首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant vacuolar proton pump can be subjected to reversible redox regulation in vitro. The redox-dependent activity change involves disulfide bridge formation not only in Vatp A, as reported for bovine V-ATPase, but also in the stalk subunit Vatp E. Microsomal membranes isolated from barley leaves were analysed for their activity of bafilomycin-sensitive ATP hydrolysis and proton pumping using quinacrine fluorescence quenching in vesicle preparations. ATP hydrolysis and proton pumping activity were inhibited by H2O2. H2O2-deactivated ATPase was reactivated by cysteine and glutathione. The glutathione concentration needed for half maximal reactivation was 1 mmol l-1. The activity loss was accompanied by shifts in electrophoretic mobility of Vatp A and E which were reversed upon reductive reactivation. The redox-dependent shift was also seen with recombinant Vatp E, and was absent following site-directed mutagenesis of either of the two cys residues conserved throughout all plant Vatp E sequences. V-ATPase was also inhibited by oxidized thioredoxin. These results support the hypothesis that tuning of vacuolar ATPase activity can be mediated by redox control depending on the metabolic requirements.  相似文献   

2.
Vacuolar H(+)-ATPases (V-ATPases) are highly conserved proton pumps that couple hydrolysis of cytosolic ATP to proton transport out of the cytosol. Although it is generally believed that V-ATPases transport protons by a rotary catalytic mechanism analogous to that used by F(1)F(0)-ATPases, the structure and subunit composition of the central or peripheral stalk of the multisubunit complex are not well understood. We searched for proteins that bind to the E subunit of V-ATPase using the yeast two-hybrid assay and identified the H subunit as an interacting partner. Physical association between the E and H subunits of V-ATPase was confirmed in vitro by precipitation assays. Deletion mapping analysis revealed that a 78-amino acid fragment at the amino terminus of the E subunit was sufficient for binding to the H subunit. Expression of the amino-terminal fragments of the E subunits from human and yeast as dominant-negative mutants resulted in dramatic decreases in bafilomycin A(1)-sensitive ATP hydrolysis and proton transport activities of V-ATPase. Our data demonstrate the physiological significance of the interaction between the E and H subunits of V-ATPase and extend previous studies on the arrangement of subunits on the peripheral stalk of V-ATPase.  相似文献   

3.
Arata Y  Baleja JD  Forgac M 《Biochemistry》2002,41(37):11301-11307
Using a combination of cysteine mutagenesis and covalent cross-linking, we have identified subunits in close proximity to specific sites within subunit B of the vacuolar (H(+))-ATPase (V-ATPase) of yeast. Unique cysteine residues were introduced into subunit B by site-directed mutagenesis, and the resultant V-ATPase complexes were reacted with the bifunctional, photoactivatable maleimide reagent 4-(N-maleimido)benzophenone (MBP) followed by irradiation. Cross-linked products were identified by Western blot using subunit-specific antibodies. Introduction of cysteine residues at positions Glu(106) and Asp(199) led to cross-linking of subunits B and E, at positions Asp(341) and Ala(424) to cross-linking of subunits B and D, and at positions Ala(15) and Lys(45) to cross-linking of subunits B and G. Using a molecular model of subunit B constructed on the basis of sequence homology between the V- and F-ATPases, the X-ray coordinates of the F(1)-ATPase, and energy minimization, Glu(106), Asp(199), Ala(15), and Lys(45) are all predicted to be located on the outer surface of the complex, with Ala(15) and Lys(45) located near the top of the complex furthest from the membrane. By contrast, Asp(341) and Ala(424) are predicted to face the interior of the A(3)B(3) hexamer. These results suggest that subunits E and G form part of a peripheral stalk connecting the V(1) and V(0) domains whereas subunit D forms part of a central stalk. Subunit D is thus the most likely homologue to the gamma subunit of F(1), which undergoes rotation during ATP hydrolysis and serves an essential function in rotary catalysis.  相似文献   

