首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Didymosphenia geminata is a large, invasive, freshwater diatom that can produce distinctive and robust mucilaginous stalks. Over the last two decades, there has been a worldwide increase in the distribution and severity of D. geminata blooms. These dense, persistent blooms can have severe impacts on native species and ecosystem functioning. D. geminata is usually identified by microscopic methods that are time consuming, resource intensive, and dependent upon expert taxonomic identification, so the extent of surveillance programs has been limited. As an alternative, we have developed a TaqMan quantitative polymerase chain reaction (QPCR) assay for sensitive and rapid detection and enumeration of D. geminata in environmental samples. Species-specific QPCR primers and probe were designed by aligning the D. geminata 18S ribosomal DNA (rDNA) sequence with closely related diatoms. The QPCR assay was linear (R2 = 1.00) over a detection range of eight orders of magnitude with a lower limit of approximately two D. geminata cells. QPCR analysis of environmental samples employed the comparative cycle threshold (CT)-method with an exogenous plasmid used as an internal reference standard. The assay was evaluated using samples collected during a survey of D. geminata in three rivers in the South Island, New Zealand, and from 13 international locations where D. geminata is known to be present. Positive QPCR amplifications were confirmed as the correct amplification product through direct DNA sequencing. Phylogenetic analysis of 18S rDNA sequences suggests that D. geminata is more closely related to species in the family Cymbellaceae rather than Gomphonemataceae as currently classified.  相似文献   

2.
3.
4.
Cross-sectional studies have associated short telomere length with smoking, body weight, physical activity, and possibly alcohol intake; however, whether these associations are due to confounding is unknown. We tested these hypotheses in 4,576 individuals from the general population cross-sectionally, and with repeat measurement of relative telomere length 10 years apart. We also tested whether change in telomere length is associated with mortality and morbidity in the general population. Relative telomere length was measured with quantitative polymerase chain reaction. Cross-sectionally at the first examination, short telomere length was associated with increased age (P for trend across quartiles = 3×10−77), current smoking (P = 8×10−3), increased body mass index (P = 7×10−14), physical inactivity (P = 4×10−17), but not with increased alcohol intake (P = 0.10). At the second examination 10 years later, 56% of participants had lost and 44% gained telomere length with a mean loss of 193 basepairs. Change in leukocyte telomere length during 10 years was associated inversely with baseline telomere length (P<1×10−300) and age at baseline (P = 1×10−27), but not with baseline or 10-year inter-observational tobacco consumption, body weight, physical activity, or alcohol intake. Prospectively during a further 10 years follow-up after the second examination, quartiles of telomere length change did not associate with risk of all-cause mortality, cancer, chronic obstructive pulmonary disease, diabetes mellitus, ischemic cerebrovascular disease, or ischemic heart disease. In conclusion, smoking, increased body weight, and physical inactivity were associated with short telomere length cross-sectionally, but not with telomere length change during 10 years observation, and alcohol intake was associated with neither. Also, change in telomere length did not associate prospectively with mortality or morbidity in the general population.  相似文献   

5.
Telomere length is recognized as a marker of biological age, and shorter mean leukocyte telomere length is associated with increased risk of cardiovascular disease. It is unclear whether repeated exposure to ultra-endurance aerobic exercise is beneficial or detrimental in the long-term and whether it attenuates biological aging. We quantified 67 ultra-marathon runners’ and 56 apparently healthy males’ leukocyte telomere length (T/S ratio) using real-time quantitative PCR. The ultra-marathon runners had 11% longer telomeres (T/S ratio) than controls (ultra-marathon runners: T/S ratio = 3.5±0.68, controls: T/S ratio = 3.1±0.41; β = 0.40, SE = 0.10, P = 1.4×10−4) in age-adjusted analysis. The difference remained statistically significant after adjustment for cardiovascular risk factors (P = 2.2×10−4). The magnitude of this association translates into 16.2±0.26 years difference in biological age and approximately 324–648bp difference in leukocyte telomere length between ultra-marathon runners and healthy controls. Neither traditional cardiovascular risk factors nor markers of inflammation/adhesion molecules explained the difference in leukocyte telomere length between ultra-marathon runners and controls. Taken together these data suggest that regular engagement in ultra-endurance aerobic exercise attenuates cellular aging.  相似文献   

6.

