首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular endothelial growth factor (VEGF) plays an essential role in the angiogenesis of growing cartilage. Although VEGF expression in cartilage vanishes in normal adults, VEGF is known to be expressed in chondrocytes of osteoarthritic (OA) cartilage. As little information is available on the VEGF expression in the cartilage of OA-like lesions of the temporomandibular joint (TMJ), VEGF expression in the condylar cartilage of TMJs of rats affected with OA was examined. To evoke OA, mechanical stress was applied by forced jaw opening for 10 or 20 days. After 20 days, marked OA-like lesions were observed in the condyle. VEGF was expressed in the chondrocytes of the mature and hypertrophic cell layers of the intermediate and posterior region of the condyle. The percentage of VEGF immunopositive chondrocytes significantly increased with the period of applied mechanical stress. Furthermore, tartrate-resistant acid phosphatase (TRAP) staining of the condylar cartilage showed significant increment of osteoclasts in the mineralized layer subjacent to the hypertrophic layer where high VEGF expression could be detected. The results suggest that VEGF plays an important role in the progression of OA.Eiji Tanaka and Junko Aoyama contributed equally to this work.  相似文献   

2.
A histopathological study on the development of spontaneous osteochondrosis in the humeral head and medial femoral condyle of rats (6-20 weeks old) was carried out. Findings were classified into three types: normal, transitional and osteochondrotic. In the normal type, the articular cartilage at the caudal region of the humeral head and medial femoral condyle was significantly thinned between 6 and 10 weeks of age (generally the caudal region was thicker than elsewhere at all ages). In the transitional type, the thinning of the cartilage was delayed. In the third type, osteochondrotic lesions were detected in the humeral head from 6 weeks of age and in the medial femoral condyle from 10 weeks of age. The thickness of the cartilage had slightly decreased or had not changed at 20 weeks of age. In the early stages, viable chondrocytes and small destructive foci of cartilage were observed in the basal layer of the thick deep zone. These cells were present in pairs or clusters surrounded by matrix in the large lacunae. Cells and destructive foci were also seen in the surface layer of the deep zone as the rats aged. In the advanced stage, a necrotic area or cleft was formed in the basal layer of the articular cartilage and fibrosis was observed in the subchondral bone.  相似文献   

3.
4.
Kakudo N  Kusumoto K  Wang YB  Iguchi Y  Ogawa Y 《Life sciences》2006,79(19):1847-1855
When recombinant human bone morphogenetic protein-2 (rhBMP-2) is implanted in soft tissues, bony tissue is induced during the course of endochondral ossification. The relationship between endochondral ossification and vascularization is important in bone formation, and vascular endothelial growth factor (VEGF) is considered to play an important role in this process. In this study, the immunohistological localization of VEGF was investigated in rhBMP-2-induced ectopic endochondral ossification in the calf muscle of rats. In addition, the characteristics of anti-VEGF antibody-reactive cells were histologically investigated using electron microscopy to examine the cause of endochondral ossification induced by recombinant human bone morphogenetic protein-2. The role of VEGF in rhBMP-2-induced osteoinduction and vascular induction was studied by observing the relationship between the localizations of anti-VEGF antibody-reactive cells and vascularization. During the process of rhBMP-2-induced ectopic endochondral ossification, fibroblast-like cells, which were located at the margin of the implant and reactive to BMP-2 at 5 days, were positive for VEGF immunostaining. Hypertrophic chondrocytes appeared 9 days and osteoblasts appeared 14 to 21 days after implantation, and all these cells were reactive with anti-VEGF antibody. Bony trabeculae subsequently appeared in the muscle, and new blood vessels were formed alongside the trabeculae. When VEGF was added to rhBMP, more new blood vessels and bone were formed in the induced bone. These findings suggested that rhBMP-2 induced the differentiation of undifferentiated mesenchymal cells to chondrocytes and osteoblasts, and these differentiated cells expressed VEGF, creating an advantageous environment for vascularization in bony tissue.  相似文献   

