首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to ascertain the time course of changes, whilst suspending the hindlimb and physical exercise training, of myosin light chain (LC) isoform expression in rat soleus and vastus lateralis muscles. Two groups of six rats were suspended by their tails for 1 or 2 weeks, two other groups of ten rats each were subjected to exercise training on a treadmill for 9 weeks, one to an endurance training programme (1-h running at 20 m.min-1 5 days.week-1), and the other to a sprint programme (30-s bouts of running at 60 m.min-1 with rest periods of 5 min). At the end of these experimental procedures, soleus and vastus lateralis superficialis muscles were removed for myosin LC isoform determination by two-dimensional gel electrophoresis. Hindlimb suspension for 2 weeks significantly increased the proportion of fast myosin LC and decreased slow myosin LC expression in the soleus muscle. The pattern of myosin LC was unchanged in the vastus lateralis muscle. Sprint training or endurance training for 9 weeks increased the percentage of slow myosin LC in vastus lateralis muscle, whereas soleus muscle myosin LC was not modified. These data indicate that hindlimb suspension influences myosin LC expression in postural muscle, whereas physical training acts essentially on phasic muscle. There were no differences in myosin LC observed under the influence of sprint- or endurance-training programme.  相似文献   

2.
High voltage electron microscopy at 1500 kV, was used to examine the effects of endurance training on mitochondrial morphology in rat skeletal muscle. The soleus, deep portions of the vastus lateralis, and superficial portions of the vastus lateralis muscles were examined to represent slow-twitch-oxidative, fast-twitch-oxidative-glycolytic, and fast-twitch-glycolytic skeletal muscle fiber types, respectively. Muscle samples were removed from endurance trained and untrained control female Wistar rats (n = 6, each group). Tissues were fixed using standard electron microscopic techniques and sectioned transversely with respect to muscle fiber orientation to approximately, 0.5 micron thickness. The sections were stained on grids with uranyl acetate and Reynolds' lead citrate. Results confirmed the presence of a mitochondrial reticulum in all three skeletal muscle fiber types of both groups. Stereologic analyses indicated volume densities of intermyofibrillar mitochondria increased significantly (P less than 0.05) with endurance training in the three skeletal muscle fiber types. Surface-to-volume ratio of mitochondria was significantly decreased (P less than 0.05) after training only in the deep portion of the vastus lateralis muscle. It was concluded that the mitochondria in mammalian limb skeletal muscle are a reticulum which adapts to endurance training by proliferating.  相似文献   

3.
Tissue samples were obtained from vastus lateralis and deltoid muscles of physical education students (n = 12), Greco-Roman wrestlers (n = 8), flat-water kayakers (n = 9), middle- and long-distance runners (n = 9), and olympic weight and power lifters (n = 7). Histochemical stainings for myofibrillar adenosinetriphosphatase and NADH-tetrazolium reductase were applied to assess the relative distribution of fast-twitch and slow-twitch (ST) muscle fiber types and fiber size. The %ST was not different in the vastus (mean SD 48 +/- 14) and deltoid (56 +/- 13) muscles. The %ST was higher (P less than 0.001), however, in the deltoid compared with vastus muscle of kayakers. This pattern was reversed in runners (P less than 0.001). The %ST of the vastus was higher (P less than 0.001) in runners than in any of the other groups. The %ST of the deltoid muscle was higher in kayakers than in students, runners (P less than 0.001), and lifters (P less than 0.05). The mean fiber area and the area of ST fibers were greater (P less than 0.01) in the vastus than the deltoid muscle. Our data show a difference in fiber type distribution between the trained and nontrained muscles of endurance athletes. This pattern may reflect the adaptive response to long-term endurance training.  相似文献   

4.
The purpose of this experiment was to investigate the effects of 12.5 days of zero gravity (0 g) exposure (Cosmos 1887 Biosputnik) on the enzymatic properties, protein content, and isomyosin distribution of the myofibril fraction of the slow-twitch vastus intermedius (VI) and the fast-twitch vastus lateralis (VL) muscles of adult male rats. Measurements were obtained on three experimental groups (n = 5 each group) designated as flight group (FG), vivarium control (VC), and synchronous control (SC). Body weight of the FG was significantly lower than that of the two control groups (P less than 0.05). Compared with the two control groups, VI weight was lower by 23% (P less than 0.10), whereas no such pattern was apparent for the VL muscle. Myofibril yields (mg protein/g muscle) in the VI were 35% lower in the FG than in controls (P less than 0.05), whereas no such pattern was apparent for the VL muscle. When myofibril yields were expressed on a muscle basis (mg/g x muscle weight), the loss of myofibril protein was more exaggerated and suggests that myofibril protein degradation is an early event in the muscle atrophy response to 0 g. Analysis of myosin isoforms indicated that slow myosin (Sm) was the primary isoform lost in the calculated degradation of total myosin. No evidence of loss of the fast isomyosins was apparent for either muscle following spaceflight. Myofibril ATPase activity of the VI was increased in the FG compared with controls, which is consistent with the observation of preferential Sm degradation. These data suggest that muscles containing a high percentage of slow-twitch fibers undergo greater degrees of myofibril protein degradation than muscles containing predominantly fast-twitch fibers in response to a relatively short period of 0 g exposure, and the primary target appears to be the Sm molecule.  相似文献   

