首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
膨胀素——一个引人注目的细胞壁松弛酶候选者   总被引:3,自引:0,他引:3  
植物的生长是植物生理学中一个最基本且重要的问题。细胞膨胀生长(扩大和伸长)的前提是使细胞壁松弛和不可逆伸展。生物物理和生物化学分析表明,细胞壁衬质是控制细胞壁生长的最重要的因素[4]。目前,人们普遍认为,衬质多糖作为“链”(tether),把纤维素微纤丝结合在一起[9];或作为“填补物”(filler),防止微纤丝聚集[15,22,30]。并进一步认为,细胞壁松弛的机理是衬质多糖被水解断裂[1,9,13,14]。据报道,多种修饰酶(如葡聚糖酶[1,9,19]、葡萄糖苷酶[19,27]、半乳糖苷酶[17,31]、果胶甲酯酶[11]、IAA氧化酶[2]、过氧…  相似文献   

2.
一种植物细胞壁松驰蛋白:膨胀素   总被引:5,自引:0,他引:5  
在植物细胞的生长过程中 ,多糖和蛋白质分泌到细胞壁里层 ,并形成具有一定机械强度的网络 ,这个网络是能伸展的 ,除非细胞停止生长。在细胞的生长过程中 ,一种细胞壁蛋白—膨胀素首次被鉴定出来具有使细胞壁的多糖网络疏松的能力 ,从而使膨压驱动的细胞扩大。膨胀素由两个多基因家族即α -膨胀素和 β -膨胀素多基因家族编码 ,每种基因的表达具有部位和细胞类型的特异性 ,但最新的研究也表明拟南芥中的膨胀素可以分为三个亚家族。越来越多的膨胀素基因从各种植物中鉴定出来 ,系统分析显示它们可能从一个共同的祖先基因进化而来。膨胀素的作用机理研究的还不是很清楚 ,但因为它们具有特别的功能 ,因此展现出良好的工业化应用前景。  相似文献   

3.
植物细胞壁松弛因子   总被引:2,自引:0,他引:2  
植物细胞壁的松弛是细胞伸长必需的一个生理过程,发生于植物生长发育的各个阶段。研究发现参与细胞壁松弛的因子有多种,主要包括膨胀素(expansin)、木葡聚糖内转糖苷酶/水解酶(XTH)、糖基水解酶和羟基自由基(·OH)四大类。本文主要对这些细胞壁松弛因子的结构特征、作用机制及其在植物生理过程中的作用等方面的研究进展进行综述。  相似文献   

4.
膨胀素是一类具有非水解活性的细胞壁松弛蛋白,参与植物生长发育过程中细胞壁的修饰。大多数植物中都发现有膨胀素基因家族成员存在,其功能涉及植物生长发育的各个方面,包括营养生长、形态发生、受精授粉、果实成熟等,并表现出高度的组织、器官和细胞特异性。本文综述膨胀素在种子萌发、叶的发育、根茎生长、花的发育等生长发育过程中的作用。  相似文献   

5.
Expansin(细胞壁松弛蛋白)的发展   总被引:6,自引:0,他引:6  
Expansin是一种体外诱导分离的植物细胞壁伸展的蛋白,在修饰细胞壁基础上使细胞膨胀。Expansin的功能众多,除了促进细胞生长,还包括影响营养生长、形态发生、授粉受精、果实软化等,并表现出高度的组织、器官和细胞特异性。目前已经在多种植物及其他一些生物范围内对expansin及类expansin序列和蛋白质进行了研究,并对它们的作用机制进行了探索。  相似文献   

6.
膨胀素是植物细胞生长期间释放的一种能使细胞壁松弛的蛋白质,是细胞壁伸展的关键调节剂,对细胞生长有重要作用。膨胀素由庞大的基因家族编码,分为α-、β-、γ-和δ-膨胀素。膨胀素有多种功能,研究它对搞清生长机制有着重要的意义。  相似文献   

7.
植物细胞壁寡糖素的生理功能   总被引:2,自引:0,他引:2  
植物细胞壁可分泌各种寡糖信息分子,称为寡糖素。它们对植物的抗性、生长速度、形态发生等方面有一定的调控作用。说明细胞壁是一个具有广泛生理活性的构造。  相似文献   