4.
Kinesin was extensively purified from bovine brain cytosol by a microtubule-binding step in the presence of 5'-adenylyl imidodiphosphate (AMP-PNP), followed by gel filtration chromatography and sucrose gradient ultracentrifugation. The products consistently contained 124,000 (124K) and 64,000 (64K) dalton polypeptides. These two polypeptides appear to represent heavy and light chains of kinesin, respectively, because they copurified on sucrose gradients to a constant and equimolar stoichiometry and bound stably to microtubules in the presence of AMP-PNP but not ATP. The mobilities of 124K and 64K in sodium dodecyl sulfate-polyacrylamide gels under reducing conditions were the same as under nonreducing conditions. A diffusion coefficient of (2.24 +/- 0.21) X 10(-7) cm2 s-1 and a sedimentation coefficient of (9.56 +/- 0.34) X 10(-13) s were determined for native kinesin by gel filtration and sucrose gradient ultracentrifugation, respectively. These values were used to calculate a native molecular weight of about 379,000 and suggest that kinesin has an axial ratio of approximately 20. Extensively purified kinesin exhibited microtubule-activated ATPase activity, and only the 124K subunit incorporated ATP in photoaffinity labeling experiments using [32P]ATP. Collectively, these data favor the interpretation that bovine brain kinesin is a highly elongated, microtubule-activated ATPase comprising two subunits each of 124,000 and 64,000 daltons, that the subunits are not linked to one another by disulfide bonds, and that the heavy chains are the ATP-binding subunits.  相似文献   

5.
ATP synthase consists of two portions, F(1) and F(o), connected by two stalks: a central rotor stalk containing gamma and epsilon subunits and a peripheral, second stalk formed by delta and two copies of F(o)b subunits. The second stalk is expected to keep the stator subunits from spinning along with the rotor. We isolated a TF(1)-b'(2) complex (alpha(3)beta(3)gammadeltaepsilonb'(2)) of a thermophilic Bacillus PS3, in which b' was a truncated cytoplasmic fragment of F(o)b subunit, and introduced a cysteine at its N terminus (bc'). Association of b'(2) or bc'(2) with TF(1) did not have significant effect on ATPase activity. A disulfide bond between the introduced cysteine of bc' and cysteine 109 of gamma subunit was readily formed, and this cross-link caused inactivation of ATPase. This implies that F(o)b subunit bound to stator subunits of F(1) with enough strength to resist rotation of gamma subunit and to prevent catalysis. Contrary to this apparent tight binding, some detergents such as lauryldodecylamine oxide tend to cause release of b'(2) from TF(1).  相似文献   

6.
The vacuolar (H+)-ATPases (V-ATPases) are ATP-dependent proton pumps that operate by a rotary mechanism in which ATP hydrolysis drives rotation of a ring of proteolipid subunits relative to subunit a within the integral V(0) domain. In vivo dissociation of the V-ATPase (an important regulatory mechanism) generates a V(0) domain that does not passively conduct protons. EM analysis indicates that the N-terminal domain of subunit a approaches the rotary subunits in free V(0), suggesting a possible mechanism of silencing passive proton transport. To test the hypothesis that the N-terminal domain inhibits passive proton flux by preventing rotation of the proteolipid ring in free V(0), factor Xa cleavage sites were introduced between the N- and C-terminal domains of subunit a (the Vph1p isoform in yeast) to allow its removal in vitro after isolation of vacuolar membranes. The mutant Vph1p gave rise to a partially uncoupled V-ATPase complex. Cleavage with factor Xa led to further loss of coupling of proton transport and ATP hydrolysis. Removal of the N-terminal domain by cleavage with factor Xa and treatment with KNO3 and MgATP did not, however, lead to an increase in passive proton conductance by free V(0), suggesting that removal of the N-terminal domain is not sufficient to facilitate passive proton conductance through V(0). Photoactivated cross-linking using the cysteine reagent maleimido benzophenone and single cysteine mutants of subunit a demonstrated the proximity of specific sites within the N-terminal domain and subunits E and G of the peripheral stalk. These results suggest that a localized region of the N-terminal domain (residues 347-369) is important in anchoring the peripheral stator in V1V0.  相似文献   

7.
We have employed a combination of site-directed mutagenesis and covalent cross-linking to identify subunits in close proximity to subunit B in the vacuolar H(+)-ATPase (V-ATPase) complex. Unique cysteine residues were introduced into a Cys-less form of subunit B, and the V-ATPase complex in isolated vacuolar membranes from each mutant strain was reacted with the bifunctional, photoactivable maleimide reagent 4-(N-maleimido)benzophenone. Photoactivation resulted in cross-linking of the unique sulfhydryl groups on subunit B with other subunits in the complex. Four of the eight mutants constructed containing a unique cysteine residue at Ala(15), Lys(45), Glu(494), or Thr(501) resulted in the formation of cross-linked products, which were recognized by Western blot analysis using antibodies against both subunits B and E. These products had a molecular mass of 84 kDa, consistent with a cross-linked product of subunits B and E. Molecular modeling of subunit B places Ala(15) and Lys(45) near the top of the V(1) structure (i.e. farthest from the membrane), whereas Glu(494) and Thr(501) are predicted to reside near the bottom of V(1), with all four residues predicted to be oriented toward the external surface of the complex. A model incorporating these and previous data is presented in which subunit E exists in an extended conformation on the outer surface of the A(3)B(3) hexamer that forms the core of the V(1) domain. This location for subunit E suggests that this subunit forms part of the peripheral stalk of the V-ATPase that links the V(1) and V(0) domains.  相似文献   

