首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The production of singlet oxygen by H2O2 disproportionation and via the oxidation of H2O2 by NaOCl in a neutral medium was monitored by spin trapping with 2,2,6,6 tetramethyl-4-piperidone (TMPone). The singlet oxygen formed in both reactions oxidized 2,2,6,6 tetramethyl-4-piperidone to give nitroxide radicals. However the production of nitroxide radicals was relatively small considering the concentrations of H2O2 and NaOCl used in the reaction systems. Addition of electron donating agents: ascorbate, Fe2+ and desferrioxamine leads to an increase in the production of nitroxide radicals. We assumed that a very slow step of the reaction sequence, the homolytic breaking of the O-O bond of N-hydroperoxide (formed as an intermediate product during the reaction of 1O2 with TMPone) could be responsible for the relatively small production of nitroxide radicals. Electron donating agents added to the reaction system probably raise the rate of the hydroperoxide decomposition by allowing a more rapid heterolytic cleavage of the O-O bond leading to a greater production of nitroxide radicals. The largest effect was observed in the presence of desferrioxamine. Its participation in this process is proved by the concomitant appearance of desferrioxamine nitroxide radicals. The results obtained demonstrate that the method proposed by several authors and tested in this study to detect singlet oxygen is not convenient for precise quantitative studies. The reactivity of TMPone towards O2-7HO2' and 'OH has been also investigated. It has been found that both O2-7HO2' and 'OH radicals formed in a phosphate buffer solution (pH 7.4, 37°C), respectively by a xanthine-oxidase/hypoxanthine system and via H2O2 UV irradiation, do not oxidize 2,2,6,6 tetramethyl-4-piperidone to nitroxide radicals.  相似文献   

2.
Anti-ischemic therapy with nitrates is complicated by the induction of tolerance that potentially results from an unwanted coproduction of superoxide radicals. Therefore, we analyzed the localization of in vitro and in vivo, glyceryl trinitrate (GTN)-induced formation of superoxide radicals and the effect of the antioxidant vitamin C and of superoxide dismutase (SOD). Sterically hindered hydroxylamines 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CP-H) and 1-hydroxy-4-phosphonooxy-2,2,6,6-tetramethylpiperidin (PP-H) can be used for in vitro and in vivo quantification of superoxide radical formation. The penetration/incorporation of CP-H or PP-H and of their corresponding nitroxyl radicals was examined by fractionation of the blood and blood cells during a 1-h incubation. For monitoring in vivo, GTN-induced (130 microg/kg) O2*- formation CP-H or PP-H were continuously infused (actual concentration, 800 microM) for 90 to 120 min into rabbits. Formation of superoxide was determined by SOD- or vitamin C-inhibited contents of nitroxide radicals in the blood from A. carotis. The incubation of whole blood with CP-H, PP-H, or corresponding nitroxyl radicals clearly shows that during a 1-h incubation, as much as 8.3% of CP-H but only 0.9% of PP-H is incorporated in cytoplasm. Acute GTN treatment of whole blood and in vivo bolus infusion significantly increased superoxide radical formation as much as 4-fold. Pretreatment with 20 mg/kg vitamin C or 15,000 U/kg superoxide dismutase prevented GTN-induced nitroxide formation. The decrease of trapped radicals after treatment with extracellularly added superoxide dismutase or vitamin C leads to the conclusion that GTN increases the amount of extracellular superoxide radicals both in vitro and in vivo.  相似文献   

3.
Exposure of isolated spinach thylakoids to high intensity illumination (photoinhibition) results in the well-characterized impairment of Photosystem II electron transport, followed by degradation of the D1 reaction centre protein. In the present study we demonstrate that this process is accompanied by singlet oxygen production. Singlet oxygen was detected by EPR spectroscopy, following the formation of stable nitroxide radicals from the trapping of singlet oxygen with a sterically hindered amine TEMP (2,2,6,6-tetramethylpiperidine). There was no detectable singlet oxygen production during anaerob photoinhibition or in the presence of sodium-azide. Comparing the kinetics of the loss of PS II function and D1 protein with that of singlet oxygen trapping suggests that singlet oxygen itself or its radical product initiates the degradation of D1.Abbreviations HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulphonle acid - PS Photosystem - TEMP 2,2,6,6-tetramethylpiperidine - TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl  相似文献   