5.
We examined immunohistochemically the fracture repair process in rat tibial bone using antibodies to PCNA, BMP2, TGF-beta 1,-2,-3, TGF-beta R1,-R2, bFGF, bFGFR, PDGF, VEGF, and S-100. The peak level of cell proliferation as revealed by PCNA labelling appeared first in primitive mesenchymal cells and inflammatory cells at the fracture edges and neighboring periosteum at 2-days after fracture, followed by the peaks of periosteal primitive fibroblasts and chondroblasts, which appeared at fracture edges at 3- and 4-days after fracture, respectively. BMP2 was weakly positive in primitive mesenchymal cells, osteoblasts and chondroblasts. At 3-days post-fracture, periosteal osteoblasts produced osteoid tissue and callus with marrow spaces lined by osteoblasts and osteoclasts, and all primitive mesenchymal cells and osteoblasts were positive for TGF-beta 1,-2,-3, and TGF-beta R1,-R2. They were also positive for vascular growth factors bFGF, FGFR and PDGF, but negative for VEGF, and the peak of PCNA labelling of vascular endothelial cells in the marrow space was delayed to 4-days after fracture. Chondroblasts at fracture edges produced hypertrophic chondrocytes at 5-days after fracture and they were positive for TGF-beta 1,-2,-3, and TGF-beta R1,-R2. Primitive chondroblasts were positive for vascular growth factors VEGF as well as bFGF, FGFR, and the peak of PCNA labelling of vascular endothelial cells in the cartilage was at 5-days after fracture. Hypertrophic chondrocytes were also positive for these growth factors but negative for bFGF and bFGFR. S-100 protein-induced calcification was only positive on chondroblasts and hypertrophic chondrocytes. At 7-days after fracture, bone began to be formed from the cartilage at fracture edges, by a process similar to bone formation in the growth plate. Enchondral ossification established a bridge between both fracture edges and periosteal membranous ossification encompassed the fracture site like a sheath at 14 day after fracture. Our study of fracture repair of bone indicates that this process is complex and occurs through various steps involving various growth factors.  相似文献   

6.
Summary Vascular endothelial growth factor (VEGF) is an important angiogenic factor in the pituitary gland. The objective of this study was to unveil the VEGF subcellular localisation in different pituitary cell types and to evaluate changes in its expression at different time intervals after oestrogen stimulation. A relevant feature demonstrated was the identification of this cytokine in the nucleus and cytoplasm of lactotrophs, somatotrophs and gonadotrophs, as well as in follicle-stellate cells of male rats. Oestrogen treatment increased the number of VEGF immunopositive cells and its expression detected differentially by western blot in both nucleus and cytoplasm of pituitary cells when compared to the control. At ultrastructural level VEGF appeared associated with nucleolus and euchromatin involving a possible internal autocrine loop. In lactotrophs, the predominant cell of the tumour, VEGF was immunodetected in RER, Golgi complex, and vesicular organelles, supporting further the association with an auto-paracrine effect exerted by VEGF. The nucleus/cytoplasm ratio of VEGF revealed a prevalent accumulation of VEGF in the cytoplasm. The presence of VEGF in the nucleus may probably be associated with a translocation to this cell compartment. This study demonstrated a cytoplasmic and nuclear immunolocalisation of VEGF in normal and tumoural adenohypophyseal cells. In the course of prolactinoma development, the oestrogen stimulated VEGF expression in tumoural cells, promoting a vascular adaptation which contributes to growth and progression of the tumour.  相似文献   

7.
Summary Antisera raised in rabbits against myelin basic proteins (MBP) and Wolfgram W1 protein isolated from rat myelin were used to study the maturation of oligodendrocytes in the developing rat nervous system. Both proteins were localized immunohistochemically at the light and electron microscopical levels in rat brain from the time of their first appearance to the adult stage. Oligodendrocytes were first detected by their positive staining with W1 antiserum two days after birth and at 1–3 days later with MBP antiserum. At 8–10 days, the number of oligodendrocytes labelled with both sera increases and the myelinated fibre pathways were clearly visible. Labelling with W1 antiserum was observed in oligodendrocytes at all stages from 2 days after birth to adulthood and in myelin fibres when they were present. In contrast, staining of oligodendroglial cells with MBP declined during the period of rapid myelination (20–25 days after birth) and finally disappeared, whereas myelin staining was still apparent. The electron microscopical study revealed that the synthesis of Wolfgram proteins occurred mostly at the peripheral cytoplasmic ribosomes of the cells, from where they were probably transported to processes engaged in myelination. The electron micrographs also showed that the sites of MBP synthesis seemed to be more uniformly distributed over the entire cytoplasm.  相似文献   

