首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We combined the use of low inoculation titers (300 ± 100 CFU/ml) and enumeration of culturable cells to measure the osmoprotective potentialities of dimethylsulfoniopropionate (DMSP), dimethylsulfonioacetate (DMSA), and glycine betaine (GB) for salt-stressed cultures of Escherichia coli. Dilute bacterial cultures were grown with osmoprotectant concentrations that encompassed the nanomolar levels of GB and DMSP found in nature and the millimolar levels of osmoprotectants used in standard laboratory osmoprotection bioassays. Nanomolar concentrations of DMSA, DMSP, and GB were sufficient to enhance the salinity tolerance of E. coli cells expressing only the ProU high-affinity general osmoporter. In contrast, nanomolar levels of osmoprotectants were ineffective with a mutant strain (GM50) that expressed only the low-affinity ProP osmoporter. Transport studies showed that DMSA and DMSP, like GB, were taken up via both ProU and ProP. Moreover, ProU displayed higher affinities for the three osmoprotectants than ProP displayed, and ProP, like ProU, displayed much higher affinities for GB and DMSA than for DMSP. Interestingly, ProP did not operate at substrate concentrations of 200 nM or less, whereas ProU operated at concentrations ranging from 1 nM to millimolar levels. Consequently, proU+ strains of E. coli, but not the proP+ strain GM50, could also scavenge nanomolar levels of GB, DMSA, and DMSP from oligotrophic seawater. The physiological and ecological implications of these observations are discussed.  相似文献   

2.
An extract from the marine alga Ulva lactuca was highly osmoprotective in salt-stressed cultures of Sinorhizobium meliloti 102F34. This beneficial activity was due to algal 3-dimethylsulfoniopropionate (DMSP), which was accumulated as a dominant compatible solute and strongly reduced the accumulation of endogenous osmolytes in stressed cells. Synthetic DMSP also acted as a powerful osmoprotectant and was accumulated as a nonmetabolizable cytosolic osmolyte (up to a concentration of 1,400 nmol/mg of protein) throughout the growth cycles of the stressed cultures. In contrast, 2-dimethylsulfonioacetate (DMSA), the sulfonium analog of the universal osmoprotectant glycine betaine (GB), was highly toxic to unstressed cells and was not osmoprotective in stressed cells of wild-type strains of S. meliloti. Nonetheless, the transport and accumulation of DMSA, like the transport and accumulation of DMSP and GB, were osmoregulated and increased fourfold in stressed cells of strain 102F34. Strikingly, DMSA was not toxic and became highly osmoprotective in mutants that are impaired in their ability to demethylate GB and DMSA. Furthermore, 2-methylthioacetate and thioglycolic acid (TGA), the demethylation products of DMSA, were excreted, apparently as a mechanism of cellular detoxification. Also, exogenous TGA and DMSA displayed similar inhibitory effects in strain 102F34. Thus, on the basis of these findings and other physiological and biochemical evidence, we infer that the toxicity of DMSA in wild-type strains of S. meliloti stems from its catabolism via the GB demethylation pathway. This is the first report describing the toxicity of DMSA in any organism and a metabolically stable osmoprotectant (DMSP) in S. meliloti.  相似文献   