Background

Telomeres are DNA repeat sequences necessary for DNA replication which shorten at cell division at a rate directly related to levels of oxidative stress. Critical telomere shortening predisposes to cell senescence and to epithelial malignancies. Type 2 diabetes is characterised by increased oxidative DNA damage, telomere attrition, and an increased risk of colonic malignancy. We hypothesised that the colonic mucosa in Type 2 diabetes would be characterised by increased DNA damage and telomere shortening.

Methods

We examined telomere length (by flow fluorescent in situ hybridization) and oxidative DNA damage (flow cytometry of 8 – oxoguanosine) in the colonic mucosal cells of subjects with type 2 diabetes (n = 10; mean age 62.2 years, mean HbA1c 6.9%) and 22 matched control subjects. No colonic pathology was apparent in these subjects at routine gastrointestinal investigations.

Results

Mean colonic epithelial telomere length in the diabetes group was not significantly different from controls (10.6 [3.6] vs. 12.1 [3.4] Molecular Equivalent of Soluble Fluorochrome Units [MESF]; P = 0.5). Levels of oxidative DNA damage were similar in both T2DM and control groups (2.6 [0.6] vs. 2.5 [0.6] Mean Fluorescent Intensity [MFI]; P = 0.7). There was no significant relationship between oxidative DNA damage and telomere length in either group (both p > 0.1).

Conclusion

Colonic epithelium in Type 2 diabetes does not differ significantly from control colonic epithelium in oxidative DNA damage or telomere length. There is no evidence in this study for increased oxidative DNA damage or significant telomere attrition in colonic mucosa as a carcinogenic mechanism.  相似文献   

7.

Background

Short telomeres have been linked to various age-related diseases. We aimed to assess the association of telomere length with incident type 2 diabetes mellitus (T2DM) in prospective cohort studies.

Methods

Leucocyte relative telomere length (RTL) was measured using quantitative polymerase chain reaction in 684 participants of the prospective population-based Bruneck Study (1995 baseline), with repeat RTL measurements performed in 2005 (n = 558) and 2010 (n = 479). Hazard ratios for T2DM were calculated across quartiles of baseline RTL using Cox regression models adjusted for age, sex, body-mass index, smoking, socio-economic status, physical activity, alcohol consumption, high-density lipoprotein cholesterol, log high-sensitivity C-reactive protein, and waist-hip ratio. Separate analyses corrected hazard ratios for within-person variability using multivariate regression calibration of repeated measurements. To contextualise findings, we systematically sought PubMed, Web of Science and EMBASE for relevant articles and pooled results using random-effects meta-analysis.

Results

Over 15 years of follow-up, 44 out of 606 participants free of diabetes at baseline developed incident T2DM. The adjusted hazard ratio for T2DM comparing the bottom vs. the top quartile of baseline RTL (i.e. shortest vs. longest) was 2.00 (95% confidence interval: 0.90 to 4.49; P = 0.091), and 2.31 comparing the bottom quartile vs. the remainder (1.21 to 4.41; P = 0.011). The corresponding hazard ratios corrected for within-person RTL variability were 3.22 (1.27 to 8.14; P = 0.014) and 2.86 (1.45 to 5.65; P = 0.003). In a random-effects meta-analysis of three prospective cohort studies involving 6,991 participants and 2,011 incident T2DM events, the pooled relative risk was 1.31 (1.07 to 1.60; P = 0.010; I 2 = 69%).