8.
Immunohistological analysis of 31 human spleens from the 11th week of gestation to the early postnatal period suggested that fetal organ development may be preliminarily divided into four stages. At stage 0 the organ anlage contained erythrocyte precursors, few macrophages and almost no lymphocytes. Fetal spleens of stage I exhibited arterial vascular lobules and lymphocytes just began colonizing the organ. At stage II, B and T lymphocytes formed periarteriolar clusters. B cell clusters predominated, because B cells aggregated around the more peripheral branches of splenic arterioles, while T cells occupied the more centrally located parts of the vessels. The vascular lobules of stage I and II consisted of central arterioles surrounded by B cells, capillaries and peripheral venules. The lobular architecture slowly dissolved at late stage II when sinuses grew out from the peripheral venules into the centre of the lobule. Interestingly, the B cell accumulations around peripheral arterioles did not represent the precursors of follicles, but apparently persisted as periarteriolar B cell clusters in the adult splenic red pulp, while follicles containing FDCs developed at late stage II from B cells in direct contact to T cell clusters around larger arterial vessels. At stage III before birth the lobular architecture was no longer recognized. The chemokine CXCL13 was already present in vascular smooth muscle and adjacent stromal cells at stage I before B cells immigrated. CCL21, on the contrary, was only demonstrated in fibroblast-like cells supporting T cell clusters from stage II onwards.  相似文献   

9.
A total of 15 blue fox vixens aged 1–6 years were mated, 12 once on the first day of estrus and three a second time 48 hr after the first mating, and were killed 4 hr to 8 days following mating. Ova were collected from the oviducts, evaluated by stereomicroscopy, and studied by transmission (TEM; N = 49, 12 vixens) or scanning (SEM, N = 11, three vixens) electron microscopy. At 0–3 days after ovulation, the ova had not cleaved and were at different stages of meiotic maturation. In about one-half of these ova, representing all stages of meiotic maturation, a decondensing sperm head without nuclear envelope or a small pronucleus with partial nuclear envelope was observed. No clear relationship was found between maternal meiotic stage and the stage of paternal pronucleus formation. Sperm tails were never identified in the ooplasm. Cortical granules were released after sperm penetration at early stages of meiotic maturation. Thus the block against polyspermic penetration was activated during maturation of the oocyte. The first two-cell stage appeared 4 days after ovulation (3 days after mating), the first four-cell stage the following day (day 5), and the first eight-cell stage 6 days after ovulation (5 days after mating). In a single vixen mated late (7 days postovulation) two- to four-cell stages appeared the following day (day 8). This indicates that the time required for the first cleavage division decreases with increasing interval from ovulation to mating. The development of a functional nucleolus with fibrillar centers and fibrillar and granular components at the eight-cell stage indicates activation of embryonic RNA synthesis in fox embryos at the six- to eight-cell stage, suggesting that the embryonic genome is activated at this stage. © 1993 Wiley-Liss, Inc.  相似文献   

10.
The effect on maternal circulation of transient human vascular endothelial growth factor (VEGF) (165) cDNA transfection into the mouse feto-maternal interface at day 14.5 post coitus (p.c.) using a hemagglutinating virus of Japan-envelope (HVJ-E) vector system is reported. On day 15.5 p.c., Western blotting clearly showed overexpression of 18 kD VEGF protein in the uterus. After VEGF transfection, the blood pressure was significantly lowered for 48 hours. On day 17.5 p.c., the blood pressure returned to the control level. Proteinuria was not observed after VEGF transfection. No preterm birth was observed during the course of pregnancy after the transfection procedure. After 24 hours of transfection, human VEGF was not detectable and the mouse VEGF level was similar to that in peripheral blood. However, the soluble fms-like tyrosine kinase (Flt)-1 concentration was significantly lower in VEGF-transfected mice. These results suggest that extraamniotic VEGF overexpression lowered the systemic blood pressure without altering the VEGF concentration in the peripheral blood. Local overexpression of VEGF may become a novel treatment for pregnancy-related disorders such as hypertension complicated-pregnancy and preeclampsia.  相似文献   