8.
In the epididymis and vas deferens, the vacuolar H(+)ATPase (V-ATPase), located in the apical pole of narrow and clear cells, is required to establish an acidic luminal pH. Low pH is important for the maturation of sperm and their storage in a quiescent state. The V-ATPase also participates in the acidification of intracellular organelles. The V-ATPase contains many subunits, and several of these subunits have multiple isoforms. So far, only subunits ATP6V1B1, ATP6V1B2, and ATP6V1E2, previously identified as B1, B2, and E subunits, have been described in the rat epididymis. Here, we report the localization of V-ATPase subunit isoforms ATP6V1A, ATP6V1C1, ATP6V1C2, ATP6V1G1, ATP6V1G3, ATP6V0A1, ATP6V0A2, ATP6V0A4, ATP6V0D1, and ATP6V0D2, previously labeled A, C1, C2, G1, G3, a1, a2, a4, d1, and d2, in epithelial cells of the rat epididymis and vas deferens. Narrow and clear cells showed a strong apical staining for all subunits, except the ATP6V0A2 isoform. Subunits ATP6V0A2 and ATP6V1A were detected in intracellular structures closely associated but not identical to the TGN of principal cells and narrow/clear cells, and subunit ATP6V0D1 was strongly expressed in the apical membrane of principal cells in the apparent absence of other V-ATPase subunits. In conclusion, more than one isoform of subunits ATP6V1C, ATP6V1G, ATP6V0A, and ATP6V0D of the V-ATPase are present in the epididymal and vas deferens epithelium. Our results confirm that narrow and clear cells are well fit for active proton secretion. In addition, the diverse functions of the V-ATPase may be established through the utilization of specific subunit isoforms. In principal cells, the ATP6V0D1 isoform may have a physiological function that is distinct from its role in proton transport via the V-ATPase complex.  相似文献   

9.
The subunit architecture of the yeast vacuolar ATPase (V-ATPase) was analyzed by single particle transmission electron microscopy and electrospray ionization (ESI) tandem mass spectrometry. A three-dimensional model of the intact V-ATPase was calculated from two-dimensional projections of the complex at a resolution of 25 angstroms. Images of yeast V-ATPase decorated with monoclonal antibodies against subunits A, E, and G position subunit A within the pseudo-hexagonal arrangement in the V1, the N terminus of subunit G in the V1-V0 interface, and the C terminus of subunit E at the top of the V1 domain. ESI tandem mass spectrometry of yeast V1-ATPase showed that subunits E and G are most easily lost in collision-induced dissociation, consistent with a peripheral location of the subunits. An atomic model of the yeast V-ATPase was generated by fitting of the available x-ray crystal structures into the electron microscopy-derived electron density map. The resulting atomic model of the yeast vacuolar ATPase serves as a framework to help understand the role the peripheral stalk subunits are playing in the regulation of the ATP hydrolysis driven proton pumping activity of the vacuolar ATPase.  相似文献   

10.
Subunit E is a component of the peripheral stalk(s) that couples membrane and peripheral subunits of the V-ATPase complex. In order to elucidate the function of subunit E, site-directed mutations were performed at the amino terminus and carboxyl terminus. Except for S78A and D233A/T202A, which exhibited V(1)V(o) assembly defects, the function of subunit E was resistant to mutations. Most mutations complemented the growth phenotype of vma4Delta mutants, including T6A and D233A, which only had 25% of the wild-type ATPase activity. Residues Ser-78 and Thr-202 were essential for V(1)V(o) assembly and function. The mutation S78A destabilized subunit E and prevented assembly of V(1) subunits at the membranes. Mutant T202A membranes exhibited 2-fold increased V(max) and about 2-fold less of V(1)V(o) assembly; the mutation increased the specific activity of V(1)V(o) by enhancing the k(cat) of the enzyme 4-fold. Reduced levels of V(1)V(o) and V(o) complexes at T202A membranes suggest that the balance between V(1)V(o) and V(o) was not perturbed; instead, cells adjusted the amount of assembled V-ATPase complexes in order to compensate for the enhanced activity. These results indicated communication between subunit E and the catalytic sites at the A(3)B(3) hexamer and suggest potential regulatory roles for the carboxyl end of subunit E. At the carboxyl end, alanine substitution of Asp-233 significantly reduced ATP hydrolysis, although the truncation 229-233Delta and the point mutation K230A did not affect assembly and activity. The implication of these results for the topology and functions of subunit E within the V-ATPase complex are discussed.  相似文献   

