首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A main objective of proteomics research is to systematically identify and quantify proteins in a given proteome (cells, subcellular fractions, protein complexes, tissues or body fluids). Protein labeling with isotope-coded affinity tags (ICAT) followed by tandem mass spectrometry allows sequence identification and accurate quantification of proteins in complex mixtures, and has been applied to the analysis of global protein expression changes, protein changes in subcellular fractions, components of protein complexes, protein secretion and body fluids. This protocol describes protein-sample labeling with ICAT reagents, chromatographic fractionation of the ICAT-labeled tryptic peptides, and protein identification and quantification using tandem mass spectrometry. The method is suitable for both large-scale analysis of complex samples including whole proteomes and small-scale analysis of subproteomes, and allows quantitative analysis of proteins, including those that are difficult to analyze by gel-based proteomics technology.  相似文献   

2.
Element-coded affinity tags for peptides and proteins   总被引:2,自引:0,他引:2  
Isotope-coded affinity tags (ICAT) represent an important new tool for the analysis of complex mixtures of proteins in living systems [Aebersold, R., and Mann, M. (2003) Nature, 422, 198-207]. We envisage an alternative protein-labeling technique based on tagging with different element-coded metal chelates, which affords affinity chromatography, quantification, and identification of a tagged peptide from a complex mixture. As proof of concept, a synthetic peptide was modified at a cysteine side chain with either a carboxymethyl group or acetamidobenzyl-1,4,7,10-tetraazacyclododecane-N,N',N' ',N' "-tetraacetic acid (AcBD) chelates of terbium or yttrium. A mixture of the three modified peptides in a mole ratio of 100:1.0:0.83 carboxymethyl:AcBD-Tb:AcBD-Y was trypsinized, purified on a new affinity column that binds rare-earth DOTA chelates, and analyzed by LC-MS/MS. Chelate-tagged tryptic peptides eluted cleanly from the affinity column; the tagged peptides chromatographically coeluted during LC-MS analysis, were present in the expected ratio as indicated by MS ion intensity, and were sequence-identified by tandem mass spectrometry. DOTA-rare earth chelates have exceptional properties for use as affinity tags. They are highly polar and water-soluble. Many of the rare earth elements are naturally monoisotopic, providing a variety of simple choices for preparing mass tags. Further, the rare earths are heavy elements, whose mass defects give the masses of tagged peptides exact values not normally shared by molecules that contain only light elements.  相似文献   

3.
The new generation of isotope-coded affinity tag (ICAT) reagents have been evaluated by labeling an equimolar amount of bovine serum albumin (BSA) with ICAT-12C9 and ICAT-13C9, combining the mixtures, digesting them with trypsin and analyzing the digestate both by muRPLC-tandem MS and by matrix-assisted laser desorption ionization (MALDI) TOF/TOF MS. The use of 13C in place of 2H resulted in both of the labeled peptides having identical elution characteristics in a reversed-phase separation. This similarity in elution allows ICAT-labeled peptides to be effectively analyzed using a muRPLC-MALDI-MS strategy as well. All of the cysteinyl-containing tryptic peptides from BSA were identified with only a 10% variation in the relative abundance measurements between the light and heavy versions of each peptide. A facile method for the removal of contaminants that arise from the cleaved biotin moiety that otherwise interfere with downstream separations and MS analysis has also been developed. The new ICAT reagents were then applied to the analysis of a cortical neuron proteome sample to identify proteins regulated by the antitumor drug, camptothecin.  相似文献   

4.

Background  

Isotope-coded affinity tags (ICAT) is a method for quantitative proteomics based on differential isotopic labeling, sample digestion and mass spectrometry (MS). The method allows the identification and relative quantification of proteins present in two samples and consists of the following phases. First, cysteine residues are either labeled using the ICAT Light or ICAT Heavy reagent (having identical chemical properties but different masses). Then, after whole sample digestion, the labeled peptides are captured selectively using the biotin tag contained in both ICAT reagents. Finally, the simplified peptide mixture is analyzed by nanoscale liquid chromatography-tandem mass spectrometry (LC-MS/MS). Nevertheless, the ICAT LC-MS/MS method still suffers from insufficient sample-to-sample reproducibility on peptide identification. In particular, the number and the type of peptides identified in different experiments can vary considerably and, thus, the statistical (comparative) analysis of sample sets is very challenging. Low information overlap at the peptide and, consequently, at the protein level, is very detrimental in situations where the number of samples to be analyzed is high.  相似文献   