4.
Heme oxygenase-1 (HO-1) catalyzes the enzymatic degradation of heme to carbon monoxide, bilirubin, and iron. All three products possess biological functions; bilirubin, in particular, is a potent free radical scavenger of which its antioxidant property is enhanced at low oxygen tension. Here, we investigated the effect of severe hypoxia and reoxygenation on HO-1 expression in cardiomyocytes and determined whether HO-1 and its product, bilirubin, have a protective role against reoxygenation damage. Hypoxia caused a time-dependent increase in both HO-1 expression and heme oxygenase activity, which gradually declined during reoxygenation. Reoxygenation of hypoxic cardiomyocytes produced marked injury; however, incubation with hemin or bilirubin during hypoxia considerably reduced the damage at reoxygenation. The protective effect of hemin is attributable to increased availability of substrate for heme oxygenase activity, because hypoxic cardiomyocytes generated very little bilirubin when incubated with medium alone but produced substantial bile pigment in the presence of hemin. Interestingly, incubation with hemin also maintained high heme oxygenase activity levels during the reoxygenation period. Reactive oxygen species generation was enhanced after hypoxia, and hemin and bilirubin were capable once again to attenuate this effect. These results indicate that the HO-1-bilirubin pathway can effectively defend hypoxic cardiomyocytes against reoxygenation injury and highlight the issue of heme availability in the cytoprotective action afforded by HO-1.  相似文献   

5.
Nitrone/nitroso spin traps are often used for detection of unstable hydroxyl radical giving stable nitroxide radicals with characteristic electron spin resonance (ESR) signals. This technique may be useful only when the nitroxide radicals are kept stable in the reaction system. The aim of the present study is to clarify whether the nitroxide radicals are kept stable in the presence of the hydroxyl radical scavengers. Effect of hydroxyl radical scavengers on the ESR signals of nitroxide radicals, 2,2,6,6-tetramethyI-piperi-dine-N-oxyl (TEMPO) and the spin adduct (DMPO-OH) of 5,5-dimethyl-l-pyrroline N-oxide (DMPO) and hydroxyl radical, was examined. Although the ESR signals of TEMPO and the DMPO-OH spin adduct were unchanged on treatment with ethanol and dimethyl sulfoxide, their intensities were effectively decreased on treatment with 6-hydroxy-2,5,7,8-tetra-methylchroman-2-carboxylic acid (Trolox), cysteine, glutathione, 2-mercaptoethanol and metallothionein. Hence, the results of the detection of hydroxyl radical in the presence of phenolic and thiol antioxidants by the ESR technique using nitrone/nitroso spin traps may be unreliable.  相似文献   

6.
A new assay for superoxide radicals is based on the interaction of hydroxylamine (1-oxy-2,2,6,6-tetramethyl-4-oxopiperidine) with superoxide, giving rise to a stable nitroxide radical. Working concentration ranges of hydroxylamine and cells are determined. It was shown that the amount of superoxide generated was proportional to the concentration of nitroxide radicals. The sensitivity and specificity of the proposed assay were compared to chemiluminescence and cytochrome-c reduction.  相似文献   

7.
The ESR signal of 4-hydroxy-1-oxyl-2,2,6,6-tetramethylpiperidine in hemoglobin solution decreased drastically by the addition of hydrogen peroxide. The results of ion-exchange chromatography and sodium tetraphenylborate on the reaction solution showed an oxidation of the nitroxide radical to cation form. On the basis of the comparison of thin layer-chromatogram with the reaction products of the nitroxide radicals with HCl or Br2, the formation of 4-hydroxy-1-oxo-2,2,6,6- tetramethylpiperidinium cation was demonstrated. This result was supported by the 13C NMR measurement.  相似文献   