11.
Vacuolar-type H(+)-ATPase (V-ATPase or V-type ATPase) is a multisubunit complex comprised of a water-soluble V(1) complex, responsible for ATP hydrolysis, and a membrane-embedded V(o) complex, responsible for proton translocation. The V(1) complex of Thermus thermophilus V-ATPase has the subunit composition of A(3)B(3)DF, in which the A and B subunits form a hexameric ring structure. A central stalk composed of the D and F subunits penetrates the ring. In this study, we investigated the pathway for assembly of the V(1) complex by reconstituting the V(1) complex from the monomeric A and B subunits and DF subcomplex in vitro. Assembly of these components into the V(1) complex required binding of ATP to the A subunit, although hydrolysis of ATP is not necessary. In the absence of the DF subcomplex, the A and B monomers assembled into A(1)B(1) and A(3)B(3) subcomplexes in an ATP binding-dependent manner, suggesting that ATP binding-dependent interaction between the A and B subunits is a crucial step of assembly into V(1) complex. Kinetic analysis of assembly of the A and B monomers into the A(1)B(1) heterodimer using fluorescence resonance energy transfer indicated that the A subunit binds ATP prior to binding the B subunit. Kinetics of binding of a fluorescent ADP analog, N-methylanthraniloyl ADP (mant-ADP), to the monomeric A subunit also supported the rapid nucleotide binding to the A subunit.  相似文献   

12.
The detailed membrane topography and neighboring polypeptides of subunit 8 in yeast mitochondrial ATP synthase have been determined using a combination of cysteine scanning mutagenesis and chemical modification. 46 single cysteine substitution mutants encompassing the length of the subunit 8 protein were constructed by site-directed mutagenesis. Expression of each cysteine variant in yeast lacking endogenous subunit 8 restored respiratory phenotype to cells and had little measurable effect on ATP hydrolase function. The exposure of each introduced cysteine residue to the aqueous environment was assessed in isolated mitochondria using the fluorescent thiol-modifying probe fluorescein 5-maleimide. The first 14 and last 13 amino acids of subunit 8 were accessible to fluorescein 5-maleimide in osmotically lysed mitochondria and are thus extrinsic to the lipid bilayer, indicating a 21-amino acid transmembrane span. The C-terminal region of subunit 8 was partially occluded by other ATP synthase subunits, especially in a small region surrounding Val-40 that was demonstrated to play an important role in maintaining the stability of the F(1)-F(0) interaction. Cross-linking using heterobifunctional reagents revealed the proximity of subunit 8 to subunits b, d, and f in the matrix and to subunits b, f, and 6 in the intermembrane space. A disulfide bridge was also formed between subunit 8(F7C) or (M10C) and residue Cys-23 of subunit 6, demonstrating a close interaction between these two hydrophobic membrane subunits and confirming the location of the N termini of each in the intermembrane space. We conclude that subunit 8 is an integral component of the stator stalk of yeast mitochondrial F(1)F(0)-ATP synthase.  相似文献   

13.
The RAVE complex is required for stable assembly of the yeast vacuolar proton-translocating ATPase (V-ATPase) during both biosynthesis of the enzyme and regulated reassembly of disassembled V(1) and V(0) sectors. It is not yet known how RAVE effects V-ATPase assembly. Previous work has shown that V(1) peripheral or stator stalk subunits E and G are critical for binding of RAVE to cytosolic V(1) complexes, suggesting that RAVE may play a role in docking of the V(1) peripheral stalk to the V(0) complex at the membrane. Here we provide evidence for an interaction between the RAVE complex and V(1) subunit C, another subunit that has been assigned to the peripheral stalk. The C subunit is unique in that it is released from both V(1) and V(0) sectors during disassembly, suggesting that subunit C may control the regulated assembly of the V-ATPase. Mutants lacking subunit C have assembly phenotypes resembling that of RAVE mutants. Both are able to assemble V(1)/V(0) complexes in vivo, but these complexes are highly unstable in vitro, and V-ATPase activity is extremely low. We show that in the absence of the RAVE complex, subunit C is not able to stably assemble with the vacuolar ATPase. Our data support a model where RAVE, through its interaction with subunit C, is facilitating V(1) peripheral stalk subunit interactions with V(0) during V-ATPase assembly.  相似文献   