5.
A convenient synthesis of some homologous light isotope-coded affinity tags (ICAT-L) containing an acid-labile moiety between the affinity component biotin and an electrophilic polar linker is described. These light ICAT reagents give smooth mass spectral signals in tandem mass spectrometry (MS/MS) analyses of some commercially available cysteine-containing peptides. However, these ICAT molecules are designed for use in identification and relative quantification of whole or partially purified cellular and tissue proteomes. Since the biotin moiety can be readily cleaved off the reagent after mass tagging, undesired residual fragmentation patterns caused by biotin of derived peptides, as normally observed using biotin-containing ICAT reagents, are effectively eliminated. This strategy should enhance peptide sequence coverage significantly which, in turn, should result in improving the quality of data obtained during data-dependent peptide mass and tandem mass spectral analysis of whole proteomes.  相似文献   

6.
An approach to the systematic identification and quantification of the proteins contained in the microsomal fraction of cells is described. It consists of three steps: (1) preparation of microsomal fractions from cells or tissues representing different states; (2) covalent tagging of the proteins with isotope-coded affinity tag (ICAT) reagents followed by proteolysis of the combined labeled protein samples; and (3) isolation, identification, and quantification of the tagged peptides by multidimensional chromatography, automated tandem mass spectrometry, and computational analysis of the obtained data. The method was used to identify and determine the ratios of abundance of each of 491 proteins contained in the microsomal fractions of na?ve and in vitro- differentiated human myeloid leukemia (HL-60) cells. The method and the new software tools to support it are well suited to the large-scale, quantitative analysis of membrane proteins and other classes of proteins that have been refractory to standard proteomics technology.  相似文献   

7.
An approach is described for the simultaneous identification and quantitation of oxidant-sensitive cysteine thiols in a complex protein mixture using a thiol-specific, acid-cleavable isotope-coded affinity tag (ICAT) reagent (Applied Biosystems, USA). The approach is based on the fact that only free cysteine thiols are susceptible to labeling by the iodoacetamide-based ICAT, and that mass spectrometry can be used to quantitate the relative labeling of free thiols. Applying this approach, we have identified cysteine thiols of proteins in a rabbit heart membrane fraction that are sensitive to a high concentration of hydrogen peroxide. Previously known and some novel proteins with oxidant-sensitive cysteines were identified. Of the many protein thiols labeled by the ICAT, only relatively few were oxidized more than 50% despite the high concentration of oxidant used, indicating that oxidant-sensitive thiols are relatively rare, and denoting their specificity and potential functional relevance.  相似文献   

8.
A method has been developed, called the mass western experiment in analogy to the Western blot, to detect the presence of specific proteins in complex mixtures without the need for antibodies. Proteins are identified with high sensitivity and selectivity, and their abundances are compared between samples. Membrane protein extracts were labeled with custom isotope-coded affinity tag reagents and digested, and the labeled peptides were analyzed by liquid chromatography-tandem mass spectrometry. Ions corresponding to anticipated tryptic peptides from the proteins of interest were continuously subjected to collision-induced dissociation in an ion trap mass spectrometer; heavy and light isotope-coded affinity tag-labeled peptides were simultaneously trapped and fragmented accomplishing identification and quantitation in a single mass spectrum. This application of ion trap selective reaction monitoring maximizes sensitivity, enabling analysis of peptides that would otherwise go undetected. The cell surface proteins prostate stem cell antigen (PSCA) and ErbB2 were detected in prostate and breast tumor cell lines in which they are expressed in known abundances spanning orders of magnitude.  相似文献   

9.
The effectiveness of proteome-wide protein identification and quantitative expression profiling is dependent on the ability of the analytical methodologies employed to routinely obtain information on low-abundance proteins, as these are frequently of great biological importance. Two-dimensional gel electrophoresis, the traditional method for proteome analysis, has proven to be biased toward highly expressed proteins. Recently, two-dimensional chromatography of the complex peptide mixtures generated by the digestion of unseparated protein samples has been introduced for the identification of their components, and isotope-coded affinity tags (ICAT) have been introduced to allow for accurate quantification of the components of protein mixtures by mass spectrometry. Here, we demonstrate that the combination of isotope coded affinity protein tags and multidimensional chromatography/mass spectrometry of tryptic peptide mixtures is capable of detecting and quantifying proteins of low abundance in complex samples.  相似文献   