3.
Multiple transporters mediate osmoregulatory solute accumulation in Escherichia coli K-12. The larger genomes of naturally occurring strains such as pyelonephritis isolates CFT073 and HU734 may encode additional osmoregulatory systems. CFT073 is more osmotolerant than HU734 in the absence of organic osmoprotectants, yet both strains grew in high osmolality medium at low K(+) (micromolar concentrations) and retained locus trkH, which encodes an osmoregulatory K(+) transporter. Both lacked the trkH homologue trkG. Transporters ProP and ProU account for all glycine-betaine uptake activity in E. coli K-12 and CFT073, but not in HU734, yet elimination of ProP and ProU impairs the growth of HU734, but not CFT073, in high osmolality human urine. No known osmoprotectant stimulated the growth of CFT073 in high osmolality minimal medium, but putative transporters YhjE, YiaMNO, and YehWXYZ may mediate uptake of additional osmoprotectants. Gene betU was isolated from HU734 by functional complementation and shown to encode a betaine uptake system that belongs to the betaine-choline-carnitine transporter family. The incidence of trkG and betU within the ECOR collection, representatives of the E. coli pathotypes (PATH), and additional strains associated with urinary tract infection (UTI) were determined. Gene trkG was present in 66% of the ECOR collection but only in 16% of the PATH and UTI collections. Gene betU was more frequently detected in ECOR groups B2 and D (50% of isolates) than in groups A, B1, and E (20%), but it was similar in overall incidence in the ECOR collection and in the combined UTI and PATH collections (32 and 34%, respectively). Genes trkG and betU may have been acquired by lateral gene transfer, since trkG is part of the rac prophage and betU is flanked by putative insertion sequences. Thus, BetU and TrkG contribute, with other systems, to the osmoregulatory capacity of the species E. coli, but they are not characteristic of a particular phylogenetic group or pathotype.  相似文献   

4.
The ProP and ProU transport systems of Escherichia coli mediate the uptake of several osmoprotectants including glycine betaine. Here we report that both ProP and ProU are involved in the transport of the potent osmoprotectant proline betaine. A set of isogenic E. coli strains carrying deletions in either the proP or proU loci was constructed. The growth properties of these mutants in high osmolarity minimal media containing 1 mM proline betaine demonstrated that the osmoprotective effect of this compound was dependent on either an intact ProP or ProU uptake system. Proline betaine competes with glycine betaine for binding to the proU-encoded periplasmic substrate binding protein (ProX) and we estimate a KD of 5.2 μM for proline betaine binding. This value is similar to the binding constant of the ProX protein determined previously for the binding of glycine betaine (KD of 1.4 μM). Our results thus demonstrate that the binding-protein-dependent ProU transport system of E. coli mediates the efficient uptake of the osmoprotectants glycine betaine and proline betaine.  相似文献   

5.
6.
The ProP and ProU transport systems of Escherichia coli mediate the uptake of several osmoprotectants including glycine betaine. Here we report that both ProP and ProU are involved in the transport of the potent osmoprotectant proline betaine. A set of isogenic E. coli strains carrying deletions in either the proP or proU loci was constructed. The growth properties of these mutants in high osmolarity minimal media containing 1 mM proline betaine demonstrated that the osmoprotective effect of this compound was dependent on either an intact ProP or ProU uptake system. Proline betaine competes with glycine betaine for binding to the proU-encoded periplasmic substrate binding protein (ProX) and we estimate a KD of 5.2 M for proline betaine binding. This value is similar to the binding constant of the ProX protein determined previously for the binding of glycine betaine (KD of 1.4 M). Our results thus demonstrate that the binding-protein-dependent ProU transport system of E. coli mediates the efficient uptake of the osmoprotectants glycine betaine and proline betaine.  相似文献   

7.
The ability of Erwinia chrysanthemi to cope with environments of elevated osmolality is due in part to the transport and accumulation of osmoprotectants. In this study we have identified a high-affinity glycine betaine and choline transport system in E. chrysanthemi. By using a pool of Tn5-B21 ousA mutants, we isolated a mutant that could grow in the presence of a toxic analogue of glycine betaine (benzyl-glycine betaine) at high osmolalities. This mutant was impaired in its ability to transport all effective osmoprotectants in E. chrysanthemi. The DNA sequence of the regions flanking the transposon insertion site revealed three chromosomal genes (ousVWX) that encode components of an ABC-type transporter (OusB): OusV (ATPase), OusW (permease), and OusX (periplasmic binding protein). The OusB components showed a significant degree of sequence identity to components of ProU from Salmonella enterica serovar Typhimurium and Escherichia coli. OusB was found to restore the uptake of glycine betaine and choline through functional complementation of an E. coli mutant defective in both ProU and ProP osmoprotectant uptake systems. Competition experiments demonstrated that choline, dimethylsulfoniacetate, dimethylsulfoniopropionate, and ectoine were effective competitors for OusB-mediated betaine transport but that carnitine, pipecolate, and proline were not effective. In addition, the analysis of single and double mutants showed that OusA and OusB were the only osmoprotectant transporters operating in E. chrysanthemi.  相似文献   