14.
Two of the distinct diversities of the engines A(1)A(O) ATP synthase and F(1)F(O) ATP synthase are the existence of two peripheral stalks and the 24kDa stalk subunit E inside the A(1)A(O) ATP synthase. Crystallographic structures of subunit E have been determined recently, but the epitope(s) and the strength to which this subunit does bind in the enzyme complex are still a puzzle. Using the recombinant A(3)B(3)D complex and the major subunits A and B of the methanogenic A(1)A(O) ATP synthase in combination with fluorescence correlation spectroscopy (FCS) we demonstrate, that the stalk subunit E does bind to the catalytic headpiece formed by the A(3)B(3) hexamer with an affinity (K(d)) of 6.1±0.2μM. FCS experiments with single A and B, respectively, demonstrated unequivocally that subunit E binds stronger to subunit B (K(d)=18.9±3.7μM) than to the catalytic A subunit (K(d)=53.1±4.4). Based on the crystallographic structures of the three subunits A, B and E available, the arrangement of the peripheral stalk subunit E in the A-B interface has been modeled, shining light into the A-B-E assembly of this enzyme.  相似文献   

15.
The V1Vo-ATPase from Enterococcus hirae catalyzes ATP hydrolysis coupled with sodium translocation. Mutants with deletions of each of 10 subunits (NtpA, B, C, D, E, F, G, H, I, and K) were constructed by insertion of a chloramphenicol acetyltransferase gene into the corresponding subunit gene in the genome. Measurements of cell growth rates, 22Na+ efflux activities, and ATP hydrolysis activities of the membranes of the deletion mutants indicated that V-ATPase requires nine of the subunits, the exception being the NtpH subunit. The results of Western blotting and V1-ATPase dissociation analysis suggested that the A, B, C, D, E, F, and G subunits constitute the V1 moiety, whereas the V0 moiety comprises the I and K subunits.  相似文献   

16.
Drory O  Frolow F  Nelson N 《EMBO reports》2004,5(12):1148-1152
Vacuolar H(+)-ATPase (V-ATPase) has a crucial role in the vacuolar system of eukaryotic cells. It provides most of the energy required for transport systems that utilize the proton-motive force that is generated by ATP hydrolysis. Some, but not all, of the V-ATPase subunits are homologous to those of F-ATPase and the nonhomologous subunits determine the unique features of V-ATPase. We determined the crystal structure of V-ATPase subunit C (Vma5p), which does not show any homology with F-ATPase subunits, at 1.75 A resolution. The structural features suggest that subunit C functions as a flexible stator that holds together the catalytic and membrane sectors of the enzyme. A second crystal form that was solved at 2.9 A resolution supports the flexible nature of subunit C. These structures provide a framework for exploring the unique mechanistic features of V-ATPases.  相似文献   

17.
The vacuolar (H+)-ATPase (or V-ATPase) is a membrane protein complex that is structurally related to F1 and F0 ATP synthases. The V-ATPase is composed of an integral domain (V0) and a peripheral domain (V1) connected by a central stalk and up to three peripheral stalks. The number of peripheral stalks and the proteins that comprise them remain controversial. We have expressed subunits E and G in Escherichia coli as maltose binding protein fusion proteins and detected a specific interaction between these two subunits. This interaction was specific for subunits E and G and was confirmed by co-expression of the subunits from a bicistronic vector. The EG complex was characterized using size exclusion chromatography, cross-linking with short length chemical cross-linkers, circular dichroism spectroscopy, and electron microscopy. The results indicate a tight interaction between subunits E and G and revealed interacting helices in the EG complex with a length of about 220 angstroms. We propose that the V-ATPase EG complex forms one of the peripheral stators similar to the one formed by the two copies of subunit b in F-ATPase.  相似文献   

