the position of some protein atoms that are distal to the mutation site.  相似文献   

5.
Cyclic adenosine 5'-monophosphate (cAMP) is an ancient signaling molecule, and in vertebrates, a primary target for cAMP is cAMP-dependent protein kinase (PKA). (R(p))-adenosine 3',5'-cyclic monophosphothioate ((R(p))-cAMPS) and its analogues are the only known competitive inhibitors and antagonists for cAMP activation of PKA, while (S(p))-adenosine 3',5'-cyclic monophosphothioate ((S(p))-cAMPS) functions as an agonist. The crystal structures of a Delta(1-91) deletion mutant of the RIalpha regulatory subunit of PKA bound to (R(p))-cAMPS and (S(p))-cAMPS were determined at 2.4 and 2.3 A resolution, respectively. While the structures are similar to each other and to the crystal structure of RIalpha bound to cAMP, differences in the dynamical properties of the protein when (R(p))-cAMPS is bound are apparent. The structures highlight the critical importance of the exocyclic oxygen's interaction with the invariant arginine in the phosphate binding cassette (PBC) and the importance of this interaction for the dynamical properties of the interactions that radiate out from the PBC. The conformations of the phosphate binding cassettes containing two invariant arginine residues (Arg209 on domain A, and Arg333 on domain B) are somewhat different due to the sulfur interacting with this arginine. Furthermore, the B-site ligand together with the entire domain B show significant differences in their overall dynamic properties in the crystal structure of Delta(1-91) RIalpha complexed with (R(p))-cAMPS phosphothioate analogue ((R(p))-RIalpha) compared to the cAMP- and (S(p))-cAMPS-bound type I and II regulatory subunits, based on the temperature factors. In all structures, two structural solvent molecules exist within the A-site ligand binding pocket; both mediate water-bridged interactions between the ligand and the protein. No structured waters are in the B-site pocket. Owing to the higher resolution data, the N-terminal segment (109-117) of the RIalpha subunit can also be traced. This strand forms an intermolecular antiparallel beta-sheet with the same strand in an adjacent molecule and implies that the RIalpha subunit can form a weak homodimer even in the absence of its dimerization domain.  相似文献   

6.
Adenosine inhibits ram sperm adenylate cyclase activity which is membrane-bound and comprises only the catalytic subunit. The inhibition parameters of adenylate cyclase by adenosine were not modified when the enzyme was purified 3 to 5,000 fold. Optimal inhibition by adenosine was found to require a high concentration of manganese, and exhibited a noncompetitive pattern up to a concentration of 1 mM adenosine. Adenosine was the most potent inhibitor among various analogs tested with the following rank order of potencies: adenosine greater than 2'O-methyladenosine greater than 2'deoxyadenosine much greater than 2 chloroadenosine. Studies with agonists and antagonists of the "R"-type adenosine receptor led us to conclude that adenosine inhibits ram sperm adenylate cyclase via a "P"-site carried by the catalytic subunit itself.  相似文献   

7.
The mammalian cAMP-dependent protein kinases have regulatory (R) subunits that show substantial homology in amino acid sequence with the catabolite gene activator protein (CAP), a cAMP-dependent gene regulatory protein from Escherichia coli. Each R subunit has two in-tandem cAMP binding domains, and the structure of each of these domains has been modeled by analogy with the crystal structure of CAP. Both the type I and II regulatory subunits have been considered, so that four cAMP binding domains have been modeled. The binding of cAMP in general is analogous in all the structures and has been correlated with previous results based on photolabeling and binding of cAMP analogues. The model predicts that the first cAMP binding domain correlates with the previously defined fast dissociation site, which preferentially binds N6-substituted analogues of cAMP. The second domain corresponds to the slow dissociation site, which has a preference for C8-substituted analogues. The model also is consistent with cAMP binding in the syn conformation in both sites. Finally, this model has targeted specific regions that are likely to be involved in interdomain contacts. This includes contacts between the two cAMP binding domains as well as contacts with the amino-terminal region of the R subunit and with the catalytic subunit.  相似文献   