5.
Loss of fast-twitch isomyosins in skeletal muscles of the diabetic rat.   总被引:1,自引:1,他引:0  
By means of pyrophosphate electrophoresis the myosin isoenzyme pattern of two fast-twitch skeletal muscles (extensor digitorum longus, gastrocnemius) and one slow-twitch muscle (soleus) was investigated in control rats and was compared with that of rats 4 weeks after induction of diabetes mellitus by streptozotocin injection. In the fast-twitch muscles the isomyosin pattern consisting of FM1 (fast isomyosin 1), FM2 and FM3 was strongly affected by diabetes, resulting in an extensive loss of FM1 and a substantial decrease of FM2. These changes were also apparent when the light chains of the fast isomyosins were analysed by two-dimensional electrophoresis: LC3f (myosin light chain 3f) largely disappeared and LC2f was significantly diminished. In contrast, the isomyosin pattern in soleus muscle, consisting of SM1 (slow isomyosin 1) and SM2, was not affected by the diabetic state, and two-dimensional electrophoresis revealed a normal light-chain pattern of LC1sa, LC1sb and LC2s. These results indicate that the isomyosins of slow-twitch oxidative myofibres are more resistant to the hormonal and metabolic disorders during diabetes mellitus than are the isomyosins of fast-twitch fibres.  相似文献   

6.
Left ventricular functional capacity in the endurance-trained rodent   总被引:3,自引:0,他引:3  
Cardiac myosin P-light chain phosphorylation [P-LC(P)] has been proposed to augment myocardial force production. This study was undertaken to examine the potential for cardiac myosin P-LC(P) for both equivalent heart rate and work load in exercising endurance-trained and nontrained rodents. A 10-wk training protocol elicited a significant reduction in submaximal running O2 uptake while enhancing peak O2 uptake (-17 and 10%, respectively, P less than 0.05). Left ventricular functional index during submaximal exercise, obtained with a high-fidelity Millar ultraminiature pressure transducer, indicated that the trained animals were able to maintain peak left ventricular pressure (LVP) in comparison to their sedentary counterparts, even though both heart rate and rate of LVP development were significantly reduced (P less than 0.05). When expressed on the basis of equivalent submaximal heart rate, peak LVP was augmented in the trained animals. Cardiac myosin P-LC(P) was examined under two conditions known to produce disparate responses in trained vs. sedentary animals. For an equivalent work load, we observed parallel increases in P-LC(P) (20%) and systolic pressure (17%) in both groups, even though the trained animals exhibited significantly lower heart rates (P less than 0.05). For an equivalent heart rate, training evoked a significant increase in systolic pressure (26%, P less than 0.05) and caused a slight increase in P-LC(P) relative to the nontrained controls. Cardiac myosin adenosinetriphosphatase was reduced approximately 10% in the trained animals (P less than 0.05), commensurate with a 2.0-fold increase in the V3 (low adenosinetriphosphatase) isomyosin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Male spontaneously hypertensive rats (SHR) and Wistar-Kyoto normotensive rats (WKY) were subjected to swimming training 6 times/wk, commencing at 4 wk of age, to determine whether this type of endurance exercise might alter contractile proteins and cardiac function in young adult SHR. The total duration of exercise was 190 h. Myofibrillar adenosinetriphosphatase (ATPase) activity was assayed at various free [Ca2+] ranging from 10(-7) to 10(-5) M. Ca2+-stimulated ATPase activity of actomyosin and purified myosin was determined at various Ca2+ concentrations both in the low and high ionic strength buffers. Actin-activated myosin ATPase activity of purified myosin was assayed at several concentrations of actin purified from rabbit skeletal muscle. Under all these conditions the contractile protein ATPase activity was comparable between trained and untrained WKY and SHR. Analysis of myosin isoenzymes on pyrophosphate gels showed a single band corresponding to V1 isoenzyme, and there were no differences between swimming-trained and nontrained WKY and SHR. Ventricular performance was assessed by measuring cardiac output and stroke volume after rapid intravenous volume overloading. Both cardiac index and stroke index were comparable in nontrained WKY and SHR but were significantly increased in the trained groups compared with their respective nontrained controls. These results suggest that myosin ATPase activity and distribution of myosin isoenzymes are not altered in the moderately hypertrophied left ventricle whether the hypertrophy is due to genetic hypertension (SHR) or to exercise training (trained WKY). Moreover, the data indicate that SHR, despite the persistence of a pressure overload, undergo similar increases in left ventricular mass and peak cardiac index after training, as do normotensive WKY.  相似文献   