8.
Epidemiological findings have indicated that red meat increases the likelihood of colorectal cancer. Aim of this study was to investigate whether hemoglobin, or its prosthetic group heme, in red meat, is a genotoxic risk factor for cancer. Human colon tumor cells (HT29 clone 19A) and primary colonocytes were incubated with hemoglobin/hemin and DNA damage was investigated using the comet assay. Cell number, membrane damage, and metabolic activity were measured as parameters of cytotoxicity in both cell types. Effects on cell growth were determined using HT29 clone 19A cells. HT29 clone 19A cells were also used to explore possible pro-oxidative effects of hydrogen peroxide (H2O2) and antigenotoxic effects of the radical scavenger dimethyl sulfoxide (DMSO). Additionally we determined in HT29 clone 19A cells intracellular iron levels after incubation with hemoglobin/hemin. We found that hemoglobin increased DNA damage in primary cells (> or =10 microM) and in HT29 clone 19A cells (> or =250 microM). Hemin was genotoxic in both cell types (500-1000 microM) with concomitant cytotoxicity, detected as membrane damage. In both cell types, hemoglobin and hemin (> or =100 microM) impaired metabolic activity. The growth of HT29 clone 19A cells was reduced by 50 microM hemoglobin and 10 microM hemin, indicating cytotoxicity at genotoxic concentrations. Hemoglobin or hemin did not enhance the genotoxic activity of H2O2 in HT29 clone 19A cells. On the contrary, DMSO reduced the genotoxicity of hemoglobin, which indicated that free radicals were scavenged by DMSO. Intracellular iron increased in hemoglobin/hemin treated HT29 clone 19A cells, reflecting a 40-50% iron uptake for each compound. In conclusion, our studies show that hemoglobin is genotoxic in human colon cells, and that this is associated with free radical mechanisms and with cytotoxicity, especially for hemin. Thus, hemoglobin/hemin, whether available from red meat or from bowel bleeding, may pose genotoxic and cytotoxic risks to human colon cells, both of which contribute to initiation and progression of colorectal carcinogenesis.  相似文献   

9.
《Free radical research》2013,47(9):1103-1110
Abstract

Lipid-derived radicals and peroxides are involved in the pathogenesis of oxidative stress diseases and, although lipid peroxide production is a required reaction between a lipid radical and molecular oxygen, a useful lipid radical detection method has remained tentative. Also, the effect of oxygen concentration on lipid peroxide production must be considered because of the hypoxic conditions in cancer and ischemic regions. In this study, the focus was on nitroxide reactivity, which allows spin trapping with carbon-centred radicals via radical–radical reactions and fluorophore quenching through interactions with nitroxide's unpaired electron. Thus, the aim here was to demonstrate a useful detection method for lipid-derived radicals as well as to clarify the effects of oxygen concentration on lipid peroxide production using profluorescent nitroxide. This latter compound reacted with lipid-derived radicals in a manner inversely dependent on oxygen concentration, resulting in fluorescence due to alkoxyamine formation and, conversely, lipid peroxide concentrations decreased with lower oxygen in the reaction system. Furthermore, nitroxide inhibited lipid peroxide production and stopped oxygen consumption in the same solution. These results suggested that the novel application of profluorescent nitroxide could directly and sensitively detect lipid-derived radicals and that radical and peroxide production were dependent on oxygen concentration.  相似文献   

10.
Free radical-mediated mitochondrial dysfunction may play a role in the genesis of sepsis-induced multiorgan failure. Several cellular defenses protect against free radicals, including heme oxygenase. No previous study has determined if measures that increase heme oxygenase levels reduce mitochondrial dysfunction following endotoxin. The purpose of the present study was to determine if mitochondrial dysfunction following endotoxin (LPS) administration can be attenuated by administration of hemin, a pharmacological inducer of heme oxygenase. Blood pressure, heart rate, cardiac and diaphragm mitochondrial function, plasma nitrite/nitrate levels, and tissue markers of free radical generation were compared among rats given saline, LPS, hemin, or a combination of hemin and LPS. Endotoxin (LPS) administration produced large reductions in mitochondrial function (e.g., ATP production rate decreased in both tissues, P < 0.001). Administration of hemin increased tissue heme oxygenase levels, ablated LPS-induced alterations in mitochondrial function, attenuated LPS-induced increases in plasma nitrite/nitrate levels, and prevented LPS-mediated increases in tissue markers of free radical generation. These data indicate that tissue heme oxygenase levels modulate the degree of LPS-induced mitochondrial dysfunction. Measures that increase heme oxygenase levels may provide a means of reducing sepsis-induced mitochondrial dysfunction and tissue injury.  相似文献   

