首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA damage that eludes cellular repair pathways can arrest the replication machinery and stall the cell cycle. However, this damage can be bypassed by the Y-family DNA polymerases. Here, Dpo4, an archetypal Y-family member from the thermophilic Sulfolobus solfataricus, was used to extend our kinetic studies of the bypass of an abasic site, one of the most mutagenic and ubiquitous cellular lesions. A short oligonucleotide sequencing assay is developed to directly sequence DNA bypass products synthesized by Dpo4. Our results show that incorporation upstream of the abasic lesion is replicated error-free; yet dramatically, once Dpo4 encounters the lesion, synthesis became sloppy, with bypass products containing a myriad of mutagenic events. Incorporation of dAMP (29%) and dCMP (53%) opposite the abasic lesion at 37 degrees C correlates exceptionally well with our kinetic results and demonstrates two dominant bypass pathways via the A-rule and the lesion loop-out mechanism. Interestingly, the percentage of overall frameshift mutations increased from 71 (37 degrees C) to 87% (75 degrees C). Further analysis indicates that lesion bypass via the A-rule is strongly preferred over the lesion loop-out mechanism at higher temperatures and concomitantly reduces the occurrence of "-1 deletion" mutations observed opposite the lesion at lower temperatures. The bypass percentage via the latter pathway is confirmed by an enzymatic digestion assay, verifying the reliability of our sequencing assay. Our results demonstrate that an abasic lesion causes Dpo4 and possibly all Y-family members to switch from a normal to a very mutagenic mode of replication.  相似文献   

2.
A major product of oxidative damage to DNA, 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxoG), can lead to genomic mutations if it is bypassed unfaithfully by DNA polymerases in vivo. However, our pre-steady-state kinetic studies show that DNA polymerase IV (Dpo4), a prototype Y-family enzyme from Sulfolobus solfataricus, can bypass 8-oxoG both efficiently and faithfully. For the first time, our stopped-flow FRET studies revealed that a DNA polymerase altered its synchronized global conformational dynamics in response to a DNA lesion. Relative to nucleotide incorporation into undamaged DNA, three of the four domains of Dpo4 undertook different conformational transitions during 8-oxoG bypass and the subsequent extension step. Moreover, the rapid translocation of Dpo4 along DNA induced by nucleotide binding was significantly hindered by the interactions between the embedded 8-oxoG and Dpo4 during the extension step. These results unprecedentedly demonstrate that a Y-family DNA polymerase employs different global conformational dynamics when replicating undamaged and damaged DNA.  相似文献   

3.
As a widely used anticancer drug, cis-diamminedichloroplatinum(II) (cisplatin) reacts with adjacent purine bases in DNA to form predominantly cis-[Pt(NH(3))(2){d(GpG)-N7(1),-N7(2)}] intrastrand cross-links. Drug resistance, one of the major limitations of cisplatin therapy, is partially due to the inherent ability of human Y-family DNA polymerases to perform translesion synthesis in the presence of DNA-distorting damage such as cisplatin-DNA adducts. To better understand the mechanistic basis of translesion synthesis contributing to cisplatin resistance, this study investigated the bypass of a single, site-specifically placed cisplatin-d(GpG) adduct by a model Y-family DNA polymerase, Sulfolobus solfataricus DNA polymerase IV (Dpo4). Dpo4 was able to bypass this double-base lesion, although, the incorporation efficiency of dCTP opposite the first and second cross-linked guanine bases was decreased by 72- and 860-fold, respectively. Moreover, the fidelity at the lesion decreased up to two orders of magnitude. The cisplatin-d(GpG) adduct affected six downstream nucleotide incorporations, but interestingly the fidelity was essentially unaltered. Biphasic kinetic analysis supported a universal kinetic mechanism for the bypass of DNA lesions catalyzed by various translesion DNA polymerases. In conclusion, if human Y-family DNA polymerases adhere to this bypass mechanism, then translesion synthesis by these error-prone enzymes is likely accountable for cisplatin resistance observed in cancer patients.  相似文献   