11.
Wnts are expressed in the forming long bones, suggesting roles in skeletogenesis. To examine the action of Wnts in skeleton formation, we developed a genetic system to conditionally express Wnt4 in chondrogenic tissues of the mouse. A mouse Wnt4 cDNA was introduced into the ubiquitously expressed Rosa26 (R26) locus by gene targeting in embryonic stem (ES) cells. The expression of Wnt4 from the R26 locus was blocked by a neomycin selection cassette flanked by loxP sites (floxneo) that was positioned between the Rosa26 promoter and the Wnt4 cDNA, creating the allele designated R26(floxneoWnt4). Wnt4 expression was activated during chondrogenesis using Col2a1-Cre transgenic mice that express Cre recombinase in differentiating chondrocytes. R26(floxneoWnt4); Col2a1-Cre double heterozygous mice exhibited a growth deficiency, beginning approximately 7 to 10 days after birth, that resulted in dwarfism. In addition, they also had craniofacial abnormalities, and delayed ossification of the lumbar vertebrae and pelvic bones. Histological analysis revealed a disruption in the organization of the growth plates and a delay in the onset of the primary and secondary ossification centers. Molecular studies showed that Wnt4 overexpression caused decreased proliferation and altered maturation of chondrocytes. In addition, R26(floxneoWnt4); Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF). These studies demonstrate that Wnt4 overexpression leads to dwarfism in mice. The data indicate that Wnt4 levels must be regulated in chondrocytes for normal growth plate development and skeletogenesis. Decreased VEGF expression suggests that defects in vascularization may contribute to the dwarf phenotype.  相似文献   

12.
目的应用活体荧光技术,研究血管损伤后初期病变形成的动态变化。方法 112只雄性LDLR-/-小鼠随机分成14组,每组8只。将绿色荧光蛋白表达而低密度脂蛋白受体敲除(GFP+/LDLR-/-)小鼠的骨髓移植到LDLR-/-小鼠中,行血管损伤手术。从术后第1天至14天,麻醉小鼠,在荧光显微镜下直接观察股动脉血管病变变化的动态状况。结果术后第1天即见血管内大量荧光细胞随血液高速循环,术后第3天出现血液中的荧光细胞呈点状粘附于血管内壁,术后第6天,在血管内壁荧光细胞粘附的部位,外膜组织开始明显增生,增生的外膜组织中可见荧光细胞,此时血管内壁的病变呈不规则的片状分布。术后第9天,血管外纤维组织显著增生,并见大量的荧光细胞,同时可见外膜组织中有血液流动的新生营养血管。至病变第14天,受损血管的病变程度在以前的基础上继续增加,病变部位血管内膜上粘附聚集大量的荧光细胞,形成内衬而附着于血管内膜。结论血管损伤后的初期病变存在着由血管内到外的发展趋势。病变的形成与循环血中骨髓来源的干细胞在内膜部位粘附和聚集具有紧密的联系,血管内膜的病变对血管外纤维组织的增生具有明显的影响。  相似文献   

13.
The development of the small intestine in the insectivore Suncus murinus was noted during the period from 21 days' gestation to 20 days after birth. At 21 days of gestation, the proximal small intestine exhibited the beginning of villus formation, whereas the distal small intestine preserved the stratified epithelium. Stratified epithelium in the distal small intestine changed into a single layer by 24 days' gestation. At 26 days' gestation, each epithelial cell was immature; but by 28 days mature-looking epithelial cells were found. The shape of the villi changed from cuboid to columnar during the same period. The connective-tissue cores of the villi began to develop at 7 days after birth in the proximal small intestine and at 15 days after birth in the distal small intestine. Crypts appeared at 15 days after birth. Endocytosis of epithelial cells took place at 28 days of gestation. In the proximal small intestine, supranuclear vesicle clusters were observed first at birth; they began to decrease both in number and size at 10 days' gestation and then disappeared completely by 20 days after birth. In the distal small intestine, large supranuclear vacuoles were observed first at 28 days of gestation. Although these vacuoles invariably were found up to 15 days after birth, they also disappeared completely by 20 days. Epithelial cells showed a structure similar to those of the adult after weaning.  相似文献   