8.
E M Reimann 《Biochemistry》1986,25(1):119-125
The type II adenosine cyclic 3',5'-phosphate (cAMP) dependent protein kinase from bovine heart, consisting of a dimeric regulatory subunit and two catalytic subunits, was converted to a heterodimer by limited tryptic digestion. Loss of the tetrameric structure was accompanied by proteolysis of the regulatory subunit to a form with an apparent molecular weight of 45 000 vs. 52 000 for the native subunit. The proteolyzed subunit behaved as a monomer, in contrast to the dimeric native subunit. Amino acid sequence analysis established that proteolysis removed 45 residues at the N-terminus, indicating that these 45 residues constitute the dimerizing domain of this protein. The kinetic properties of this heterodimer were indistinguishable from those of the native tetramer: half-maximal kinase activation occurred at 48 nM cAMP with a Hill coefficient of 1.45, the regulatory subunit bound 1.5 equiv of cAMP with half-maximal binding occurring at 33 nM, and kinetics for dissociation of bound cAMP were biphasic, indicating the presence of two different binding sites. These observations suggest that residues 1-45 function only in the formation of dimers and that dimerization has little influence on other functional properties of the regulatory subunit. More extensive proteolysis cleaved the monomeric fragment at Lys-311. The fragments resulting from this second cleavage did not dissociate, and the complex inhibited the catalytic subunit in a cAMP-dependent manner.  相似文献   

9.
A model of the polypeptide backbone of the dimer of glycogen phosphorylase a (EC 2.4.1.1) was built from a 3 A resolution electron density map derived from x-ray diffraction analysis of native tetragonal crystals and two heavy atom isomorphous replacement derivatives. Each identical subunit of the dimer has a compact shape with overall dimensions of 85 X 75 X 55 A and is tightly associated with its 2-fold symmetry related subunit. There are three major excursions of the polypeptide chain of one monomer across the 2-fold axis to make extensive contacts with the other subunit. The active site, of which there are two per dimer, is shared between the two subunits at their interface and comprises a pocket-like region within a "V"-shaped framework of two alpha helices. Within this region are found the binding sites for the substrates, glucose-1-P and arsenate, a competitive inhibitor, UDP-glucose, and the allosteric effector, AMP. The site of metabolic control, Ser-14 phosphate, is hydrogen-bonded to a side chain on the outside of one of the alpha helices forming the active site and is 15 A from the AMP binding site. Maltoheptaose, a glycogen analogue and substrate for these enzymatically active crystals, binds in a second region of interest. Even at concentrations above its Km, when binding is sufficiently tight that all seven glucose moieties may be discerned, the closest of these is 25 A from the glucose-1-P binding site. We suggest that this polysaccharide binding site may represent a storage site whereby phosphorylase is bound to the glycogen particle in the muscle cell. The polypeptide chain in a third region has the same topological structure as has been observed for the nucleotide binding domains in the dehydrogenases. Adenine or adenosine (but not AMP) bind here in a position similar to the adenine ring of NAD in the dehydrogenases while glucose binds 17 A away in an interior crevice near the center of the monomer.  相似文献   

10.
Kim C  Cheng CY  Saldanha SA  Taylor SS 《Cell》2007,130(6):1032-1043
Protein kinase A (PKA) holoenzyme is one of the major receptors for cyclic adenosine monophosphate (cAMP), where an extracellular stimulus is translated into a signaling response. We report here the structure of a complex between the PKA catalytic subunit and a mutant RI regulatory subunit, RIalpha(91-379:R333K), containing both cAMP-binding domains. Upon binding to the catalytic subunit, RI undergoes a dramatic conformational change in which the two cAMP-binding domains uncouple and wrap around the large lobe of the catalytic subunit. This large conformational reorganization reveals the concerted mechanism required to bind and inhibit the catalytic subunit. The structure also reveals a holoenzyme-specific salt bridge between two conserved residues, Glu261 and Arg366, that tethers the two adenine capping residues far from their cAMP-binding sites. Mutagenesis of these residues demonstrates their importance for PKA activation. Our structural insights, combined with the mutagenesis results, provide a molecular mechanism for the ordered and cooperative activation of PKA by cAMP.  相似文献   