Conclusions/Interpretation

Low RTL is independently associated with the risk of incident T2DM. To avoid regression dilution biases in observed associations of RTL with disease risk, future studies should implement methods correcting for within-person variability in RTL. The causal role of short telomeres in T2DM development remains to be determined.  相似文献   

8.
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein involved in DNA replication, recombination and repair. In Saccharomyces cerevisiae, several mutants in the RFA1 gene encoding the large subunit of RPA have been isolated and one of the mutants with a missense allele, rfa1-D228Y, shows a synergistic reduction in telomere length when combined with a yku70 mutation. So far, only one mutant allele of the rad11+ gene encoding the large subunit of RPA has been reported in Schizosaccharomyces pombe. To study the role of S.pombe RPA in DNA repair and possibly in telomere maintenance, we constructed a rad11-D223Y mutant, which corresponds to the S.cerevisiae rfa1-D228Y mutant. rad11-D223Y cells were methylmethane sulfonate, hydroxyurea, UV and γ-ray sensitive, suggesting that rad11-D223Y cells have a defect in DNA repair activity. Unlike the S.cerevisiae rfa1-D228Y mutation, the rad11-D223Y mutation itself caused telomere shortening. Moreover, Rad11-Myc bound to telomere in a ChIP assay. These results strongly suggest that RPA is directly involved in telomere maintenance.  相似文献   

9.

Background

Injecting drug users (IDU) are at premature risk of developing multimorbidity and mortality from causes commonly observed in the elderly. Ageing of the immune system (immune-senescence) can lead to premature morbidity and mortality and can be accelerated by chronic viral infections. Here we investigated the impact of HCV monoinfection and HIV/HCV coinfection on immune parameters in (ex-) IDU. We analyzed telomere length and expression of activation, differentiation and exhaustion markers on T cells at baseline (t?=?1) and at follow-up (t?=?2) (median interval 16.9 years) in IDU who were: HCV mono-infected (n?=?21); HIV/HCV coinfected (n?=?23) or multiple exposed but uninfected (MEU) (n?=?8).

Results

The median time interval between t?=?1 and t?=?2 was 16.9 years. Telomere length within CD4+ and CD8+ T cells decreased significantly over time in all IDU groups (p?≤?0.012). CD4+ T-cell telomere length in HCV mono-infected IDU was significantly reduced compared to healthy donors at t?=?1 (p?<?0.008). HIV/HCV coinfected IDU had reduced CD4+ and CD8+ T-cell telomere lengths (p?≤?0.002) to healthy donors i at t?=?1. This was related to persistent levels of immune activation but not due to increased differentiation of T cells over time. Telomere length decrease was observed within all T-cell subsets, but mainly found in immature T cells (CD27+CD57+) (p?≤?0.015).

Conclusions

HCV mono-infection and HIV/HCV coinfection enhance T-cell immune-senescence. Our data suggest that this occurred early during infection, which warrants early treatment for both HCV and HIV to reduce immune senescence in later life.
  相似文献   

10.
Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes from incomplete replication, degradation and detection as DNA breaks. Mammalian telomeres are protected by shelterin, a multiprotein complex that binds the TTAGGG telomeric repeats and recruits a series of additional factors that are essential for telomere function. Although many shelterin-associated proteins have been so far identified, the inventory of shelterin-interacting factors required for telomere maintenance is still largely incomplete. Here, we characterize AKTIP/Ft1 (human AKTIP and mouse Ft1 are orthologous), a novel mammalian shelterin-bound factor identified on the basis of its homology with the Drosophila telomere protein Pendolino. AKTIP/Ft1 shares homology with the E2 variant ubiquitin-conjugating (UEV) enzymes and has been previously implicated in the control of apoptosis and in vesicle trafficking. RNAi-mediated depletion of AKTIP results in formation of telomere dysfunction foci (TIFs). Consistent with these results, AKTIP interacts with telomeric DNA and binds the shelterin components TRF1 and TRF2 both in vivo and in vitro. Analysis of AKTIP- depleted human primary fibroblasts showed that they are defective in PCNA recruiting and arrest in the S phase due to the activation of the intra S checkpoint. Accordingly, AKTIP physically interacts with PCNA and the RPA70 DNA replication factor. Ft1-depleted p53-/- MEFs did not arrest in the S phase but displayed significant increases in multiple telomeric signals (MTS) and sister telomere associations (STAs), two hallmarks of defective telomere replication. In addition, we found an epistatic relation for MST formation between Ft1 and TRF1, which has been previously shown to be required for replication fork progression through telomeric DNA. Ch-IP experiments further suggested that in AKTIP-depleted cells undergoing the S phase, TRF1 is less tightly bound to telomeric DNA than in controls. Thus, our results collectively suggest that AKTIP/Ft1 works in concert with TRF1 to facilitate telomeric DNA replication.  相似文献   