14.
Osteoarthritis is the most common degenerative disease of joints like the hip and the trapeziometacarpal joint (rhizarthrosis). In this in vitro study, we compared the chondrogenesis of chondrocytes derived from the trapezium and the femoral head cartilage of osteoarthritic patients to have a deeper insight on trapezium chondrocyte behavior as autologous cell source for the repair of cartilage lesions in rhizarthrosis. Chondrocytes collected from trapezium and femoral head articular cartilage were cultured in pellets and analyzed for chondrogenic differentiation, cell proliferation, glycosaminoglycan production, gene expression of chondrogenic and fibrous markers, histological and immunohistochemical analyses. Our results showed a higher cartilaginous matrix deposition and a lower fibrocartilaginous phenotype of the femoral chondrocytes with respect to the trapezium chondrocytes assessed by a higher absolute glycosaminoglycan and type II collagen production, thus demonstrating a superior chondrogenic potential of the femoral with respect to the trapezium chondrocytes. The differences in chondrogenic potential between trapezium and femoral head chondrocytes confirmed a lower regenerative capability in the trapezium than in the femoral head cartilage due to the different environment and loading acting on these joints that affects the metabolism of the resident cells. This could represent a limitation to apply the cell therapy for rhizoarthrosis.  相似文献   

15.
Increased expression of vascular endothelial growth factor (VEGF) in the retina starting after postnatal day (P)7 results in neovascularization originating from deep retinal capillaries, but not those in the superficial capillary bed. Doxycycline was administered starting P0 to double transgenic mice with inducible expression of VEGF in the retina. These mice showed proliferation and dilation of superficial retinal capillaries, indicating that at this stage of development, the superficial capillaries are sensitive to the effects of VEGF. Angiopoietin-2 (Ang2) is expressed along the surface of the retina for several days after birth, but by P7 and later, Ang2 is only expressed in the region of the deep capillary bed. In mice with ubiquitous doxycycline-inducible expression of Ang2, in the absence of doxycycline, intravitreous injection of a gutless adenoviral vector expressing VEGF (AGV.VEGF) resulted in neovascularization of the cornea and iris, but no retinal neovascularization. After treatment with doxycycline to induce Ang2 expression, intravitreous injection of AGV.VEGF caused retinal neovascularization in addition to corneal and iris neovascularization. The retinal neovascularization originated from both the superficial and deep capillary beds. These data suggest that Ang2 promotes sensitivity to the angiogenic effects of VEGF in retinal vessels.  相似文献   

16.
Recent reports have demonstrated that erythroid progenitor cells contain and secrete various angiogenic cytokines. Here, the impact of erythroid colony-forming cell (ECFC) implantation on therapeutic angiogenesis was investigated in murine models of hindlimb ischemia. During the in vitro differentiation, vascular endothelial growth factor (VEGF) secretion by ECFCs was observed from day 3 (burst-forming unit erythroid cells) to day 10 (erythroblasts). ECFCs from day 5 to day 7 (colony-forming unit erythroid cells) showed the highest VEGF productivity, and day 6 ECFCs were used for the experiments. ECFCs contained larger amounts of VEGF and fibroblast growth factor-2 (FGF-2) than peripheral blood mononuclear cells (PBMNCs). In tubule formation assays with human umbilical vein endothelial cells, ECFCs stimulated 1.5-fold more capillary growth than PBMNCs, and this effect was suppressed by antibodies against VEGF and FGF-2. Using an immunodeficient hindlimb ischemia model and laser-Doppler imaging, we evaluated the limb salvage rate and blood perfusion after intramuscular implantation of ECFCs. ECFC implantation increased both the salvage rate (38% vs. 0%, P < 0.05) and the blood perfusion (82.8% vs. 65.6%, P < 0.01). In addition, ECFCs implantation also significantly increased capillaries with recruitment of vascular smooth muscle cells and the capillary density was 1.6-fold higher than in the control group. Continuous production of human VEGF from ECFCs in the skeletal muscle was confirmed at least 7 days after the implantation. Implantation of ECFCs promoted angiogenesis in ischemic limbs by supplying angiogenic cytokines (VEGF and FGF-2), suggesting a possible novel strategy for therapeutic angiogenesis.  相似文献   