11.
J Bubis  S S Taylor 《Biochemistry》1987,26(19):5997-6004
Photoaffinity labeling of the regulatory subunits of cAMP-dependent protein kinase with 8-azidoadenosine 3',5'-monophosphate (8-N3cAMP) has proved to be a very specific method for identifying amino acid residues that are in close proximity to the cAMP-binding sites. Each regulatory subunit contains two tandem cAMP-binding sites. The type II regulatory subunit (RII) from porcine heart was modified at a single site, Tyr-381 [Kerlavage, A., & Taylor, S.S. (1980) J. Biol. Chem. 255, 8483-8488]. When a proteolytic fragment of this RII subunit was photolabeled with 8-N3cAMP, two sites were covalently modified. One site corresponded to Tyr-381 and, thus, was analogous to the native RII. The other site of modification was identified as Tyr-196, which is not labeled in the native protein. Photoaffinity labeling was carried out in the presence of various analogues of cAMP that show a preference for one of the two tandem cAMP-binding sites. These studies established that the covalent modification of Tyr-381 was derived from 8-N3cAMP that was bound to the second cAMP-binding site (domain B) and that covalent modification to Tyr-196 was due to 8-N3cAMP that was bound to the first cAMP-binding site (domain A). These sites of covalent modification have been correlated with a model of each cAMP-binding site on the basis of the crystal structure of the catabolite gene activator protein (CAP), which is the major cAMP-binding protein in Escherichia coli.  相似文献   

12.
Quantum chemical calculations were performed on the formation of intermediates with trigonal bipyramidal (TBP) configurations in the hydrolysis of adenosine 3',5'-monophosphate (cAMP) with phosphodiesterases and the activation of protein kinases by cAMP. The results show that in the reaction sequence concerning the hydrolysis of cAMP with phosphodiesterase the TBP intermediate must possess an equatorial-apical cyclic phosphate ring with the 3'-oxygen atom in the apical position. This could be an additional reason for the sensitivity of the 3' position in cAMP towards modifications in comparison with the 5' position. According to the calculations, a mechanistic model is presented for the enzymatic hydrolysis of cAMP with the involvement of a covalently bonded enzyme-nucleotide intermediate. Also a model is offered for the activation of protein kinase by cAMP. The activation of protein kinase is assumed to proceed via diequatorial-ring-positioned TBP intermediates resulting in the formation of a covalent bond between cAMP and the protein kinase with retention of the cyclic phosphate ring. It seems likely that the enzyme-nucleotide intermediate enforces a conformational change in the enzyme, which causes the dissociation of the regulatory and catalytic subunit of the protein kinase, necessary for a physiological response.  相似文献   

13.
BACKGROUND: Cyclic AMP binding domains possess common structural features yet are diversely coupled to different signaling modules. Each cAMP binding domain receives and transmits a cAMP signal; however, the signaling networks differ even within the same family of regulatory proteins as evidenced by the long-standing biochemical and physiological differences between type I and type II regulatory subunits of cAMP-dependent protein kinase. RESULTS: We report the first type II regulatory subunit crystal structure, which we determined to 2.45 A resolution and refined to an R factor of 0.176 with a free R factor of 0.198. This new structure of the type II beta regulatory subunit of cAMP-dependent protein kinase demonstrates that the relative orientations of the two tandem cAMP binding domains are very different in the type II beta as compared to the type I alpha regulatory subunit. Each structural unit for binding cAMP contains the highly conserved phosphate binding cassette that can be considered the "signature" motif of cAMP binding domains. This motif is coupled to nonconserved regions that link the cAMP signal to diverse structural and functional modules. CONCLUSIONS: Both the diversity and similarity of cAMP binding sites are demonstrated by this new type II regulatory subunit structure. The structure represents an intramolecular paradigm for the cooperative triad that links two cAMP binding sites through a domain interface to the catalytic subunit of cAMP-dependent protein kinase. The domain interface surface is created by the binding of only one cAMP molecule and is enabled by amino acid sequence variability within the peptide chain that tethers the two domains together.  相似文献   