8.
Experiments were conducted to test the hypothesis that injury to skeletal muscle in rats resulting from prolonged downhill running is prevented to a greater extent by prior downhill training than by either uphill or level training. Changes in plasma creatine phosphokinase (CPK) activity and glucose-6-phosphate dehydrogenase (G-6-PDase) activity in the soleus (S), vastus intermedius (VI), and medial head of triceps brachii (TM) muscles were evaluated as markers of muscle injury 48 h after 90 min of intermittent downhill running (16 m . min -1). Prior to this acute downhill run, groups of rats were trained by either downhill (-16 degrees), level (0 degrees), or uphill (+16 degrees) running (16 m . min -1) for 30 min/day. Training duration was either 5 days or 1 day. A training effect (i.e., reduced muscle injury) was indicated if muscle G-6-PDase or plasma CPK activity in a trained group following the 90-min downhill run was not different from that of nonexercised control animals and/or if it was lower than that of nontrained runners. A significant training effect was achieved in all three muscles with 5 days of either downhill or level training, but only in S after 5 days of uphill training. Elevation of plasma CPK activity was prevented by 5 days of training on all three inclines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Immunochemical studies have identified a distinct myosin heavy chain (MHC) in the chicken embryonic skeletal muscle that was undetectable in this muscle in the posthatch period by both immunocytochemical and the immunoblotting procedures. This embryonic isoform, identified by antibody 96J, which also recognises the cardiac and SM1 myosin heavy chains, differs from the embryonic myosin heavy chain belonging to the fast class described previously. Although the fast embryonic isoform is a major species present in the leg and pectoral embryonic muscles, slow embryonic isoform was present in significant amounts during early embryonic development. Immunocytochemical studies using another monoclonal antibody designated 9812, which is specific for SM1 MHC, showed this isoform to be restricted to only presumptive slow muscle cells. From these studies and those reported on the changes in SM2 MHC, it is proposed that as is the case for the fast class, there also exists a slow class of myosin heavy chains composed of slow embryonic, SM1 and SM2 isoforms. The differentiation of a muscle cell involves transitions in a series of myosin isozymes in both presumptive fast and slow skeletal muscle cells.  相似文献   

10.
The effects of endurance training on the expression of myosin were electrophoretically analyzed in the deep portion of vastus lateralis muscle from the rat. A 10-wk running program led to increases (P < 0.01) in myosin heavy chain (MHC) 2a and 2d with a decrease (P < 0.01) in MHC(2b). Training also evoked a rearrangement of the isomyosin pattern with decreases in fast isomyosin (FM) 1 (P < 0.01) and FM2 (P < 0.05) and a rise in intermediate isomyosin (P < 0.01). These changes were accompanied by a 61% decrease (P < 0.01) in myosin light chain (MLC) 3F (11.8 +/- 2.7 vs. 4.6 +/- 4.2%). Two-dimensional electrophoresis made it possible to separate the triplet of isomyosins (FMb) consisting of MHC(2b). Training elicited a 26% decrease (P < 0.05) in the FM1b fraction within FMb, i.e., FM1b/(FM1b + FM2b + FM3b) (24.2 +/- 5.5 vs. 18.0 +/- 4.3%). These changes resulted in a 10% decrease (P < 0.05) in the MLC(3F) fraction, i.e., MLC(3F)/(MLC(1F) + MLC(3F)), in FMb (44.9 +/- 4.5 vs. 40.3 +/- 3.2%). These results suggest that endurance training may exert the depressive effect on the contractile velocity of type IIB fibers and that a training-induced decrease in the contractile velocity of whole muscle may be caused by alterations in fast alkali MLC complements within a given fiber type as well as by transitions in MHC-based fiber populations.  相似文献   