11.
Selected light scattering data, obtained in earlier studies on T7 DNA in 0.195 M Na+, are analyzed by comparison with calculations from the theory of wormlike coils, both with and without excluded volume effects. The results confirm the conclusion from an earlier criticism, that linear extrapolations of data from the 10° to 20° angular range give incorrect values for the limiting molecular weight, MT, and for the limiting root-mean-square radius, RT. Further, it is shown that the excluded volume parameter, ?, must be used to provide a proper fit of calculated curves to experimental data. The revised analysis gives the following parameters for T7 DNA: MT = 25.5 × 106 ;RT= 587 nm; ? = 0.08; and the statistical segment length, 1/λ = 120 nm. These parameters agree well with other values in the literature. The method of analysis, therefore, provides reliable results from light scattering data on high-molecular-weight, native DNA.  相似文献   

12.
Telomere length/DNA content has been measured in epidemiological/clinical settings with the goal of testing a host of hypotheses related to the biology of human aging, but often the conclusions of these studies have been inconsistent. These inconsistencies may stem from various reasons, including the use of different telomere length measurement techniques. Here, we report the first impartial evaluation of measurements of leukocyte telomere length by Southern blot of the terminal restriction fragments and quantitative PCR (qPCR) of telomere DNA content, expressed as the ratio of telomeric product (T)/single copy gene (S) product. Blind measurements on the same samples from 50 donors were performed in two independent laboratories on two different occasions. Both the qPCR and Southern blots displayed highly reproducible results as shown by r values > 0.9 for the correlations between results obtained by either method on two occasions. The inter-assay CV measurement for the qPCR was 6.45%, while that of the Southern blots was 1.74%. The relation between the results generated by Southern blots versus those generated by qPCR deviated from linearity. We discuss the ramifications of these findings with regard to measurements of telomere length/DNA content in epidemiological/clinical circumstances.  相似文献   

13.
The interactions between water-soluble cationic oxovanadyl[meso-tetrakis(4-N-methylpyridiumyl)]porphyrin (VOTMPyP) and various synthetic polynucleotide including poly[d(A–T)2], poly[d(G–C)2], and poly[d(I–C)2] were studied using absorption, circular dichroism (CD), and linear dichroism (LD) spectroscopy. When VOTMPyP formed a complex with poly[d(A–T)2] and poly[d(I–C)2], a positive CD signal at low [VOTMPyP]/[DNA] ratios (R ratios) and strong excitonic CD signals at above R ≥ 0.15 were induced. The appearance of the CD spectra of the VOTMPyP-poly[d(G–C)2] complex were very different: a small negative CD at low R ratios and very small excitonic CD at high R ratios were observed. Considering the facts that the minor grooves of the former two polynucleotides resemble and the major groove of poly[d(I–C)2] is similar with that of poly[d(G–C)2], it is conclusive that VOTMPyP binds to the minor groove of all DNA at lower R ratios while they stack at the outside of DNA at higher R ratios. The binding geometry of VOTMPyP to all polynucleotides studied by LD seemed to be homogenous, irrespective of the R ratio. It has been found that VOTMPyP can have five- and six-fluxional coordination states. Comparing the absorption spectra of VOTMPyP complexed with poly[d(A–T)2] and poly[d(G–C)2], the distinctive absorptions of the five- and six-coordinated species were observed at lower R ratios which centered at 420–430 nm and 442 nm, respectively. While the six-coordinated VOTMPyP favored the poly[d(A–T)2], the five-coordinated species favored the poly[d(G–C)2] at the low R ratios. As the stacked species increased with an increasing R ratio, the six-coordinated species became the major bound species. These observations lead us to conclude that the guanine base′ amino group plays a crucial role not only in determining the binding mode of VOTMPyP but also in the conversion of the six-coordinated species to the five-coordinated species.  相似文献   