14.
Summary We attempted to correlate structural modifications of the adenosine 3,5 cyclic monophosphate (cAMP) receptor protein (CAP), to changes in some of its in vivo regulatory functions such as (i) stimulation of the lactose operon expression and (ii) control of adenylate cyclase activity. A radioimmunological procedure was used to study the structure of CAP synthesized by three mutants (crpX) grown under various conditions, in the presence or absence of endogenous or exogenous cAMP. In one mutant CAP appears to be sensitive to thermal inactivation. In another mutant CAP is particularly sensitive to degradation in the absence of cAMP; this degradation is enhanced by high temperature and during stationary phase of grwoth, and prevented by the addition of glucose. Functional alterations of CAP were not found to follow structural changes strictly. In the crpX mutants and in strains carrying the crp + or other crp allele, the stimulation of the lactose operon expression and the modulation of the in vivo rates of cAMP synthesis appear to vary in parallel, favoring an indirect mechanism of regulation of adenylate cyclase by CAP.  相似文献   

15.
P Schaap  M Wang 《Cell》1986,45(1):137-144
We present evidence for the hypothesis that in multicellular structures of Dictyostelium, production of adenosine by hydrolysis of cAMP near the tip region prevents both generation of competing tips and differentiation of prespore cells near the tip, and thus establishes a "prestalk" region. We demonstrate that adenosine affects the immunological prespore specific staining pattern in slugs in a manner opposite to cAMP:cAMP induces an increase of prespore antigen; adenosine induces a decrease. When endogenous adenosine is removed from slugs, prespore vacuoles are synthesized throughout the prestalk region. Adenosine was found to inhibit the induction of prespore differentiation by cAMP in an apparently competitive manner. It was also found that adenosine specifically increased the amount of tissue controlled by one tip, probably by inhibiting generation of competing oscillators. Removing endogenous adenosine from slugs resulted in a decrease of tip dominance.  相似文献   

16.
We have examined the mechanism of action of adenosine, a naturally occurring nucleoside that has profound effects on lymphocyte function. Adenosine (0.01 micrometer to 10 micrometer) increased lymphocytes cAMP levels in a dose-dependent fashion with a maximal (10 micrometer) increase of about 4-fold, whereas adenine, guanosine, and inosine had no effect on lymphocyte cAMP levels at concentrations of 100 micrometer. Adenosine appears to act on the cell surface since 1) 2-chloroadenosine, a poorly metabolized adenosine analogue, was as active as adenosine and 2) dipyridamole, which markedly inhibited [3H]-adenosine uptake by human lymphocytes, did not affect adenosine-induced accumulation of cAMP. The specificity of the adenosine effect was established by showing that the methylxanthine derivatives, theophylline and 3-isobutyl-1-methylxanthine (IBMX), specifically block the accumulation of cAMP in lymphocytes induced by adenosine. Theophylline is a competitive inhibitor of the effect of adenosine, with an estimated dissociation constant of theophylline-receptor complex of about 6.3 X 10(-7) M. The results suggest that adenosine increases the intracellular cAMP content of lymphocytes as a result of its interaction with a specific membrane receptor which results in the activation of adenylate cyclase.  相似文献   

17.
The substrate specificity of beef heart phosphodiesterase activity and of the phosphodiesterase activity at the cell surface of the cellular slime mold Dictyostelium discoideum has been investigated by measuring the apparent Km and maximal velocity (V) of 24 derivatives of adenosine 3',5'-monophosphate (cAMP). Several analogs have increased Km values, but unaltered V values if compared to cAMP; also the contrary (unaltered Km and reduced V) has been observed, indicating that binding of the substrate to the enzyme and ring opening are two separate steps in the hydrolysis of cAMP. cAMP is bound to the beef heart phosphodiesterase by dipole-induced dipole interactions between the adenine moiety and an aromatic amino acid, and possibly by a hydrogen bond between the enzyme and one of the exocyclic oxygen atoms; a cyclic phosphate ring is not required to obtain binding. cAMP is bound to the slime mold enzyme via a hydrogen bond at the 3'-oxygen atom, and probably via a hydrogen bond with one of the exocyclic oxygen atoms. A cyclic phosphate ring is necessary to obtain binding to the enzyme. A specific interaction (polar or hydrophobic) between the base moiety and the enzyme has not been demonstrated. A negative charge on the phosphate moiety is not required for binding of cAMP to either enzyme. The catalytic reaction in both enzymes is restricted to the phosphorus atom and to the exocyclic oxygen atoms. Substitution of the negatively charged oxygen atom by an uncharged dimethylamino group in axial or equatorial position renders the compound non-hydrolyzable. Substitution of an exocyclic oxygen by a sulphur atom reduces the rate of the catalytic reaction about 100-fold if sulphur is placed in axial position and more than 10000-fold if sulphur is placed in equatorial position. A reaction mechanism for the enzymatic hydrolysis of cAMP is proposed.  相似文献   