11.
Pyruvate dehydrogenase (PDH) plays an important role in regulating carbohydrate metabolism in skeletal muscle. PDH is activated by PDH phosphatase (PDP) and deactivated by PDH kinase (PDK). Obesity has a large negative impact on skeletal muscle carbohydrate metabolism, whereas endurance training has been shown to improve regulatory control of skeletal muscle carbohydrate metabolism, more so when coupled with obesity. A majority of this literature has focused on PDK, with little information available on PDP. To determine the relative role of PDP in regulating skeletal muscle PDH activity with obesity and endurance training, obese and lean Zucker rats remained sedentary or were endurance trained (1 h/day, 5 days/wk) for a period of 8 wk. Soleus, red gastrocnemius, (RG), and white gastrocnemius (WG) muscles were sampled after the training period. The main findings were 1) obesity resulted in a 46% decrease in PDP activity expressed per milligram extracted mitochondrial protein only in RG, while PDP isoform content was unchanged; 2) 8 wk of endurance training led to a significant 1.4-2.2-fold increase in PDP activity of all muscle examined from obese rats, and the concomitant increase in PDP1 protein was only seen in soleus and RG; 3) 8 wk of endurance training led to a trending 1.4-2.2-fold increase in PDP activity of all muscle examined from obese rats, and the concomitant increase in PDP1 protein was only seen in soleus and RG; and 4) PDP2 protein content was not affected by obesity or training. These results suggest that decreased PDP activity in oxidative skeletal muscles may play a role in the impairment of carbohydrate metabolism in obese rats, which is reversible with endurance training.  相似文献   

12.
Contractile properties of old rat muscles: effect of increased use   总被引:1,自引:0,他引:1  
To examine how different kinds of activity affect the composition and contractile properties of aging skeletal muscle, old male rats were strength and swim trained. The mass of weights lifted during the strength training increased by 85 +/- 9% (P less than 0.05), which was accompanied by an increase by 32 +/- 5% (P less than 0.05) of the estimated force developed. The wet muscle weight of the soleus and the plantaris decreased significantly with age. The phenomenon was counteracted but not neutralized by the strength training. Twitch and tetanic tension also decreased significantly with age in both the soleus and plantaris muscle. This was avoided by the strength training. This training also significantly decreased time to peak tension and half-relaxation time of both muscles. The swim training increased the heart-to-body weight ratio by 21 +/- 5% (P less than 0.05) and the endurance of the soleus muscle. Time to peak tension and triosephosphate dehydrogenase activity of the plantaris muscle were strongly correlated (P less than 0.001) with myosin adenosinetriphosphatase activity. The results show that the composition and contractile properties of old skeletal muscle are considerably affected by strength training repeated during a substantial period of old age, whereas swim training only affects the endurance of the skeletal muscle.  相似文献   

13.
Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.  相似文献   

14.
Seasonal changes of the isoform composition of myosin heavy chains in skeletal muscles (m. triceps, m. longissimus dorsi, m. soleus, m. gastrocnemius, m. vastus lateralis) of hibernating ground squirrels Spermophilus undulatus were studied. Functional properties of myosin (the actin-activated ATPase activity and its Ca2+-sensitivity in vitro) were also examined. It was observed that the content of slow myosin heavy chain I isoform increased and the content of fast IIx/d isoform decreased in muscles of torpid ground squirrels and animals which are active in autumn and winter. In muscles of these animals the content of N2A-titin isoform decreased although the relative content of NT-titin isoform, observed in striated muscles of mammals in our previous experimental works, increased. Actin-activated ATPase activity and Ca2+-sensitivity of myosin isolated from skeletal muscles of torpid and interbout ground squirrels were found to reduce. The changes observed are discussed in the context of adaptation of skeletal muscles of ground squirrels to hibernation conditions.  相似文献   

15.
With the use of myosin adenosinetriphosphatase (ATPase) and immunofluorescence staining methods, the adaptive responses of intrafusal and extrafusal fibers to endurance swimming were studied in frozen sections of rat soleus (SOL) and extensor digitorum longus (EDL) muscles. Glycogen depletion confirmed muscle fatigue at the end of a standardized bout of exercise. No significant age-dependent changes in myosin isoforms were detected in any fibers. The 12-wk training increased type I fibers by 10.9% in the SOL and type IIa fibers in the EDL by 16.6%. In trained muscle sections, both staining methods identified a permuted chain fiber, expressed the same as the myosin isoform in the bag2 fiber. However, no exercise-induced change of myosin isoform profile was found in the bag1 and bag2 fibers. Myosin ATPase (and immunofluorescence) staining showed the percentage of permuted chain fibers increased from 0 to 6.7% (5.6%) after 6 wk of training and to 19.2% (14.1%) after 12 wk of training and that it was still at 6.1% (4.2%) 10 wks after training. A novel myosin isoform may thus be expressed in nuclear chain fibers by repetitive recruitment of muscle spindles.  相似文献   

