共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
SR蛋白家族在RNA剪接中的调控作用 总被引:1,自引:0,他引:1
SR蛋白家族成员都具有一个富含丝氨酸/精氨酸(S/R)重复序列的RS结构域,在RNA剪接体的组装和选择性剪接的调控过程中具有重要的作用。绝大多数SR蛋白是生存的必需因子,通过其RS结构域和特有的其他结构域,实现与前体mRNA的特异性序列或其他剪接因子的相互作用,协同完成剪接位点的正确选择或促进剪接体的形成。深入研究SR蛋白家族在RNA选择性剪接中的调控机制,可以促进以疾病治疗或害虫防治为目的的应用研究。该文总结了SR蛋白家族在基础研究和应用方面的进展。 相似文献
3.
SR and SR-related proteins have been implicated as trans-acting factors that play an important role in splice selection and are involved at specific stages of spliceosome formation. A well-established property of SR protein splicing factors is their ability to influence selection of alternative splice sites in a concentration-dependent manner. Identification of molecules that regulate SR family protein expression is therefore of vital importance in RNA biology. Here we report that depletion of Pnn expression, a SR-related protein with functions involved in pre-mRNA splicing and mRNA export, induces reduced expression of a subset of cellular proteins, especially that of SR family proteins, including SC35, SRm300, SRp55, and SRp40, but not that of other nuclear proteins, such as p53, Mdm2, and ki67. Knocking down Pnn expression was achieved in vitro by siRNA transfection. Expression levels of SR and SR-related proteins in Pnn-depleted cells as compared to those in control cells were evaluated by immunofluorescent staining and Western blot with specific antibodies. In addition, we also demonstrate that loss of Pnn expression could modulate splice site selection of model reporter gene in vivo. Our finding is significant in terms of regulation of SR protein cellular concentration because it reveals that Pnn may play a general role in the control of the cellular amount of family SR proteins through down-regulation of its own expression, thereby providing us with a better understanding of the cellular mechanism by which Pnn fulfills its biological function. 相似文献
4.
5.
Bioinformatics analysis of alternative splicing 总被引:5,自引:0,他引:5
Over the past few years, the analysis of alternative splicing using bioinformatics has emerged as an important new field, and has significantly changed our view of genome function. One exciting front has been the analysis of microarray data to measure alternative splicing genome-wide. Pioneering studies of both human and mouse data have produced algorithms for discerning evidence of alternative splicing and clustering genes and samples by their alternative splicing patterns. Moreover, these data indicate the presence of alternative splice forms in up to 80 per cent of human genes. Comparative genomics studies in both mammals and insects have demonstrated that alternative splicing can in some cases be predicted directly from comparisons of genome sequences, based on heightened sequence conservation and exon length. Such studies have also provided new insights into the connection between alternative splicing and a variety of evolutionary processes such as Alu-based exonisation, exon creation and loss. A number of groups have used a combination of bioinformatics, comparative genomics and experimental validation to identify new motifs for splice regulatory factors, analyse the balance of factors that regulate alternative splicing, and propose a new mechanism for regulation based on the interaction of alternative splicing and nonsense-mediated decay. Bioinformatics studies of the functional impact of alternative splicing have revealed a wide range of regulatory mechanisms, from NAGNAG sites that add a single amino acid; to short peptide segments that can play surprisingly complex roles in switching protein conformation and function (as in the Piccolo C2A domain); to events that entirely remove a specific protein interaction domain or membrane anchoring domain. Common to many bioinformatics studies is a new emphasis on graph representations of alternative splicing structures, which have many advantages for analysis. 相似文献
6.
Although the muscleblind (MBNL) protein family has been implicated in myotonic dystrophy (DM), a specific function for these proteins has not been reported. A key feature of the RNA-mediated pathogenesis model for DM is the disrupted splicing of specific pre-mRNA targets. Here we demonstrate that MBNL proteins regulate alternative splicing of two pre-mRNAs that are misregulated in DM, cardiac troponin T (cTNT) and insulin receptor (IR). Alternative cTNT and IR exons are also regulated by CELF proteins, which were previously implicated in DM pathogenesis. MBNL proteins promote opposite splicing patterns for cTNT and IR alternative exons, both of which are antagonized by CELF proteins. CELF- and MBNL-binding sites are distinct and regulation by MBNL does not require the CELF-binding site. The results are consistent with a mechanism for DM pathogenesis in which expanded repeats cause a loss of MBNL and/or gain of CELF activities, leading to misregulation of alternative splicing of specific pre-mRNA targets. 相似文献
7.
8.
9.
mRNA的可变剪接(alternative splicing)是一种由一个mRNA前体(pre-mRNA)通过不同的剪接方式产生多个mRNA变异体(variants)的RNA加工过程。在过去很长一段时间里,人们认为mRNA剪接过程是独立于转录过程的一个转录后RNA加工过程。然而,越来越多的实验证明mRNA剪接在很大程度上是与转录偶联发生的。因此,剪接调控会受到与转录相关因素的调控。本文将对染色质与mRNA剪接调控的相关性和染色质结构调控可变剪接的分子机制进行阐述。 相似文献
10.
11.