4.
3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2′-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dGC8-N-ABA is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dGC8-N-ABA on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dGC8-N-ABA lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dGC8-N-ABA lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dGC8-N-ABA bypass catalyzed by Dpo4.  相似文献   

5.
N-(Deoxyguanosin-8-yl)-1-aminopyrene (dG(AP)) is the predominant nitro polyaromatic hydrocarbon product generated from the air pollutant 1-nitropyrene reacting with DNA. Previous studies have shown that dG(AP) induces genetic mutations in bacterial and mammalian cells. One potential source of these mutations is the error-prone bypass of dG(AP) lesions catalyzed by the low-fidelity Y-family DNA polymerases. To provide a comparative analysis of the mutagenic potential of the translesion DNA synthesis (TLS) of dG(AP), we employed short oligonucleotide sequencing assays (SOSAs) with the model Y-family DNA polymerase from Sulfolobus solfataricus, DNA Polymerase IV (Dpo4), and the human Y-family DNA polymerases eta (hPolη), kappa (hPolκ), and iota (hPolι). Relative to undamaged DNA, all four enzymes generated far more mutations (base deletions, insertions, and substitutions) with a DNA template containing a site-specifically placed dG(AP). Opposite dG(AP) and at an immediate downstream template position, the most frequent mutations made by the three human enzymes were base deletions and the most frequent base substitutions were dAs for all enzymes. Based on the SOSA data, Dpo4 was the least error-prone Y-family DNA polymerase among the four enzymes during the TLS of dG(AP). Among the three human Y-family enzymes, hPolκ made the fewest mutations at all template positions except opposite the lesion site. hPolκ was significantly less error-prone than hPolι and hPolη during the extension of dG(AP) bypass products. Interestingly, the most frequent mutations created by hPolι at all template positions were base deletions. Although hRev1, the fourth human Y-family enzyme, could not extend dG(AP) bypass products in our standing start assays, it preferentially incorporated dCTP opposite the bulky lesion. Collectively, these mutagenic profiles suggest that hPolk and hRev1 are the most suitable human Y-family DNA polymerases to perform TLS of dG(AP) in humans.  相似文献   

6.
The hyperthermophilic crenarchaeon Sulfolobus solfataricus P2 encodes three B-family DNA polymerase genes, B1 (Dpo1), B2 (Dpo2), and B3 (Dpo3), and one Y-family DNA polymerase gene, Dpo4, which are related to eukaryotic counterparts. Both mRNAs and proteins of all four DNA polymerases were constitutively expressed in all growth phases. Dpo2 and Dpo3 possessed very low DNA polymerase and 3' to 5' exonuclease activities in vitro. Steady-state kinetic efficiencies (k(cat)/K(m)) for correct nucleotide insertion by Dpo2 and Dpo3 were several orders of magnitude less than Dpo1 and Dpo4. Both the accessory proteins proliferating cell nuclear antigen and the clamp loader replication factor C facilitated DNA synthesis with Dpo3, as with Dpo1 and Dpo4, but very weakly with Dpo2. DNA synthesis by Dpo2 and Dpo3 was remarkably decreased by single-stranded binding protein, in contrast to Dpo1 and Dpo4. DNA synthesis in the presence of proliferating cell nuclear antigen, replication factor C, and single-stranded binding protein was most processive with Dpo1, whereas DNA lesion bypass was most effective with Dpo4. Both Dpo2 and Dpo3, but not Dpo1, bypassed hypoxanthine and 8-oxoguanine. Dpo2 and Dpo3 bypassed uracil and cis-syn cyclobutane thymine dimer, respectively. High concentrations of Dpo2 or Dpo3 did not attenuate DNA synthesis by Dpo1 or Dpo4. We conclude that Dpo2 and Dpo3 are much less functional and more thermolabile than Dpo1 and Dpo4 in vitro but have bypass activities across hypoxanthine, 8-oxoguanine, and either uracil or cis-syn cyclobutane thymine dimer, suggesting their catalytically limited roles in translesion DNA synthesis past deaminated, oxidized base lesions and/or UV-induced damage.  相似文献   