16.
The effect of fiber type and endurance exercise training on skeletal muscle beta-adrenoceptor properties were assessed using a direct radioligand binding technique. Six separate muscles, composed of a variety of different fiber types, were examined in treadmill trained and sedentary rats. In trained animals, sarcolemmal preparations from heart and slow twitch soleus muscle exhibited a significantly greater receptor concentration than membranes from white fast twitch glycolytic fibers of the vastus lateralis. No significant changes were observed between trained and sedentary rat muscle beta-adrenoceptor density (beta max, fmole/mg protein) or affinity (Kd, nM) within each muscle type, despite significantly increased myocardial/body weight ratios and skeletal muscle enzyme adaptations associated with the exercise program. These results suggest that muscle beta-adrenoceptor properties may be influenced in part by the motor nerve innervation to that muscle, and are further discussed with respect to a possible relationship between exercise intensity and receptor regulation.  相似文献   

17.
18.
Calcineurin (CaN) has been implicated as a signaling molecule that can transduce physiological stimuli (e.g., contractile activity) into molecular signals that initiate slow-fiber phenotypic gene expression and muscle growth. To determine the influence of muscle phenotype and atrophy on CaN levels in muscle, the levels of soluble CaN in rat muscles of varying phenotype, as assessed by myosin heavy chain (MHC)-isoform proportions, were determined by Western blotting. CaN levels were significantly greater in the plantaris muscle containing predominantly fast (IIx and IIb) MHC isoforms, compared with the soleus (predominantly type I MHC) or vastus intermedius (VI, contains all 4 adult MHC isoforms). Three months after a complete spinal cord transection (ST), the CaN levels in the VI muscle were significantly reduced, despite a significant increase in fast MHC isoforms. Surprisingly, the levels of CaN in the VI were highly correlated with muscle mass but not MHC isoform proportions in ST and control rats. These data demonstrate that CaN levels in skeletal muscle are highly correlated to muscle mass and that the normal relationship with phenotype is lost after ST.  相似文献   

19.
This study was designed to examine activity of AMP-activated protein kinase kinase (AMPKK) in muscles from nontrained and endurance-trained rats. Rats were trained 5 days/wk, 2 h/day for 8 wk at a final intensity of 32 m/min up a 15% grade with 30-s sprints at 53 m/min every 10 min. Gastrocnemius muscles were stimulated in situ in trained and nontrained rats for 5 min at frequencies of 0.4/s and 1/s. Gastrocnemius LKB1 protein, a putative component of the AMPKK complex (LKB1, STRAD, and MO25), increased approximately twofold in response to training. Phosphorylation of AMP-activated protein kinase (AMPK) determined by Western blot and AMPK activity of immunoprecipitates (both isoforms) was increased at both stimulation rates in both trained and nontrained muscles. AMPKK activity was 73% lower in resuspended polyethylene glycol precipitates of muscle extracts from the trained compared with nontrained rats. AMPKK activity did not increase in either trained or nontrained muscle in response to electrical stimulation, even though phospho-AMPK did increase. These results suggest that AMPKK is activated during electrical stimulation of both trained and nontrained muscle by mechanisms other than covalent modification.  相似文献   

20.
Recent evidence suggests that exercise training may significantly increase the expression of the cardiac myosin isozyme V1 in the diabetic heart, a change associated with improved cardiac functional capacity. To test this hypothesis, cardiac myofibrillar adenosinetriphosphatase (ATPase) activity and myosin isozyme profiles were determined in trained and sedentary male hyperinsulinemic obese Zucker (OZT, OZS) and obese Wistar (OWT, OWS) rats. Lean sedentary (LZS, LWS) animals served as age-matched controls. Myofibrillar ATPase activity and the relative quantity of the high-ATPase isozyme V1 was significantly lower in both strains of sedentary obese rats than in the respective lean sedentary controls (P less than 0.05). Both 5 (OZT) and 10 wk (OWT) of moderate treadmill training increased these markers of cardiac myosin biochemistry in the obese animals (P less than 0.05). Thus, endurance exercise training remodels the cardiac isomyosin profile of hyperinsulinemic rats and, in doing so, may enhance cardiac contractility and functional capacity. Such changes may reflect an improvement in glucose availability and utilization in these hearts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号