18.
Adenosine plays many significant roles both as a metabolic precursor and cell communicator. This report describes the preliminary characterization of two adenosine binding proteins isolated from bovine brain membranes. By using N6-9-aminononane adenosine labeled Sepharose 4B two major affinity bound proteins were purified having apparent molecular weights of 16 and 35 kDa. Either or both of the proteins could be selectively eluted from the affinity column with N6-9-aminononane adenosine, adenosine, cAMP, AMP, ADP, ATP, R-/S-phenylisopropyladenosine and NAD(H). By contrast, no proteins were eluted with caffeine, adenine, deoxyadenosine, 2',3'-AMP, inosine, IMP, xanthine, XMP, GMP, GTP or 5'-N-ethylcarboxamideadenosine. The selectivity of elution and lack of apparent enzymatic activity suggests that these proteins are novel membrane bound adenosine binding proteins.  相似文献   

19.
The cyclic 3', 5' adenosine monophosphate (cAMP) binding pocket of the cAMP receptor protein (CRP) of Escherichia coli was mutagenized to substitute cysteine or glycine for serine 83; cysteine, glycine, isoleucine, or serine for threonine 127; and threonine or alanine for serine 128. Cells that expressed the binding pocket residue-substituted forms of CRP were characterized by measurements of beta-galactosidase activity. Purified wild-type and mutant CRP preparations were characterized by measurement of cAMP binding activity and by their capacity to support lacP activation in vitro. CRP structure was assessed by measurement of sensitivity to protease and DTNB-mediated subunit crosslinking. The results of this study show that cAMP interactions with serine 83, threonine 127 and serine 128 contribute to CRP activation and have little effect on cAMP binding. Amino acid substitutions that introduce hydrophobic amino acid side chain constituents at either position 127 or 128 decrease CRP discrimination of cAMP and cGMP. Finally, cAMP-induced CRP structural change(s) that occur in or near the CRP hinge region result from cAMP interaction with threonine 127; substitution of threonine 127 by cysteine, glycine, isoleucine, or serine produced forms of CRP that contained, independently of cAMP binding, structural changes similar to those of the wild-type CRP:cAMP complex.  相似文献   

20.
Protein Kinase A (PKA) is the major receptor for the cyclic adenosine monophosphate (cAMP) secondary messenger in eukaryotes. cAMP binds to two tandem cAMP-binding domains (CBD-A and -B) within the regulatory subunit of PKA (R), unleashing the activity of the catalytic subunit (C). While CBD-A in RIα is required for PKA inhibition and activation, CBD-B functions as a “gatekeeper” domain that modulates the control exerted by CBD-A. Preliminary evidence suggests that CBD-B dynamics are critical for its gatekeeper function. To test this hypothesis, here we investigate by Nuclear Magnetic Resonance (NMR) the two-domain construct RIα (91–379) in its apo, cAMP2, and C-bound forms. Our comparative NMR analyses lead to a double conformational selection model in which each apo CBD dynamically samples both active and inactive states independently of the adjacent CBD within a nearly degenerate free energy landscape. Such degeneracy is critical to explain the sensitivity of CBD-B to weak interactions with C and its high affinity for cAMP. Binding of cAMP eliminates this degeneracy, as it selectively stabilizes the active conformation within each CBD and inter-CBD contacts, which require both cAMP and W260. The latter is contributed by CBD-B and mediates capping of the cAMP bound to CBD-A. The inter-CBD interface is dispensable for intra-CBD conformational selection, but is indispensable for full activation of PKA as it occludes C-subunit recognition sites within CBD-A. In addition, the two structurally homologous cAMP-bound CBDs exhibit marked differences in their residual dynamics profiles, supporting the notion that conservation of structure does not necessarily imply conservation of dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号