8.
9.
The identity and concentrations of intracellular organic solutes were determined by nuclear magnetic resonance spectroscopy for two strains of aerobic, gram-negative bacteria isolated from Mono Lake, Calif., an alkaline, moderately hypersaline lake. Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) was the major endogenous solute in both organisms. Concentrations of ectoine varied with external NaCl levels in strain ML-D but not in strain ML-G, where the level was high but invariant from 1.5 to 3.0 M NaCl. Hydroxyectoine also occurred in strain ML-D, especially at elevated NaCl concentrations (2.5 and 3.0 M), but at levels lower than those of ectoine. Exogenous organic solutes that might occur in Mono Lake were examined for their effects on the de novo synthesis of ectoine. Dimethylsulfoniopropionate (DMSP) (0.1 or 1 mM) did not significantly lower ectoine levels in either isolate, and only strain ML-G showed any capacity for DMSP accumulation. With nitrogen limitation, however, DMSP (0.1 mM) substituted for ectoine in strain ML-G and became the main organic solute. Glycine betaine (GB) was more effective than DMSP in affecting ectoine levels, principally in strain ML-D. Strain ML-D accumulated GB to 50 or 67% of its organic solute pool at 2.5 M NaCl, at an external level of 0.1 or 1 mM GB, respectively. Strain ML-D also accumulated arsenobetaine. The methylated zwitterionic compounds, probably metabolic products of phytoplankton (DMSP and GB) or brine shrimps (arsenobetaine) in Mono Lake, may function as osmolytes for indigenous bacteria when present at high concentrations or under conditions of nitrogen limitation or salt stress.  相似文献   

10.
Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) is a cyclic amino acid, identified as a compatible solute in moderately halophilic bacteria. Exogenously provided ectoine was found to stimulate growth of Escherichia coli in media of inhibitory osmotic strength. The stimulation was independent of any specific solute, electrolyte or nonelectrolyte. It is accumulated in E. coli cells proportionally to the osmotic strength of the medium, and it is not metabolized. Its osmoprotective ability was as potent as that of glycine betaine. The ProP and ProU systems are both involved in ectoine uptake and accumulation in E. coli. ProP being the main system for ectoine transport. The intracellular ectoine pool is regulated by both influx and efflux systems.  相似文献   

11.
The ability of Erwinia chrysanthemi to cope with environments of elevated osmolality is due in part to the transport and accumulation of osmoprotectants. In this study we have identified a high-affinity glycine betaine and choline transport system in E. chrysanthemi. By using a pool of Tn5-B21 ousA mutants, we isolated a mutant that could grow in the presence of a toxic analogue of glycine betaine (benzyl-glycine betaine) at high osmolalities. This mutant was impaired in its ability to transport all effective osmoprotectants in E. chrysanthemi. The DNA sequence of the regions flanking the transposon insertion site revealed three chromosomal genes (ousVWX) that encode components of an ABC-type transporter (OusB): OusV (ATPase), OusW (permease), and OusX (periplasmic binding protein). The OusB components showed a significant degree of sequence identity to components of ProU from Salmonella enterica serovar Typhimurium and Escherichia coli. OusB was found to restore the uptake of glycine betaine and choline through functional complementation of an E. coli mutant defective in both ProU and ProP osmoprotectant uptake systems. Competition experiments demonstrated that choline, dimethylsulfoniacetate, dimethylsulfoniopropionate, and ectoine were effective competitors for OusB-mediated betaine transport but that carnitine, pipecolate, and proline were not effective. In addition, the analysis of single and double mutants showed that OusA and OusB were the only osmoprotectant transporters operating in E. chrysanthemi.  相似文献   