10.
We describe an approach for the accurate quantification and concurrent sequence identification of the individual proteins within complex mixtures. The method is based on a class of new chemical reagents termed isotope-coded affinity tags (ICATs) and tandem mass spectrometry. Using this strategy, we compared protein expression in the yeast Saccharomyces cerevisiae, using either ethanol or galactose as a carbon source. The measured differences in protein expression correlated with known yeast metabolic function under glucose-repressed conditions. The method is redundant if multiple cysteinyl residues are present, and the relative quantification is highly accurate because it is based on stable isotope dilution techniques. The ICAT approach should provide a widely applicable means to compare quantitatively global protein expression in cells and tissues.  相似文献   

11.
Characterizing protein-protein interactions in a biologically relevant context is important for understanding the mechanisms of signal transduction. Most signal transduction systems are membrane associated and consist of large multiprotein complexes that undergo rapid reorganization—circumstances that present challenges to traditional structure determination methods. To study protein-protein interactions in a biologically relevant complex milieu, we employed a protein footprinting strategy based on isotope-coded affinity tag (ICAT) reagents. ICAT reagents are valuable tools for proteomics. Here, we show their utility in an alternative application—they are ideal for protein footprinting in complex backgrounds because the affinity tag moiety allows for enrichment of alkylated species prior to analysis. We employed a water-soluble ICAT reagent to monitor cysteine accessibility and thereby to identify residues involved in two different protein-protein interactions in the Escherichia coli chemotaxis signaling system. The chemotaxis system is an archetypal transmembrane signaling pathway in which a complex protein superstructure underlies sophisticated sensory performance. The formation of this superstructure depends on the adaptor protein CheW, which mediates a functionally important bridging interaction between transmembrane receptors and histidine kinase. ICAT footprinting was used to map the surfaces of CheW that interact with the large multidomain histidine kinase CheA, as well as with the transmembrane chemoreceptor Tsr in native E. coli membranes. By leveraging the affinity tag, we successfully identified CheW surfaces responsible for CheA-Tsr interaction. The proximity of the CheA and Tsr binding sites on CheW suggests the formation of a composite CheW-Tsr surface for the recruitment of the signaling kinase to the chemoreceptor complex.  相似文献   

12.
Synaptosomes are isolated synapses produced by subcellular fractionation of brain tissue. They contain the complete presynaptic terminal, including mitochondria and synaptic vesicles, and portions of the postsynaptic side, including the postsynaptic membrane and the postsynaptic density (PSyD). A proteomic characterisation of synaptosomes isolated from mouse brain was performed employing the isotope-coded affinity tag (ICAT) method and tandem mass spectrometry (MS/MS). After isotopic labelling and tryptic digestion, peptides were fractionated by cation exchange chromatography and cysteine-containing peptides were isolated by affinity chromatography. The peptides were identified by microcapillary liquid chromatography-electrospray ionisation MS/MS (muLC-ESI MS/MS). In two experiments, peptides representing a total of 1131 database entries were identified. They are involved in different presynaptic and postsynaptic functions, including synaptic vesicle exocytosis for neurotransmitter release, vesicle endocytosis for synaptic vesicle recycling, as well as postsynaptic receptors and proteins constituting the PSyD. Moreover, a large number of soluble and membrane-bound molecules serving functions in synaptic signal transduction and metabolism were detected. The results provide an inventory of the synaptic proteome and confirm the suitability of the ICAT method for the assessment of synaptic structure, function and plasticity.  相似文献   