18.
The gamma-aminobutyric acid, type A (GABAA), receptor ion channel is lined by the second membrane-spanning (M2) segments from each of five homologous subunits that assemble to form the receptor. Gating presumably involves movement of the M2 segments. We assayed protein mobility near the M2 segment extracellular ends by measuring the ability of engineered cysteines to form disulfide bonds and high affinity Zn(2+)-binding sites. Disulfide bonds formed in alpha1beta1E270Cgamma2 but not in alpha1N275Cbeta1gamma2 or alpha1beta1gamma2K285C. Diazepam potentiation and Zn2+ inhibition demonstrated that expressed receptors contained a gamma subunit. Therefore, the disulfide bond in alpha1beta1E270Cgamma2 formed between non-adjacent subunits. In the homologous acetylcholine receptor 4-A resolution structure, the distance between alpha carbon atoms of 20' aligned positions in non-adjacent subunits is approximately 19 A. Because disulfide trapping involves covalent bond formation, it indicates the extent of movement but does not provide an indication of the energetics of protein deformation. Pairs of cysteines can form high affinity Zn(2+)-binding sites whose affinity depends on the energetics of forming a bidentate-binding site. The Zn2+ inhibition IC50 for alpha1beta1E270Cgamma2 was 34 nm. In contrast, it was greater than 100 microM in alpha1N275Cbeta1gamma2 and alpha1beta1gamma2K285C receptors. The high Zn2+ affinity in alpha1beta1E270Cgamma2 implies that this region in the beta subunit has a high protein mobility with a low energy barrier to translational motions that bring the positions into close proximity. The differential mobility of the extracellular ends of the beta and alpha M2 segments may have important implications for GABA-induced conformational changes during channel gating.  相似文献   

19.
The ubiquitous vacuolar H(+)-ATPase (V-ATPase), a multisubunit proton pump, is essential for intraorganellar acidification. Here, we hypothesized that V-ATPase is involved in the pathogenesis of kidney tubulointerstitial fibrosis. We first examined its expression in the rat unilateral ureteral obstruction (UUO) model of kidney fibrosis and transforming growth factor (TGF)-β1-mediated epithelial-to-mesenchymal transition (EMT) in rat proximal tubular epithelial cells (NRK52E). Immunofluorescence experiments showed that UUO resulted in significant upregulation of V-ATPase subunits (B2, E, and c) and α-smooth muscle actin (α-SMA) in areas of tubulointerstitial injury. We further observed that TGF-β1 (10 ng/ml) treatment resulted in EMT of NRK52E (upregulation of α-SMA and downregulation of E-cadherin) in a time-dependent manner and significant upregulation of V-ATPase B2 and c subunits after 48 h and the E subunit after 24 h, by real-time PCR and immunoblot analyses. The ATP hydrolysis activity tested by an ATP/NADH-coupled assay was increased after 48-h TGF-β1 treatment. Using intracellular pH measurements with the SNARF-4F indicator, Na(+)-independent pH recovery was significantly faster after an NH(4)Cl pulse in 48-h TGF-β1-treated cells than controls. Furthermore, the V-ATPase inhibitor bafilomycin A1 partially protected the cells from EMT. TGF-β1 induced an increase in the cell surface expression of the B2 subunit, and small interfering RNA-mediated B2 subunit knockdown partially reduced the V-ATPase activity and attenuated EMT induced by TGF-β1. Together, these findings show that V-ATPase may promote EMT and chronic tubulointerstitial fibrosis due to increasing its activity by either overexpression or redistribution of its subunits.  相似文献   

20.
Subunit A is the catalytic nucleotide binding subunit of the vacuolar proton-translocating ATPase (or V-ATPase) and is homologous to subunit beta of the F(1)F(0) ATP synthase (or F-ATPase). Amino acid sequence alignment of these subunits reveals a 90-amino acid insert in subunit A (termed the non-homologous region) that is absent from subunit beta. To investigate the functional role of this region, site-directed mutagenesis has been performed on the VMA1 gene that encodes subunit A in yeast. Substitutions were performed on 13 amino acid residues within this region that are conserved in all available A subunit sequences. Most of the 18 mutations introduced showed normal assembly of the V-ATPase. Of these, one (R219K) greatly reduced both proton transport and ATPase activity. By contrast, the P217V mutant showed significantly reduced ATPase activity but higher than normal levels of proton transport, suggesting an increase in coupling efficiency. Two other mutations in the same region (P223V and P233V) showed decreased coupling efficiency, suggesting that changes in the non-homologous region can alter coupling of proton transport and ATP hydrolysis. It was previously shown that the V-ATPase must possess at least 5-10% activity relative to wild type to undergo in vivo dissociation in response to glucose withdrawal. However, four of the mutations studied (G150A, D157E, P177V, and P223V) were partially or completely blocked in dissociation despite having greater than 30% of wild type levels of activity. These results suggest that changes in the non-homologous region can also alter in vivo dissociation of the V-ATPase independent of effects on activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号