14.
15.
The actin-related proteins (Arps), which are subdivided into at least eight subfamilies, are conserved from yeast to humans. A member of the Arp6 subfamily in Drosophila, Arp4/Arp6, co-localizes with heterochromatin protein 1 (HP1) in pericentric heterochromatin. Fission yeast Schizosaccharomyces pombe possesses both an HP1 homolog and an Arp6 homolog. However, the function of S.pombe Arp6 has not been characterized yet. We found that deletion of arp6+ impaired telomere silencing, but did not affect centromere silencing. Chromatin immunoprecipitation assays revealed that Arp6 bound to the telomere region. However, unlike Drosophila Arp4/Arp6, S.pombe Arp6 was distributed throughout nuclei. The binding of Arp6 to telomere DNA was not affected by deletion of swi6+. Moreover, the binding of Swi6 to telomere ends was not affected by deletion of arp6+. These results suggest that Arp6 and Swi6 function independently at telomere ends. We propose that the Arp6-mediated repression mechanism works side by side with Swi6-based telomere silencing in S.pombe.  相似文献   

16.

Objective

Patients with acromegaly exhibit reduced life expectancy and increased prevalence of age-related diseases, such as diabetes, hypertension, and cardiovascular disease. However, the underlying mechanism has not been fully elucidated. Telomere shortening is reportedly associated with reduced life expectancy and increased prevalence of these age-related diseases.

Methods

We measured telomere length in patients with acromegaly using quantitative PCR method. The effect of GH and IGF-I on telomere length and cellular senescence was examined in human skin fibroblasts.

Results

Patients with acromegaly exhibited shorter telomere length than age-, sex-, smoking-, and diabetes-matched control patients with non-functioning pituitary adenoma (0.62 ± 0.23 vs. 0.75 ± 0.35, respectively, P = 0.047). In addition, telomere length in acromegaly was negatively correlated with the disease duration (R 2 = 0.210, P = 0.003). In vitro analysis revealed that not GH but IGF-I induced telomere shortening in human skin fibroblasts. Furthermore, IGF-I-treated cells showed increased senescence-associated β-galactosidase activity and expression of p53 and p21 protein. IGF-I-treated cells reached the Hayflick limit earlier than GH- or vehicle-treated cells, indicating that IGF-I induces cellular senescence.

Conclusion

Shortened telomeres in acromegaly and cellular senescence induced by IGF-I can explain, in part, the underlying mechanisms by which acromegaly exhibits an increased morbidity and mortality in association with the excess secretion of IGF-I.  相似文献   

17.

Purpose

Both telomere length and mitochondrial function are accepted as reflective indices of aging. Recent studies have shown that telomere dysfunction may influence impaired mitochondrial biogenesis and function. However, there has been no study regarding the possible association between telomere and mitochondrial function in humans. Therefore, the purpose of the study was to identify any relationships between mitochondrial and telomere function.

Methods

The present study included 129 community-dwelling, elderly women. The leukocyte mitochondrial DNA copy number and telomere length were measured using a quantitative real-time polymerase chain reaction method. Anthropometric measurement, biochemical blood testing, a depression screening questionnaire using a 15-question geriatric depression scale (GDS-15), and a cognitive function test using the Korean version of the mini mental state examination (K-MMSE) were performed.

Results

Leukocyte mtDNA copy number was positively associated with telomere length (r=0.39, p=<0.0001) and K-MMSE score (r=0.06, p=0.02). Additionally, leukocyte mtDNA copy number was negatively correlated with GDS-15 score (r=-0.17, p=0.04). Age (r=-0.15, p=0.09), waist circumference (r=-0.16, p=0.07), and serum ferritin level (r=-0.13, p=0.07) tended to be inversely correlated with leukocyte mtDNA copy number. With a stepwise multiple regression analysis, telomere length was found to be an independent factor associated with leukocyte mtDNA copy number after adjustment for confounding variables including age, body mass index, waist circumference, total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, hs-CRP, serum ferritin, HOMA-IR, K-MMSE, GDS-15, hypertension, diabetes, dyslipidemia, currently smoking, alcohol drinking, and regular exercise.

Conclusions

This study showed that leukocyte mtDNA copy number was positively correlated with leukocyte telomere length in community-dwelling elderly women. Our findings suggest that telomere function may influence mitochondrial function in humans.  相似文献   

18.