8.
奇妙的植物细胞壁扩展素   总被引:2,自引:0,他引:2  
通常,在植物茎或根顶端分生组织后面的细胞,可进行 1— 3个数量级的扩展或生长,这种扩展主要是指细胞壁和液泡的扩展。那么植物细胞的细胞壁为什么会发生扩展呢 ?植物生理学家曾为此做过大量的研究工作,最近发现了一种能使植物细胞壁扩展的奇妙物质,即扩展素 (Expansin)  早在 20世纪 70年代初期,有人曾提出一个假说,即生长中的植物组织细胞,在酸性条件下的扩展或生长速度将大大超过中性条件。由此可以设想,生长激素可通过把质子泵入细胞壁而诱导生长。该论点认为细胞壁酸碱值 (pH)的减小可激活一种或多种细胞壁松驰酶,从而使…  相似文献   

9.
植物激素在植物细胞壁扩展中的作用   总被引:3,自引:0,他引:3  
细胞壁不仅是植物细胞结构的重要组成部分,而且控制着细胞的大小、形状和生长。细胞经有丝分裂后,原生质体吸水膨胀,细胞壁重塑,新生壁物质合成,纤维素定向沉积等引发细胞壁生长。在这些过程中,乙烯(ethylene,ET)、生长素(auxin)、赤霉素(gibberellin,GA)、油菜素甾醇(brassinosteroids,BR)等植物激素调控细胞壁生长相关酶类如纤维素合酶复合体(cellulose synthase A,CESA)、扩展素(expansin,EXP)、木葡聚糖内糖基转移酶/水解酶(xyloglucan endotran glucosylase/hydrolase,XET/XTH)的表达活性,进而调控细胞壁扩展,促使细胞壁的生长。  相似文献   

10.
植物细胞壁研究进展   总被引:7,自引:0,他引:7  
植物细胞壁是一种复杂的网状结构,其成分包含纤维素、半纤维素、果胶和少量的结构蛋白等。在植物细胞生长过程中,细胞能产生伸展素蛋白,打断纤维素和半纤维素之间的氢键,引起细胞膨压驱动的细胞壁扩张。成熟细胞壁扩张性的丧失是由于细胞壁硬化作用而对扩张性蛋白的作用不敏感造成的,细胞壁成熟过程中很多不同的连接会同时发生,当细胞壁基质多聚体分子之间的连接增加到一定的程度。细胞壁的伸长就会被完全抑制。  相似文献   

11.
Expanisns     
Biochemical dissection of the “acid-growth” process of plant cell walls led to the isolation of a new class of wall loosening proteins, called expansins. These proteins affect the rheology of growing walls by permitting the microfibril-matrix network to slide, thereby enabling the wall to expand. Molecular sequence analysis suggests that expansins might have a cryptic glycosyl transferase activity, but biochemical results suggest that expansins disrupt noncovalent bonding between microfibrils and the matrix. Recent discoveries of a new expansin family and gene expression in fruit, meristerms and cotton fibers have enlarged our view of the developmental functions of this group of wall loosening proteins.  相似文献   

12.
Expansin的研究进展   总被引:8,自引:0,他引:8  
随着对植物生长机制的不断深入研究,发现expansin蛋白具明显而广泛的促进生长的作用。简述了expansin蛋白的生化特性及其对细胞壁的松弛机制,同时介绍了expansin在水稻中的组织定位。  相似文献   

13.
Stem Elongation and Cell Wall Proteins in Flowering Plants   总被引:5,自引:0,他引:5  
Abstract: The growth of stems (hypocotyls, epicotyls) and stem-like organs (coleoptiles) in developing seedlings is largely due to the elongation of cells in the sub-apical region of the corresponding organ. According to the organismal concept of plant development, the thick outer epidermal wall, which can be traced back to the peripheral cell wall of the zygote, creates a sturdy organ sheath that determines the rate of stem elongation. The cells of the inner tissues are the products of secondary partitioning of one large protoplast; these turgid, thin-walled cells provide the driving force for organ growth. The structural differences between these types of cell walls are described (outer walls: thick, sturdy, helicoidal cellulose architecture; inner walls: thin, extensible, transversely-oriented cellulose microfibrils). On the basis of these facts, current models of cell wall loosening (and wall stiffening) are discussed with special reference to the expansin, enzymatic polymer remodelling and osmiophilic particle hypothesis. It is concluded that the exact biochemical mechanism(s) responsible for the coordinated yielding of the growth-controlling peripheral organ wall(s) have not yet been identified.  相似文献   