7.
Y-family DNA polymerases play a crucial role in translesion DNA synthesis. Here, we have characterized the binding kinetics and conformational dynamics of the Y-family polymerase Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) using single-molecule fluorescence. We find that in the absence of dNTPs, the binary complex shuttles between two different conformations within ∼1 s. These data are consistent with prior crystal structures in which the nucleotide binding site is either occupied by the terminal base pair (preinsertion conformation) or empty following Dpo4 translocation by 1 base pair (insertion conformation). Most interestingly, on dNTP binding, only the insertion conformation is observed and the correct dNTP stabilizes this complex compared with the binary complex, whereas incorrect dNTPs destabilize it. However, if the n+1 template base is complementary to the incoming dNTP, a structure consistent with a misaligned template conformation is observed, in which the template base at the n position loops out. This structure provides evidence for a Dpo4 mutagenesis pathway involving a transient misalignment mechanism.  相似文献   

8.
Dpo4 and Dbh are Y-family polymerases that originate from two closely related strains of Sulfolobaceae. Quite surprisingly, however, the two polymerases exhibit different enzymatic properties in vitro. For example, Dpo4 can replicate past a variety of DNA lesions, yet Dbh does so with a much lower efficiency. When replicating undamaged DNA, Dpo4 is prone to make base pair substitutions, whereas Dbh predominantly makes single-base deletions. Overall, the two proteins are 54% identical, but the greatest divergence is found in their respective little finger (LF) domains, which are only 41% identical. To investigate the role of the LF domain in the fidelity and lesion-bypassing abilities of Y-family polymerases, we have generated chimeras of Dpo4 and Dbh in which their LF domains have been interchanged. Interestingly, by replacing the LF domain of Dbh with that of Dpo4, the enzymatic properties of the chimeric enzyme are more Dpo4-like in that the enzyme is more processive, can bypass an abasic site and a thymine-thymine cyclobutane pyrimidine dimer, and predominantly makes base pair substitutions when replicating undamaged DNA. The converse is true for the Dpo4-LF-Dbh chimera, which is more Dbh-like in its processivity and ability to bypass DNA adducts and generate single-base deletion errors. Our studies indicate that the unique but variable LF domain of Y-family polymerases plays a major role in determining the enzymatic and biological properties of each individual Y-family member.  相似文献   

9.
Higher eukaryotes encode various Y-family DNA polymerases to perform global DNA lesion bypass. To provide complete mutation spectra for abasic lesion bypass, we employed short oligonucleotide sequencing assays to determine the sequences of abasic lesion bypass products synthesized by human Y-family DNA polymerases eta (hPolη), iota (hPolι) and kappa (hPolκ). The fourth human Y-family DNA polymerase, Rev1, failed to generate full-length lesion bypass products after 3 h. The results indicate that hPolι generates mutations with a frequency from 10 to 80% during each nucleotide incorporation event. In contrast, hPolη is the least error prone, generating the fewest mutations in the vicinity of the abasic lesion and inserting dAMP with a frequency of 67% opposite the abasic site. While the error frequency of hPolκ is intermediate to those of hPolη and hPolι, hPolκ has the highest potential to create frameshift mutations opposite the abasic site. Moreover, the time (t50bypass) required to bypass 50% of the abasic lesions encountered by hPolη, hPolι and hPolκ was 4.6, 112 and 1 823 s, respectively. These t50bypass values indicate that, among the enzymes, hPolη has the highest abasic lesion bypass efficiency. Together, our data suggest that hPolη is best suited to perform abasic lesion bypass in vivo.  相似文献   