12.
Transporter ProP of Escherichia coli mediates the cellular accumulation of organic zwitterions in response to increased extracellular osmolality. We compared and characterized the osmoregulation of ProP activity in cells and proteoliposomes to define the osmotic shift-induced cellular change(s) to which ProP responds. ProP-(His)(6) activity in cells and proteoliposomes was correlated with medium osmolality, not osmotic shift, turgor pressure, or membrane strain. Both K(M) and V(max) for proline uptake via ProP-(His)(6) increased with increasing medium osmolality, as would be expected if osmolality controls the proportions of transporter with inactive and active conformations. The osmolality yielding half-maximal ProP-(His)(6) activity was higher in proteoliposomes than in cells. The osmolality response of ProP is also attenuated in bacteria lacking soluble protein ProQ. Indeed, the catalytic constant (k(cat)) for ProP-(His)(6) in proteoliposomes approximated that of ProP in intact bacteria lacking ProQ. Thus, the proteoliposome system may replicate a primary osmosensory response that can be further amplified by ProQ. ProP-(His)(6) is designated as an osmosensor because its activity is dependent on the osmolality, but not the composition, of the assay medium to which the cell surface is exposed. In contrast, ProP-(His)(6) activity was dependent on both the osmolality and the composition of the lumen in osmolyte-loaded proteoliposomes. For proteoliposomes containing inorganic salts, glucose, or poly(ethylene glycol) 503, transporter activity correlated with total lumenal cation concentration. In contrast, for proteoliposomes loaded with larger poly(ethylene glycol)s, the osmolality, the lumenal cation concentration, and the lumenal ionic strength at half-maximal transporter activity decreased systematically with poly(ethylene glycol) radius of gyration (range 0.8-1.8 nm). These data suggest that ProP-(His)(6) responds to osmotically induced changes in both cytoplasmic K(+) levels and the concentration of cytoplasmic macromolecules.  相似文献   

13.
Membrane transporter ProP from Escherichia coli senses extracellular osmolality and responds by mediating the uptake of osmoprotectants such as glycine betaine when osmolality is high. Earlier EPR and NMR studies showed that a peptide replica of the cytoplasmic ProP carboxyl terminus (residues D468-R497) forms a homodimeric, antiparallel, alpha-helical coiled coil in vitro stabilized by electrostatic interactions involving R488. Amino acid replacement R488I disrupted coiled-coil formation by the ProP peptide, elevated the osmolality at which ProP became active, and rendered the osmolality response of ProP transient. In the present study, either E480 or K473 was replaced with cysteine (Cys) in ProP, a Cys-less, fully functional, histidine-tagged ProP variant, to use Cys-specific cross-linking approaches to determine if antiparallel coiled-coil formation and dimerization of the intact protein occur in vivo. The Cys at positions 480 would be closer in an antiparallel dimer than those at positions 473. These replacements did not disrupt coiled-coil formation by the ProP peptide. Partial homodimerization of variant ProP-E480C could be demonstrated in vivo and in membrane preparations via Cys-specific cross-linking with dithiobis(maleimidoethane) or by Cys oxidation to cystine by copper phenanthroline. In contrast, these reagents did not cross-link ProP with Cys at position 133 or 241. Cross-linking of ProP with Cys at position 473 was limited and occurred only if ProP was overexpressed, consistent with an antiparallel orientation of the coiled coil in the intact protein in vivo. Although replacement E480C did not alter transporter activity, replacement K473C reduced the extent and elevated the threshold for osmotic activation. K473 may play a role in ProP structure and function that is not reflected in altered coiled-coil formation by the corresponding peptide. Substitution R488I affected the activities of ProP-(His)(6), ProP-E480C, and ProP-K473C as it affected the activity of ProP. Surprisingly, it did not eliminate cross-linking of Cys at position 480, and it elevated cross-linking at position 473, even when ProP was expressed at physiological levels. This suggested that the R488I substitution may have changed the relative orientation of the C-termini within the dimeric protein from antiparallel to parallel, resulting in only transient osmotic activation. These results suggest that ProP is in monomer-dimer equilibrium in vivo. Dimerization may be mediated by C-terminal coiled-coil formation and/or by interactions between other structural domains, which in turn facilitate C-terminal coiled-coil formation. Antiparallel coiled-coil formation is required for activation of ProP at low osmolality.  相似文献   