14.
Abstract: Subsequent to inversion, horizontally pre-gravistim-ulated coleoptiles exhibit an increased gravicurvature capacity as compared to vertically pre-gravistimulated and subsequently horizontally gravistimulated coleoptiles. This indicates that gravistimulated inhibition of growth of the upper organ flank during gravicurvature is mediated wo the retention of wall loos ening potential. After inversion, this potential contributes to en hanced cell extension on the then physiologically lower side.  相似文献   

15.
细胞壁作为植物细胞重要的组成部分,在决定细胞形状、维持机械支撑、吸收养分等方面发挥重要功能.因此,揭示植物细胞壁合成的调控机制具有重大的生物学意义.基于植物组织水平研究细胞壁的生物合成具有难以控制时间尺度、观察空间狭小等局限性.原生质体作为去除细胞壁的单个细胞是研究细胞壁再生的理想系统.在过去的几十年里报道了大量关于植...  相似文献   

16.
细胞壁在细胞极性建立和胚胎发生中的作用   总被引:1,自引:0,他引:1  
植物细胞壁是一个活性的动态结构,其结构层次与组分随着发育进程而发生变化,且广泛参与细胞的各项生命活动,特别是在参与细胞命运决定、充当细胞发育信使、调控植物胚胎早期极性建立以及模式建成等方面发挥重要作用。  相似文献   

17.
Daniel J. Cosgrove 《Planta》1987,171(2):266-278
This study was carried out to develop improved methods for measuring in-vivo stress relaxation of growing tissues and to compare relaxation in the stems of four different species. When water uptake by growing tissue is prevented, in-vivo stress relaxation occurs because continued wall loosening reduces wall stress and cell turgor pressure. With this procedure one may measure the yield threshold for growth (Y), the turgor pressure in excess of the yield threshold (P-Y), and the physiological wall extensibility (). Three relaxation techniques proved useful: turgor-relaxation, balance-pressure and pressure-block. In the turgor-relaxation method, water is withheld from growing tissue and the reduction in turgor is measured directly with the pressure probe. This technique give absolute values for P and Y, but requires tissue excision. In the balance-pressure technique, the excised growing region is sealed in a pressure chamber, and the subsequent reduction in water potential is measured as the applied pressure needed to return xylem sap to the cut surface. This method is simple, but only measures (P-Y) not the individual values of P and Y. In the pressure-block technique, the growing tissue is sealed into a pressure chamber, growth is monitored continuously, and just sufficient pressure is applied to the chamber to block growth. The method gives high-resolution kinetics of relaxation and does not require tissue excision, but only measures (P-Y).The three methods gave similar results when applied to the growing stems of pea (Pisum sativum L.), cucumber (Cucumis sativus L.), soybean (Glycine max (L.) Merr.) and zucchini (Curcubita pepo L.) seedlings. Values for (P-Y) averaged between 1.4 and 2.7 bar, depending on species. Yield thresholds averaged between 1.3 and 3.0 bar. Compared with the other methods, relaxation by pressure-block was faster and exhibited dynamic changes in wall-yielding properties. The two pressure-chamber methods were also used to measure the internal water-potential gradient (between the xylem and the epidermis) which drives water uptake for growth. For the four species it was small, between 0.3 and 0.6 bar, and so did not limit growth substantially.Symbols L tissue hydraulic conductance - P cell turgor pressure - Y wall yield threshold - volumetric elastic modulus - physiological wall extensibility  相似文献   

18.
细胞壁在植物胚胎发生中的作用   总被引:4,自引:0,他引:4  
在植物的生长与发育过程中,细胞壁不仅在决定和维持细胞形态方面发挥了重要作用,而且还参与了对细胞生长与分化的调控,这种调控涉及一些细胞壁信号分子,尤其是一些细胞壁水解产物在细胞内和细胞间的转导。现对细胞壁在植物胚胎发生中的作用进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号