10.
Sherrer SM  Beyer DC  Xia CX  Fowler JD  Suo Z 《Biochemistry》2010,49(47):10179-10186
DNA polymerases use either a bulky active site residue or a backbone segment to select against ribonucleotides in order to faithfully replicate cellular genomes. Here, we demonstrated that an active site mutation (Y12A) within Sulfolobus solfataricus DNA polymerase IV (Dpo4) caused an average increase of 220-fold in matched ribonucleotide incorporation efficiency and an average decrease of 9-fold in correct deoxyribonucleotide incorporation efficiency, leading to an average reduction of 2000-fold in sugar selectivity. Thus, the bulky side chain of Tyr12 is important for both ribonucleotide discrimination and efficient deoxyribonucleotide incorporation. Other than synthesizing DNA as the wild-type Dpo4, the Y12A Dpo4 mutant incorporated more than 20 consecutive ribonucleotides into primer/template (DNA/DNA) duplexes, suggesting that this mutant protein possesses both a DNA-dependent DNA polymerase activity and a DNA-dependent RNA polymerase activity. Moreover, the binary and ternary crystal structures of Dpo4 have revealed that this DNA lesion bypass polymerase can bind up to eight base pairs of double-stranded DNA which is entirely in B-type. Thus, the DNA binding cleft of Dpo4 is flexible and can accommodate both A- and B-type oligodeoxyribonucleotide duplexes as well as damaged DNA.  相似文献   

11.
Studies of replicative DNA polymerases have led to the generalization that abasic sites are strong blocks to DNA replication. Here we show that yeast replicative DNA polymerase ϵ bypasses a model abasic site with comparable efficiency to Pol η and Dpo4, two translesion polymerases. DNA polymerase ϵ also exhibited high bypass efficiency with a natural abasic site on the template. Translesion synthesis primarily resulted in deletions. In cases where only a single nucleotide was inserted, dATP was the preferred nucleotide opposite the natural abasic site. In contrast to translesion polymerases, DNA polymerase ϵ with 3′–5′ proofreading exonuclease activity bypasses only the model abasic site during processive synthesis and cannot reinitiate DNA synthesis. This characteristic may allow other pathways to rescue leading strand synthesis when stalled at an abasic site.  相似文献   

12.
The ability or inability of a DNA polymerase to extend a mispair directly affects the establishment of genomic mutations. We report here kinetic analyses of the ability of Dpo4, a Y-family polymerase from Sulfolobus solfataricus, to extend from all mispairs opposite a template G or T. Dpo4 is equally inefficient at extending these mispairs, which include, surprisingly, a G.T mispair expected to conform closely to Watson-Crick geometry. To elucidate the basis of this, we solved the structure of Dpo4 bound to G.T-mispaired primer template in the presence of an incoming nucleotide. As a control, we also determined the structure of Dpo4 bound to a matched A-T base pair at the primer terminus. The structures offer a basis for the low efficiency of Dpo4 in extending a G.T mispair: a reverse wobble that deflects the primer 3'-OH away from the incoming nucleotide.  相似文献   

13.
Dpo4 from S. Solfataricus, a DinB-like Y family polymerase, efficiently replicates DNA past an abasic lesion. We have determined crystal structures of Dpo4 complexed with five different abasic site-containing DNA substrates and find that translesion synthesis is template directed with the abasic site looped out and the incoming nucleotide is opposite the base 5' to the lesion. The ensuing DNA synthesis generates a -1 frameshift when the abasic site remains extrahelical. Template realignment during primer extension is also observed, resulting in base substitutions or even +1 frameshifts. In the case of a +1 frameshift, the extra nucleotide is accommodated in the solvent-exposed minor groove. In addition, the structure of an unproductive Dpo4 ternary complex suggests that the flexible little finger domain facilitates DNA orientation and translocation during translesion synthesis.  相似文献   

14.
Ling H  Boudsocq F  Woodgate R  Yang W 《Cell》2001,107(1):91-102
Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) is a DinB homolog that belongs to the recently described Y-family of DNA polymerases, which are best characterized by their low-fidelity synthesis on undamaged DNA templates and propensity to traverse normally replication-blocking lesions. Crystal structures of Dpo4 in ternary complexes with DNA and an incoming nucleotide, either correct or incorrect, have been solved at 1.7 A and 2.1 A resolution, respectively. Despite a conserved active site and a hand-like configuration similar to all known polymerases, Dpo4 makes limited and nonspecific contacts with the replicating base pair, thus relaxing base selection. Dpo4 is also captured in the crystal translocating two template bases to the active site at once, suggesting a possible mechanism for bypassing thymine dimers.  相似文献   