11.
Oxygen-derived free radicals and hemolysis during open heart surgery   总被引:2,自引:0,他引:2  
Reperfusion injury occurs during open-heart surgery after prolonged cardioplegic arrest. Cardiopulmonary bypass also is known to cause hemolysis. Since reperfusion of ischemic myocardium is associated with the generation of oxygen free radicals, and since free radicals can attack a protein molecule, it seems reasonable to assume that hemolysis might be the consequence of free radical attack on hemoglobin protein. The results of this study demonstrated that reperfusion following ischemic arrest caused an increase in free hemoglobin and free heme concentrations, simultaneously releasing free iron and generating hydroxyl radicals. In vitro studies using pure hemoglobin indicated that superoxide anion generated by the action of xanthine oxidase on xanthine could release iron from the heme ring and cause deoxygenation of oxyhemoglobin into ferrihemoglobin. This study further demonstrated that before the release of iron from the heme nucleus, oxyhemoglobin underwent deoxygenation to ferrihemoglobin. The released iron can catalyze the Fenton reaction, leading to the formation of cytotoxic hydroxyl radical (OH·). In fact, the formation of OH. in conjunction with hemolysis occurs during cardiac surgery, and when viewed in the light of the in vitro results, it seems likely that oxygen-derived free radicals may cause hemolysis during cardiopulmonary bypass and simultaneously release iron from the heme ring, which can catalyze the formation of OH·.  相似文献   

12.
Two isoforms of a heme oxygenase gene, ho1 and ho2, with 51% identity in amino acid sequence have been identified in the cyanobacterium Synechocystis sp. PCC 6803. Isoform-1, Syn HO-1, has been characterized, while isoform-2, Syn HO-2, has not. In this study, a full-length ho2 gene was cloned using synthetic DNA and Syn HO-2 was demonstrated to be highly expressed in Escherichia coli as a soluble, catalytically active protein. Like Syn HO-1, the purified Syn HO-2 bound hemin stoichiometrically to form a heme-enzyme complex and degraded heme to biliverdin IXalpha, CO and iron in the presence of reducing systems such as NADPH/ferredoxin reductase/ferredoxin and sodium ascorbate. The activity of Syn HO-2 was found to be comparable to that of Syn HO-1 by measuring the amount of bilirubin formed. In the reaction with hydrogen peroxide, Syn HO-2 converted heme to verdoheme. This shows that during the conversion of hemin to alpha-meso-hydroxyhemin, hydroperoxo species is the activated oxygen species as in other heme oxygenase reactions. The absorption spectrum of the hemin-Syn HO-2 complex at neutral pH showed a Soret band at 412 nm and two peaks at 540 nm and 575 nm, features observed in the hemin-Syn HO-1 complex at alkaline pH, suggesting that the major species of iron(III) heme iron at neutral pH is a hexa-coordinate low spin species. Electron paramagnetic resonance (EPR) revealed that the iron(III) complex was in dynamic equilibrium between low spin and high spin states, which might be caused by the hydrogen bonding interaction between the distal water ligand and distal helix components. These observations suggest that the structure of the heme pocket of the Syn HO-2 is different from that of Syn HO-1.  相似文献   

13.
Nitroxide free radicals interact with Hb/metHb, Mb/metMb and with peroxidases/phenols to induce a catalase-like conversion of H2O2 to O2 (catalatic activity), without being substantially consumed in the process. The mechanism of this reaction is postulated to involve a one-electron oxidation of the nitroxide to the immonium oxene, which then reacts further to release oxygen and the nitroxide. An involvement of the immonium oxene in the reaction mechanism is consistent with ferryl heme reduction by nitroxides and a detection of the reduced nitroxide when the reaction mixture is supplemented with the two-electron reductant sodium borohydride. The nitroxide-induced catalatic activity is completely inhibited when the reaction mixture is supplemented with glutathione. Nitroxides suppress free radical formation by hydroperoxide-activated heme proteins, as inferred from their inhibition of the spin-trapping of glutathionyl radicals. H2O2 decomposition and a suppression of reactive free radical formation by heme proteins appears to be an antioxidant activity of nitroxides, which is distinct from their previously reported superoxide dismutating activity and which may be a factor in their protective action in models of cardiac reperfusion injury.  相似文献   