Steffen Erkelenz William F. Mueller Melanie S. Evans Anke Busch Katrin Sch?neweis Klemens J. Hertel Heiner Schaal 《RNA (New York, N.Y.)》2013,19(1):96-102
Alternative splicing is regulated by splicing factors that modulate splice site selection. In some cases, however, splicing factors show antagonistic activities by either activating or repressing splicing. Here, we show that these opposing outcomes are based on their binding location relative to regulated 5′ splice sites. SR proteins enhance splicing only when they are recruited to the exon. However, they interfere with splicing by simply relocating them to the opposite intronic side of the splice site. hnRNP splicing factors display analogous opposing activities, but in a reversed position dependence. Activation by SR or hnRNP proteins increases splice site recognition at the earliest steps of exon definition, whereas splicing repression promotes the assembly of nonproductive complexes that arrest spliceosome assembly prior to splice site pairing. Thus, SR and hnRNP splicing factors exploit similar mechanisms to positively or negatively influence splice site selection. 相似文献
12.
Densin is a member of the leucine-rich repeat (LRR) and PDZ domain (LAP) protein family that binds several signaling molecules via its C-terminal domains, including calcium/calmodulin-dependent protein kinase II (CaMKII). In this study, we identify several novel mRNA splice variants of densin that are differentially expressed during development. The novel variants share the LRR domain but are either prematurely truncated or contain internal deletions relative to mature variants of the protein (180 kDa), thus removing key protein–protein interaction domains. For example, CaMKIIα coimmunoprecipitates with densin splice variants containing an intact C-terminal domain from lysates of transfected HEK293 cells, but not with variants that only contain N-terminal domains. Immunoblot analyses using antibodies to peptide epitopes in the N- and C- terminal domains of densin are consistent with developmental regulation of splice variant expression in brain. Moreover, putative splice variants display different subcellular fractionation patterns in brain extracts. Expression of green fluorescent protein (GFP)-fused densin splice variants in HEK293 cells shows that the LRR domain can target densin to a plasma membrane-associated compartment, but that the splice variants are differentially localized and have potentially distinct effects on cell morphology. In combination, these data show that densin splice variants have distinct functional characteristics suggesting multiple roles during neuronal development. 相似文献
13.
14.
15.
16.
17.
18.
19.
J. Ramón Tejedor Hagen Tilgner Camilla Iannone Roderic Guigó Juan Valcárcel 《RNA (New York, N.Y.)》2015,21(6):1187-1202
The OLR1 gene encodes the oxidized low-density lipoprotein receptor (LOX-1), which is responsible for the cellular uptake of oxidized LDL (Ox-LDL), foam cell formation in atheroma plaques and atherosclerotic plaque rupture. Alternative splicing (AS) of OLR1 exon 5 generates two protein isoforms with antagonistic functions in Ox-LDL uptake. Previous work identified six single nucleotide polymorphisms (SNPs) in linkage disequilibrium that influence the inclusion levels of OLR1 exon 5 and correlate with the risk of cardiovascular disease. Here we use minigenes to recapitulate the effects of two allelic series (Low- and High-Risk) on OLR1 AS and identify one SNP in intron 4 (rs3736234) as the main contributor to the differences in exon 5 inclusion, while the other SNPs in the allelic series attenuate the drastic effects of this key SNP. Bioinformatic, proteomic, mutational and functional high-throughput analyses allowed us to define regulatory sequence motifs and identify SR protein family members (SRSF1, SRSF2) and HMGA1 as factors involved in the regulation of OLR1 AS. Our results suggest that antagonism between SRSF1 and SRSF2/HMGA1, and differential recognition of their regulatory motifs depending on the identity of the rs3736234 polymorphism, influence OLR1 exon 5 inclusion and the efficiency of Ox-LDL uptake, with potential implications for atherosclerosis and coronary disease. 相似文献
20.
M. Cecília Almadanim Nuno M. Gonçalves Margarida T.G. Rosa Bruno M. Alexandre André M. Cordeiro Mafalda Rodrigues Nelson J.M. Saibo Cláudio M. Soares Célia V. Romão M. Margarida Oliveira Isabel A. Abreu 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2018,1865(2):231-246
Plant calcium-dependent protein kinases (CDPKs) are key proteins implicated in calcium-mediated signaling pathways of a wide range of biological events in the organism. The action of each particular CDPK is strictly regulated by many mechanisms in order to ensure an accurate signal translation and the activation of the adequate response processes. In this work, we investigated the regulation of a CDPK involved in rice cold stress response, OsCPK17, to better understand its mode of action. We identified two new alternative splicing (AS) mRNA forms of OsCPK17 encoding truncated versions of the protein, missing the CDPK activation domain. We analyzed the expression patterns of all AS variants in rice tissues and examined their subcellular localization in onion epidermal cells. The results indicate that the AS of OsCPK17 putatively originates truncated forms of the protein with distinct functions, and different subcellular and tissue distributions. Additionally, we addressed the regulation of OsCPK17 by post-translational modifications in several in vitro experiments. Our analysis indicated that OsCPK17 activity depends on its structural rearrangement induced by calcium binding, and that the protein can be autophosphorylated. The identified phosphorylation sites mostly populate the OsCPK17 N-terminal domain. Exceptions are phosphosites T107 and S136 in the kinase domain and S558 in the C-terminal domain. These phosphosites seem conserved in CDPKs and may reflect a common regulatory mechanism for this protein family. 相似文献