15.
DNA polymerases are co-ordinated by sliding clamps (PCNA/β-clamp) in translesion synthesis. It is unclear how these enzymes assemble on PCNA with geometric and functional compatibility. We report the crystal structure of a full-length Y-family polymerase, Dpo4, in complex with heterodimeric PCNA1–PCNA2 at 2.05 Å resolution. Dpo4 exhibits an extended conformation that differs from the Dpo4 structures in apo- or DNA-bound form. Two hinges have been identified in Dpo4, which render the multidomain polymerase flexible conformations and orientations relative to PCNA. Dpo4 binds specifically to PCNA1 on the conserved ligand binding site. The C-terminal peptide of Dpo4 becomes structured with a 310 helix and dominates the specific binding. The Y-family polymerase also contacts PCNA1 with its finger, thumb and little finger domains, which are conformation-dependent protein–protein interactions that diversify the binding mode of Dpo4 on PCNA. The structure reveals a molecular model in which substrate/partner binding-coupled multiple conformations of a Y-family polymerase facilitate its recruitment and co-ordination on the sliding clamp. The conformational flexibility would turn the error-prone Y-family polymerase off when more efficient high-fidelity DNA polymerases work on undamaged DNA and turn it onto DNA templates to perform translesion synthesis when replication forks are stalled by DNA lesions.  相似文献   

16.
Lesion processing: high-fidelity versus lesion-bypass DNA polymerases   总被引:3,自引:0,他引:3  
When a high-fidelity DNA polymerase encounters certain DNA-damage sites, its progress can be stalled and one or more lesion-bypass polymerases are recruited to transit the lesion. Here, we consider two representative types of lesions: (i) 7,8-dihydro-8-oxoguanine (8-oxoG), a small, highly prevalent lesion caused by oxidative damage; and (ii) bulky lesions derived from the environmental pre-carcinogen benzo[a]pyrene, in the high-fidelity DNA polymerase Bacillus fragment (BF) from Bacillus stearothermophilus and in the lesion-bypass DNA polymerase IV (Dpo4) from Sulfolobus solfataricus. The tight fit of the BF polymerase around the nascent base pair contrasts with the more spacious, solvent-exposed active site of Dpo4, and these differences in architecture result in distinctions in their respective functions: one-step versus stepwise polymerase translocation, mutagenic versus accurate bypass of 8-oxoG, and polymerase stalling versus mutagenic bypass at bulky benzo[a]pyrene-derived lesions.  相似文献   

17.
Fiala KA  Suo Z 《Biochemistry》2004,43(7):2106-2115
Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) is a thermostable archaeal enzyme and a member of the error-prone and lesion-bypass Y-family. In this paper, for the first time, the fidelity of a Y-family polymerase, Dpo4, was determined using pre-steady-state kinetic analysis of the incorporation of a single nucleotide into an undamaged DNA substrate 21/41-mer at 37 degrees C. We assessed single-turnover (with Dpo4 in molar excess over DNA) saturation kinetics for all 16 possible nucleotide incorporations. The fidelity of Dpo4 was estimated to be in the range of 10(-3)-10(-4). Interestingly, the ground-state binding affinity of correct nucleotides (70-230 microM) is 10-50-fold weaker than those of replicative DNA polymerases. Such a low affinity is consistent with the lack of interactions between Dpo4 and the bound nucleotides as revealed in the crystal structure of Dpo4, DNA, and a matched nucleotide. The affinity of incorrect nucleotides for Dpo4 is approximately 2-10-fold weaker than that of correct nucleotides. Intriguingly, the mismatched dCTP has an affinity similar to that of the matched nucleotides when it is incorporated against a pyrimidine template base flanked by a 5'-template guanine. The incoming dCTP likely skips the first available template base and base pairs with the 5'-template guanine, as observed in the crystal structure of Dpo4, DNA, and a mismatched nucleotide. The mismatch incorporation rates, regardless of the 5'-template base, were approximately 2-3 orders of magnitude slower than the incorporation rates for matched nucleotides, which is the predominant contribution to the fidelity of Dpo4.  相似文献   