14.
The aim of this work is to investigate the antioxidative effect of melatonin (N-acetyl-5-methoxytryptamine) on the oxidation of DNA and human erythrocytes induced by 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). First, the 50% inhibition concentration (IC50) of melatonin is measured by reacting with two radical species, i.e., 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS*+) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH). The IC50 of melatonin are 75microM and 300microM when melatonin reacts with ABTS*+ and DPPH, respectively. Especially, the reactions of melatonin with ABTS*+ and DPPH are the direct evidence for melatonin to trap radicals. Then, melatonin is applied to protect DNA and human erythrocytes against oxidative damage and hemolysis induced by 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). The presence of melatonin prolongs the occurrence of the oxidative damage of DNA and hemolysis of erythrocytes, generating an inhibition period (t(inh)). The proportional relationship between t(inh) and the concentration of melatonin ([MLT]) is treated by the chemical kinetic equation, t(inh)=(n/R(i))[MLT], in which n means the number of peroxyl radical trapped by an antioxidant, and R(i) stands for the initiation rate of the radical reaction. It is found that every molecule of melatonin can trap almost two radicals in protecting DNA and erythrocytes. Furthermore, quantum calculation proves that the indole-type radical derived from melatonin is much stable than amide-type radical. Finally, melatonin is able to accelerate hemolysis of erythrocytes induced by hemin, indicating that melatonin leads to the collapse of the erythrocyte membrane in the presence of hemin. This may provide detailed information for the usage of melatonin and helpful reference for the design of indole-related drugs.  相似文献   

15.
Heme prosthetic groups are vital for all living organisms, but they can also promote cellular injury by generating reactive oxygen species. Therefore, intestinal heme absorption and distribution should be carefully regulated. Although a human intestine brush-border heme receptor/transporter has been suggested, the mechanism by which heme crosses the apical membrane is unknown. After it enters the cell, heme is degraded by heme oxygenase-1 (HO-1), and iron is released. We hypothesized that heme transport is actively regulated in Caco-2 cells. Cells exposed to hemin from the basolateral side demonstrated a higher HO-1 induction than cells exposed to hemin from the apical surface. Hemin secretion was more rapid than absorption, and net secretion occurred against a concentration gradient. Treatment of the apical membrane with trypsin increased hemin absorption by threefold, but basolateral treatment with trypsin had no effect on hemin secretion. Neither apical nor basolateral trypsin changed the paracellular pathway. We conclude that heme is acquired and transported in both absorptive and secretory directions in polarized Caco-2 cells. Secretion is via an active metabolic/transport process. Trypsin applied to the apical surface increased hemin absorption, suggesting that protease activity can uncover a process for heme uptake that is otherwise quiescent. These processes may be involved in preventing iron overload in humans.  相似文献   

16.
The catabolism of heme is carried out by members of the heme oxygenase (HO) family. The products of heme catabolism by HO-1 are ferrous iron, biliverdin (subsequently converted to bilirubin), and carbon monoxide. In addition to its function in the recycling of hemoglobin iron, this microsomal enzyme has been shown to protect cells in various stress models. Implicit in the reports of HO-1 cytoprotection to date are its effects on the cellular handling of heme/iron. However, the limited amount of uncommitted heme in non-erythroid cells brings to question the source of substrate for this enzyme in non-hemolytic circumstances. In the present study, HO-1 was induced by either sodium arsenite (reactive oxygen species producer) or hemin or overexpressed in the murine macrophage-like cell line, RAW 264.7. Both of the inducers elicited an increase in active HO-1; however, only hemin exposure caused an increase in the synthesis rate of the iron storage protein, ferritin. This effect of hemin was the direct result of the liberation of iron from heme by HO. Cells stably overexpressing HO-1, although protected from oxidative stress, did not display elevated basal ferritin synthesis. However, these cells did exhibit an increase in ferritin synthesis, compared with untransfected controls, in response to hemin treatment, suggesting that heme levels, and not HO-1, limit cellular heme catabolism. Our results suggest that the protection of cells from oxidative insult afforded by HO-1 is not due to the catabolism of significant amounts of cellular heme as thought previously.  相似文献   