14.
The effect of gamma-hydroxybutyric acid on extracellular glutamate levels in the hippocampus was studied by microdialysis in freely moving rats and in isolated hippocampal synaptosomes. Intra-hippocampal (CA1) perfusion with gamma-hydroxybutyric acid (10 nM-1 mM) concentration-dependently influenced glutamate levels: gamma-hydroxybutyric acid (100 and 500 nM) increased glutamate levels; 100 and 300 microM concentrations were ineffective; whereas the highest 1 mM concentration reduced local glutamate levels. The stimulant effect of gamma-hydroxybutyric acid (100 nM) was suppressed by the locally co-perfused gamma-hydroxybutyric acid receptor antagonist NCS-382 (10 microM) but not by the GABA(B) receptor antagonist CGP-35348 (500 microM). Furthermore, the gamma-hydroxybutyric acid (1 mM)-induced reduction in CA1 glutamate levels was counteracted by NCS-382 (10 microM), and it was also reversed into an increase by CGP-35348. Given alone, neither NCS-382 nor CGP-35348 modified glutamate levels. In hippocampal synaptosomes, gamma-hydroxybutyric acid (50 and 100 nM) enhanced both the spontaneous and K(+)-evoked glutamate efflux, respectively, both effects being counteracted by NCS-382 (100 nM), but not by CGP-35348 (100 microM). These findings indicate that gamma-hydroxybutyric acid exerts a concentration-dependent regulation of hippocampal glutamate transmission via two opposing mechanisms, whereby a direct gamma-hydroxybutyric acid receptor mediated facilitation is observed at nanomolar gamma-hydroxybutyric acid concentrations, and an indirect GABA(B) receptor mediated inhibition predominates at millimolar concentrations.  相似文献   

15.
The effects of intraperitoneal administration of dimethylsulfonioacetate (DMSA), dimethlsulfoniopropionate (DMSP), and methylmethionine (MeMet) solutions (10 mM each) on the body weights and the hematological parameters (red and white blood cells) of Ehrlich ascites carcinoma (EAC)-bearing mice were examined for up to 10 d. Body weights significantly increased in the EAC-bearing mice treated with and without MeMet in contrast to those with DMSA and DMSP. This increase was attributed to the increased amounts of ascitic fluid. EAC-bearing mice with and without MeMet both showed abnormal values of hematological parameters, while those with DMSA and DMSP exhibited almost normal levels on the 10th day.  相似文献   

16.
Concentrative uptake of osmoprotectants via transporter ProP contributes to the rehydration of Escherichia coli cells that encounter high osmolality media. A member of the major facilitator superfamily, ProP is activated by osmotic upshifts in whole bacteria, in cytoplasmic membrane vesicles and in proteoliposomes prepared with the purified protein. Soluble protein ProQ is also required for full osmotic activation of ProP in vivo. ProP is differentiated from structural and functional homologues by its osmotic activation and its C-terminal extension, which is predicted to form an alpha-helical coiled-coil. A synthetic polypeptide corresponding to the C-terminus of ProP (ProP-p) formed a dimeric alpha-helical coiled-coil. A derivative of transporter ProP lacking 26 C-terminal amino acids was expressed but inactive. A derivative harbouring amino acid changes K460I, Y467I and H495I (each at the core, coiled-coil 'a' position) required a larger osmotic upshift for activation than did the wild type transporter. The same changes extended, stabilized and altered the oligomeric state of the coiled-coil formed by ProP-p. Amino acid change R488I (also at the 'a' position) further increased the magnitude of the osmotic upshift required to activate ProP, reduced the activity attained and rendered ProP activation transient. Unexpectedly, replacement R488I destabilized the coiled-coil formed by ProP-p. The activity and osmotic activation of ProP were even more strongly attenuated by helix-destabilizing change I474P. These data demonstrate that the carboxyl terminal domain of ProP can form a homodimeric alpha-helical coiled-coil with unusual properties. They implicate the C-terminal domain in the osmotic activation of ProP.  相似文献   