13.
An approach is described for identifying and quantifying oxidant-sensitive protein thiols using a cysteine-specific, acid-cleavable isotope-coded affinity tag (ICAT) reagent (Applied Biosystems, Foster City, CA). The approach is based on the fact that only free cysteine thiols are susceptible to labeling by the iodoacetamide-based ICAT reagent, and that mass spectrometry can be used to quantitate the relative labeling of free thiols. To validate our approach, creatine kinase with four cysteine residues, one of which is oxidant-sensitive, was chosen as an experimental model. ICAT-labeled peptides derived from creatine kinase were used to evaluate the relative abundance of the free thiols in samples subjected (or not) to treatment with hydrogen peroxide. As predicted, hydrogen peroxide decreased the relative abundance of the unmodified oxidant-sensitive thiol residue of cysteine-283 in creatine kinase, providing proof of principle that an ICAT-based quantitative mass spectrometry approach can be used to identify and quantify oxidation of cysteine thiols. This approach opens an avenue for proteomics studies of the redox state of protein thiols.  相似文献   

14.
Proteomic approaches to biological research that will prove the most useful and productive require robust, sensitive, and reproducible technologies for both the qualitative and quantitative analysis of complex protein mixtures. Here we applied the isotope-coded affinity tag (ICAT) approach to quantitative protein profiling, in this case proteins that copurified with lipid raft plasma membrane domains isolated from control and stimulated Jurkat human T cells. With the ICAT approach, cysteine residues of the two related protein isolates were covalently labeled with isotopically normal and heavy versions of the same reagent, respectively. Following proteolytic cleavage of combined labeled proteins, peptides were fractionated by multidimensional chromatography and subsequently analyzed via automated tandem mass spectrometry. Individual tandem mass spectrometry spectra were searched against a human sequence database, and a variety of recently developed, publicly available software applications were used to sort, filter, analyze, and compare the results of two repetitions of the same experiment. In particular, robust statistical modeling algorithms were used to assign measures of confidence to both peptide sequences and the proteins from which they were likely derived, identified via the database searches. We show that by applying such statistical tools to the identification of T cell lipid raft-associated proteins, we were able to estimate the accuracy of peptide and protein identifications made. These tools also allow for determination of the false positive rate as a function of user-defined data filtering parameters, thus giving the user significant control over and information about the final output of large-scale proteomic experiments. With the ability to assign probabilities to all identifications, the need for manual verification of results is substantially reduced, thus making the rapid evaluation of large proteomic datasets possible. Finally, by repeating the experiment, information relating to the general reproducibility and validity of this approach to large-scale proteomic analyses was also obtained.  相似文献   

15.
There is strong evidence for the involvement of reactive oxygen species in ischemia/reperfusion injury. Although oxidation of individual thiol proteins has been reported, more extensive redox proteomics of hearts subjected to ischemia/reperfusion has not been performed. We have carried out an exploratory study using mass spectrometry with isotope-coded affinity tags (ICAT) aimed at identifying reversible oxidative changes to protein thiols in Langendorff perfused isolated mouse hearts subjected to 20 min ischemia with or without aerobic reperfusion for 5 or 30 min. Reduced thiols were blocked by adding N-ethylmaleimide during protein extraction, then reversibly oxidized thiols in extracts of control perfused and treated hearts were reduced and labeled with the light and heavy ICAT reagents, respectively. Protein extracts were mixed in equal amounts and relative proportions of the isotope-labeled peaks were used to quantify oxidative changes between the control and the treated groups. Approximately 300 peptides with ICAT signatures were reliably identified in each sample, with 181 peptides from 118 proteins common to all treatments. A proportion showed elevated ICAT ratios, consistent with reversible thiol oxidation. This was most evident after early reperfusion, with apparent reversal after longer reperfusion. In comparison, there was gradual accumulation of protein carbonyls and loss of GSH with longer reperfusion. Many of the thiol changes were in mitochondrial proteins, including components of electron transport complexes and enzymes involved in lipid metabolism. The results are consistent with mitochondria being a major site of oxidant generation during early cardiac reperfusion and mitochondrial thiol proteins being targets for oxidation.  相似文献   

16.
The combination of isotope coded affinity tag (ICAT) reagents and tandem mass spectrometry constitutes a new method for quantitative proteomics. It involves the site-specific, covalent labeling of proteins with isotopically normal or heavy ICAT reagents, proteolysis of the combined, labeled protein mixture, followed by the isolation and mass spectrometric analysis of the labeled peptides. The method critically depends on labeling protocols that are specific, quantitative, general, robust, and reproducible. Here we describe the systematic evaluation of important parameters of the labeling protocol and describe optimized labeling conditions. The tested factors include the ICAT reagent concentration, the influence of the protein, SDS, and urea concentrations on the labeling reaction, and the reaction time. We demonstrate that using the optimized conditions specific and quantitative labeling was achieved on standard proteins as well as in complex protein mixtures such as a yeast cell lysate.  相似文献   