17.
18.
为探讨血管内皮生长因子(VEGF)在雄性生殖系精子发生发育和成熟过程中的调控作用,应用免疫组化、Periodic acid-Schiff(PAS)染色及蛋白质免疫印迹技术,检测VEGF蛋白在成年大鼠睾丸和附睾的表达和定位情况。Western-blots显示,在大鼠睾丸和附睾内均有VEGF蛋白(约45kD)的表达;免疫组化显示,睾丸内VEGF见于圆形和长形精子细胞、Sertoli细胞和Leydig细胞,免疫阳性产物位于细胞质内。精子细胞的VEGF表达伴随精子细胞项体发育的全过程,精子残余体呈强阳性。附睾内VEGF表达于附睾管上皮,且有区域和细胞特异性。附睾起始段的所有上皮主细胞内都有VEGF阳性颗粒;头、体、尾各段的VEGF阳性细胞多数与含PAS阳性颗粒的细胞重合,证明为亮细胞;近端附睾的管腔内可见精子头部呈VEGF阳性染色。睾丸、附睾间质血管内皮为VEGF阴性。上述结果表明,VEGF蛋白可由生殖细胞和附睾管上皮细胞直接产生,它可能以自分泌和/或旁分泌的形式共同作用于睾丸和附睾的生殖细胞和血管内皮,直接或间接影响精子的发生、发育和成熟过程,特别是精子顶体的形成过程,并可能与精子在附睾内的成熟有关。  相似文献   

19.
Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy   总被引:32,自引:0,他引:32  
Ischemic peripheral neuropathy is a frequent, irreversible complication of lower extremity vascular insufficiency. We investigated whether ischemic peripheral neuropathy could be prevented and/or reversed by gene transfer of an endothelial cell mitogen designed to promote therapeutic angiogenesis. Intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor (VEGF) simultaneously with induction of hindlimb ischemia in rabbits abrogated the substantial decrease in motor and sensory nerve parameters, and nerve function recovered promptly. When gene transfer was administered 10 days after induction of ischemia, nerve function was restored earlier and/or recovered faster than in untreated rabbits. These findings are due in part to enhanced hindlimb perfusion. In addition, however, the demonstration of functional VEGF receptor expression by Schwann cells indicates a direct effect of VEGF on neural integrity as well. These findings thus constitute a new paradigm for the treatment of ischemic peripheral neuropathy.  相似文献   

20.
Sengupta J  Dhawan L  Ghosh D 《Cytokine》2003,24(6):277-285
Blastocyst implantation and placentation involve localized inflammatory type of responses at and around the site of nidation. In the present study, the likely involvement of inflammatory cytokines, namely, leukemia inhibitory factor (LIF), interleukins 1 alpha and 1 beta (IL-1alpha and IL-1beta) and IL-6 at the primary implantation site of the rhesus monkey was examined immunocytochemically during lacunar (n=6) and villous (n=8) stages of gestation. Trophoblast cells and extraembryonic mesenchymal cells were immunopositive for LIF and IL-1alpha. The distribution of IL-1beta and IL-6 in trophoblast cells was low in lacunar stage samples, however, a higher degree of immunopositivity for IL-6 was observed in villous stage samples. Decidual cells were immunopositive for all the cytokines studied. In lacunar stage samples, plaque cells adjacent to implanted nidus were immunopositive for all the cytokines examined, and the degree of their immunoprecipitation increased, except that of IL-1beta, during the villous stage. Luminal and glandular epithelial cells were immunopositive for LIF, IL-1alpha, IL-1beta and IL-6 in lacunar and in villous stage samples. LIF immunopositivity was detected in endothelial cells of blood vessels within and below chorionic plate and cytotrophoblast shell, while vascular smooth muscle cells were positive for all the cytokines studied. The temporo-spatial characteristics of LIF, IL-1alpha, IL-1beta and IL-6 protein expressions in primary implantation sites of the rhesus monkey suggest that these pro-inflammatory cytokines play specific roles in regulating trophoblast cell proliferation, differentiation, invasion and associated maternal tissue remodelling during early gestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号