17.
The effects of intraperitoneal administration of dimethylsulfonioacetate (DMSA), dimethlsulfoniopropionate (DMSP), and methylmethionine (MeMet) solutions (10 mM each) on the body weights and the hematological parameters (red and white blood cells) of Ehrlich ascites carcinoma (EAC)-bearing mice were examined for up to 10 d. Body weights significantly increased in the EAC-bearing mice treated with and without MeMet in contrast to those with DMSA and DMSP. This increase was attributed to the increased amounts of ascitic fluid. EAC-bearing mice with and without MeMet both showed abnormal values of hematological parameters, while those with DMSA and DMSP exhibited almost normal levels on the 10th day.  相似文献   

18.
The initial step in the anaerobic degradation of the algal osmolyte dimethylsulfoniopropionate (DMSP) in anoxic marine sediments involves either a cleavage to dimethylsulfide and acrylate or a demethylation to 3-S-methylmercaptopropionate. Thus far, only one anaerobic bacterial strain has been shown to carry out the demethylation, namely, Desulfobacterium sp. strain PM4. The aims of the present work were to study how common this property is among certain groups of anaerobic bacteria and to obtain information on the affinities for DMSP of DMSP-demethylating strains. Screening of several pure cultures of sulfate-reducing and acetogenic bacteria showed that Desulfobacterium vacuolatum DSM 3385 and Desulfobacterium niacini DSM 2059 are also able to demethylate DMSP; a very slow demethylation of DMSP was observed with a salt-tolerant strain of Eubacterium limosum. From a 10(5) dilution of intertidal sediment a new marine DMSP-demethylating sulfate-reducing bacterium (strain WN) was isolated. Strain WN was a short, gram-negative, nonmotile rod that grew on betaine, sarcosine, palmitate, H2 plus CO2, and several alcohols, organic acids, and amino acids. Extracts of betaine-grown cells had hydrogenase, formate dehydrogenase, and CO dehydrogenase activities but no alpha-ketoglutarate oxidoreductase activity, indicating the presence of the acetyl coenzyme A-CO dehydrogenase pathway. Analysis of the 16S rRNA gene sequence of strain WN revealed a close relationship with Desulfobacter hydrogenophilus, Desulfobacter latus, and Desulfobacula toluolica. Strain PM4 was shown to group with Desulfobacterium niacini. The K(m) of strain WN for DMSP, as derived from substrate progress curves in cell suspensions, was approximately 10 microM. A similar value was found for D. niacini PM4.  相似文献   

19.
Abstract The metabolism of the methylated osmolytes glycine betaine (GB) and dimethylsulfoniopropionate (DMSP) was studied in a bacterium (strain MD 14–50) isolated from a colony of the cyanobacterium Trichodesmium . MD 14–50 when grown on DMSP cleaved dimethylsulfide (DMS) from DMSP and oxidized acrylate. In contrast to DMSP, GB was metabolized by sequential N-demethylations. Low concentrations (100 μM) of DMSP or GB allowed the growth of MD 14–50 on glucose at higher salinities than in their absence. At elevated salinities, DMSP was accumulated intracellularly with less catabolism and DMS production. Thus, DMSP and GB were catabolized by different mechanisms but functioned interchangeably as osmolytes.  相似文献   

20.
A simple method for the direct quantification of dimethylsulfinopropionate (DMSP) using HPLC or UPLC coupled to UV and/or MS detection is introduced. The protocol is applied for the determination of DMSP from marine micro- and macroalgae. The method is based on the derivatisation of DMSP using 1-pyrenyldiazomethane followed by reversed phase HPLC or UPLC separation. The detection limit is 590 nM, corresponding to 1 ng DMSP per injection. Using a combination of UV and MS detection the calibration curves were linear in the range of 2.93 microM to 11.7 mM concentrations. We show that direct determination of DMSP is possible from macroalgal tissue and microalgal cultures if DMSP-lyase activity is suppressed during work-up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号