17.
Lipid rafts were prepared according to standard protocols from Jurkat T cells stimulated via T cell receptor/CD28 cross-linking and from control (unstimulated) cells. Co-isolating proteins from the control and stimulated cell preparations were labeled with isotopically normal (d0) and heavy (d8) versions of the same isotope-coded affinity tag (ICAT) reagent, respectively. Samples were combined, proteolyzed, and resultant peptides fractionated via cation exchange chromatography. Cysteine-containing (ICAT-labeled) peptides were recovered via the biotin tag component of the ICAT reagents by avidin-affinity chromatography. On-line micro-capillary liquid chromatography tandem mass spectrometry was performed on both avidin-affinity (ICAT-labeled) and flow-through (unlabeled) fractions. Initial peptide sequence identification was by searching recorded tandem mass spectrometry spectra against a human sequence data base using SEQUEST software. New statistical data modeling algorithms were then applied to the SEQUEST search results. These allowed for discrimination between likely "correct" and "incorrect" peptide assignments, and from these the inferred proteins that they collectively represented, by calculating estimated probabilities that each peptide assignment and subsequent protein identification was a member of the "correct" population. For convenience, the resultant lists of peptide sequences assigned and the proteins to which they corresponded were filtered at an arbitrarily set cut-off of 0.5 (i.e. 50% likely to be "correct") and above and compiled into two separate datasets. In total, these data sets contained 7667 individual peptide identifications, which represented 2669 unique peptide sequences, corresponding to 685 proteins and related protein groups.  相似文献   

18.
Comparative proteome analysis of developmental stages of the human pathogen Trypanosoma cruzi was carried out by isotope-coded affinity tag technology (ICAT) associated with liquid cromatography-mass spectrometry peptide sequencing (LC-MS/MS). Protein extracts of the protozoan trypomastigote and amastigote stages were labeled with heavy (D8) and light (D0) ICAT reagents and subjected to cation exchange and avidin affinity chromatographies followed by LC-MS/MS analysis. High confidence sequence information and expression levels for 41 T. cruzi polypeptides, including metabolic enzymes, paraflagellar rod components, tubulins, and heat-shock proteins were reported. Twenty-nine proteins displayed similar levels of expression in both forms of the parasite, nine proteins presented higher levels in trypomastigotes, whereas three were more expressed in amastigotes.  相似文献   

19.
The adaptation of sequences of chemical reactions to a solid-phase format has been essential to the automation, reproducibility, and efficiency of a number of biotechnological processes including peptide and oligonucleotide synthesis and sequencing. Here we describe a method for the site-specific, stable isotopic labeling of cysteinyl peptides in complex peptide mixtures through a solid-phase capture and release process, and the concomitant isolation of the labeled peptides. The recovered peptides were analyzed by microcapillary liquid chromatography and tandem mass spectrometry (microLC-MS/MS) to determine their sequences and relative quantities. The method was used to detect galactose-induced changes in protein abundance in the yeast Saccharomyces cerevisiae. A side-by-side comparison with the isotope-coded affinity tag (ICAT) method demonstrated that the solid-phase method for stable isotope tagging of peptides is comparatively simpler, more efficient, and more sensitive.  相似文献   

20.
18O-labeling quantitative proteomics using an ion trap mass spectrometer   总被引:2,自引:0,他引:2  
We describe a method for simultaneous identification and quantitation of proteins within complex mixtures. The method consists of 18O-labeling, a simple stable isotope-coding that requires merely enzymatic digestion in 18O-water, in combination with a capillary-liquid chromatography electrospray ion-trap mass spectrometer. In a separate experiment using the same sample and a spike test, we demonstrate that the difference ration was calculated accurately using the 18O-labeling method even if the protein was part of a complex mixture. Our data also suggest that the accuracy of the quantitation can be improved by averaging the difference ratios of several peptides. In comparing our method with the isotope-coded affinity tag (ICAT) method, we show that the 18O-labeling method has the advantages of better recovery and fewer isotope effects. Therefore, the 18O-labeling method is a powerful tool for large-scale proteomics applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号