Background

Telomere length is considered as a biomarker of aging, stress, cancer. It has been associated with many chronic diseases such as hypertension and diabetes. Although, telomere shortening due to ionizing radiation has been reported in vitro, no in vivo data is available on natural background radiation and its effect on telomere length.

Methodology/Principal Findings

The present investigation is an attempt to determine the telomere length among human adults residing in high level natural radiation areas (HLNRA) and the adjacent normal level radiation areas (NLNRA) of Kerala coast in Southwest India. Genomic DNA was isolated from the peripheral blood mononuclear cells of 310 individuals (HLNRA: N = 233 and NLNRA: N = 77). Telomere length was determined using real time q-PCR. Both telomere (T) and single copy gene (S) specific primers were used to calculate the relative T/S and expressed as the relative telomere length. The telomere length was determined to be 1.22±0.15, 1.12±0.15, 1.08±0.08, 1.12±0.11, respectively, among the four dose groups (≤1.50, 1.51–3.00, 3.01–5.00 and >5.00 mGy per year), which did not show any dose response. The results suggested that the high level natural chronic radiation did not have significant effect on telomere length among young adult population living in HLNRA, which is indicative of better repair of telomeric ends. No significant difference in telomere length was observed between male and female individuals. In the present investigation, although the determination of telomere length was studied among the adults with an age group between 18 to 40 years (mean maternal age: 26.10±4.49), a negative correlation was observed with respect to age. However, inter-individual variation was (0.81–1.68) was clearly observed.

Conclusions/Significance

In this preliminary investigation, we conclude that elevated level of natural background radiation has no significant effect on telomere length among the adult population residing in HLNRAs of Kerala coast. To our knowledge, this is the first report from HLNRAs of the world where telomere length was determined on human adults. However, more samples from each background dose group and samples from older population need to be studied to derive firm conclusions.  相似文献   

19.
Coats plus (CP) is a rare autosomal recessive disorder caused by mutations in CTC1, a component of the CST (CTC1, STN1, and TEN1) complex important for telomere length maintenance. The molecular basis of how CP mutations impact upon telomere length remains unclear. The CP CTC1L1142H mutation has been previously shown to disrupt telomere maintenance. In this study, we used CRISPR/Cas9 to engineer this mutation into both alleles of HCT116 and RPE cells to demonstrate that CTC1:STN1 interaction is required to repress telomerase activity. CTC1L1142H interacts poorly with STN1, leading to telomerase‐mediated telomere elongation. Impaired interaction between CTC1L1142H:STN1 and DNA Pol‐α results in increased telomerase recruitment to telomeres and further telomere elongation, revealing that C:S binding to DNA Pol‐α is required to fully repress telomerase activity. CP CTC1 mutants that fail to interact with DNA Pol‐α resulted in loss of C‐strand maintenance and catastrophic telomere shortening. Our findings place the CST complex as an important regulator of both G‐strand extensions by telomerase and C‐strand synthesis by DNA Pol‐α.  相似文献   

20.
Epirubicin exerts its anti cancer action by blocking DNA/RNA synthesis and inhibition of topoisomerase-II enzyme. Recent reports on its influence on telomere maintenance, suggest interaction with G-quadruplex DNA leading to multiple strategies of action. The binding of epirubicin with parallel stranded inter molecular G-quadruplex DNA [d-(TTAGGGT)]4 comprising human telomeric DNA sequence TTAGGG was investigated by absorption, fluorescence, circular dichroism and nuclear magnetic resonance spectroscopy. The epirubicin binds as monomer to G-quadruplex DNA with affinity, Kb1 = 3.8 × 106 M−1 and Kb2 = 2.7 × 106 M−1, at two independent sites externally. The specific interactions induce thermal stabilization of DNA by 13.2–26.3 °C, which is likely to come in the way of telomere association with telomerase enzyme and contribute to epirubicin-induced apoptosis in cancer cell lines. The findings pave the way for drug designing in view of the possibility of altering substituent groups on anthracyclines to enhance efficacy using alternate mechanism of its interaction with G4 DNA, causing interference in telomere maintenance pathway by inducing telomere dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号