17.
Mechanism of heme degradation by heme oxygenase   总被引:5,自引:0,他引:5  
Heme oxygenase catalyzes the three step-wise oxidation of hemin to alpha-biliverdin, via alpha-meso-hydroxyhemin, verdoheme, and ferric iron-biliverdin complex. This enzyme is a simple protein which does not have any prosthetic groups. However, heme and its two metabolites, alpha-meso-hydroxyhemin and verdoheme, combine with the enzyme and activate oxygen during the heme oxygenase reaction. In the conversion of hemin to alpha-meso-hydroxyhemin, the active species of oxygen is Fe-OOH, which self-hydroxylates heme to form alpha-meso-hydroxyhemin. This step determines the alpha-specificity of the reaction. For the formation of verdoheme and liberation of CO from alpha-meso-hydroxyhemin, oxygen and one reducing equivalent are both required. However, the ferrous iron of the alpha-meso-hydroxyheme is not involved in the oxygen activation and unactivated oxygen is reacted on the 'activated' heme edge of the porphyrin ring. For the conversion of verdoheme to the ferric iron-biliverdin complex, both oxygen and reducing agents are necessary, although the precise mechanism has not been clear. The reduction of iron is required for the release of iron from the ferric iron-biliverdin complex to complete total heme oxygenase reaction.  相似文献   

18.
In ozone-treated erythrocyte membrane suspension a slow decrease occurs in the EPR signal of 2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO). Because of the absence of such a phenomenon in control membranes and ozonized buffer, this effect must be caused by reaction of nitroxide radicals with products of ozone reactions with membrane components. To find out which components are responsible for the decrease in EPR signal we studied this effect in simple model systems. The same phenomenon was observed both in lipid and protein systems treated by ozone. For unsaturated fatty acids, the correlation between the rate of decrease in EPR signal and the number of double bonds in the lipid molecule was very strong. This suggests that the observed decrease in the nitroxide radical TEMPO EPR signal in ozone-treated erythrocyte membranes is a complex process, but probably the most important reaction is recombination of nitroxide radicals with organic free radicals produced both in the process of lipid peroxidation and ozonolysis of double bonds.  相似文献   

19.
In ozone-treated erythrocyte membrane suspension a slow decrease occurs in the EPR signal of 2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO). Because of the absence of such a phenomenon in control membranes and ozonized buffer, this effect must be caused by reaction of nitroxide radicals with products of ozone reactions with membrane components. To find out which components are responsible for the decrease in EPR signal we studied this effect in simple model systems. The same phenomenon was observed both in lipid and protein systems treated by ozone. For unsaturated fatty acids, the correlation between the rate of decrease in EPR signal and the number of double bonds in the lipid molecule was very strong. This suggests that the observed decrease in the nitroxide radical TEMPO EPR signal in ozone-treated erythrocyte membranes is a complex process, but probably the most important reaction is recombination of nitroxide radicals with organic free radicals produced both in the process of lipid peroxidation and ozonolysis of double bonds.  相似文献   

20.
It is shown that a stable nitroxyl radical, 4-cyano-2,2,6,6-tetramethylpiperidine-1-oxyl, forms a complex with cytochrome P4502B4 by analogy with the second type substrates by joining directly to pentacoordinate heme iron. The bound radical is inaccessible to water-soluble paramagnetic ions, which confirms its localization in a hydrophobic pocket near the heme. Benzphetamine and N,N-dimethylaniline, the first-type nonpolar substrates, induce conformational changes of the spin-labeled hemoprotein which are evidently accompanied by an increase in the volume of the pocket resulting in emergence of contact with aqueous phase, and the heme-bound spin label becomes accessible to water-soluble paramagnetics. In this case potassium ferricyanide broadens the spin-labeled cytochrome signal and, as a result, lowers the amplitudes of the spectral components. Similar changes were registered at non-micellar concentrations of nonionic detergent Emulgen 913, whose activating effect on hydroxylation reactions is associated, as we showed previously, with its presence in the CYP2B4 active site simultaneously with substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号