18.
One of the most common DNA lesions arising in cells is an apurinic/apyrimidinic (AP) site resulting from base loss. Although a template strand AP site impedes DNA synthesis, translesion synthesis (TLS) DNA polymerases can bypass an AP site. Because this bypass is expected to be highly mutagenic because of loss of base coding potential, here we quantify the efficiency and the specificity of AP site bypass by two Y family TLS enzymes, Sulfolobus solfataricus DNA polymerase 4 (Dpo4) and human DNA polymerase eta (Pol eta). During a single cycle of processive DNA synthesis, Dpo4 and Pol eta bypass synthetic AP sites with 13-30 and 10-13%, respectively, of the bypass efficiency for undamaged bases in the same sequence contexts. These efficiencies are higher than for the A family, exonuclease-deficient Klenow fragment of Escherichia coli DNA polymerase I. We then determined AP site bypass specificity for complete bypass, requiring insertion or misalignment at the AP site followed by multiple incorporations using the aberrant primer templates. Although Dpo4, Pol eta, and Klenow polymerase have different fidelity when copying undamaged DNA, bypass of AP sites lacking A or G by all three polymerases is nearly 100% mutagenic. The majority (70-80%) of bypass events made by all three polymerases are insertion of dAMP opposite the AP site. Single base deletion errors comprise 10-25% of bypass events, with other base insertions observed at lower rates. Given that mammalian cells contain five polymerases implicated in TLS, and given that a large number of AP sites are generated per mammalian cell per day, even moderately efficient AP site bypass could be a source of substitution and frameshift mutagenesis in vivo.  相似文献   

19.
Y-family DNA polymerases catalyze translesion DNA synthesis over damaged DNA. Each Y-family polymerase has a polymerase core consisting of a palm, finger and thumb domain in addition to a fourth domain known as a little finger domain. It is unclear how each domain moves during nucleotide incorporation and what type of conformational changes corresponds to the rate-limiting step previously reported in kinetic studies. Here, we present three crystal structures of the prototype Y-family polymerase: apo-Dpo4 at 1.9 Å resolution, Dpo4-DNA binary complex and Dpo4-DNA-dTMP ternary complex at 2.2 Å resolution. Dpo4 undergoes dramatic conformational changes from the apo to the binary structures with a 131° rotation of the little finger domain relative to the polymerase core upon DNA binding. This DNA-induced conformational change is verified in solution by our tryptophan fluorescence studies. In contrast, the polymerase core retains the same conformation in all three conformationally distinct states. Particularly, the finger domain which is responsible for checking base pairing between the template base and an incoming nucleotide retains a rigid conformation. The inflexibility of the polymerase core likely contributes to the low fidelity of Dpo4, in addition to its loose and solvent-accessible active site. Interestingly, while the binary and ternary complexes of Dpo4 retain an identical global conformation, the aromatic side chains of two conserved tyrosines at the nucleotide-binding site change orientations between the binary and ternary structures. Such local conformational changes may correspond to the rate-limiting step in the mechanism of nucleotide incorporation. Together, the global and local conformational transitions observed in our study provide a structural basis for the distinct kinetic steps of a catalytic cycle of DNA polymerization performed by a Y-family polymerase.  相似文献   

20.
Y-family DNA polymerases lack some of the mechanisms that replicative DNA polymerases employ to ensure fidelity, resulting in higher error rates during replication of undamaged DNA templates and the ability to bypass certain aberrant bases, such as those produced by exposure to carcinogens, including benzo[a]pyrene (BP). A tumorigenic metabolite of BP, (+)-anti-benzo-[a]pyrene diol epoxide, attacks DNA to form the major 10S (+)-trans-anti-[BP]-N(2)-dG adduct, which has been shown to be mutagenic in a number of prokaryotic and eukaryotic systems. The 10S (+)-trans-anti-[BP]-N(2)-dG adduct can cause all three base substitution mutations, and the SOS response in Escherichia coli increases bypass of bulky adducts, suggesting that Y-family DNA polymerases are involved in the bypass of such lesions. Dpo4 belongs to the DinB branch of the Y-family, which also includes E. coli pol IV and eukaryotic pol kappa. We carried out primer extension assays in conjunction with molecular modeling and molecular dynamics studies in order to elucidate the structure-function relationship involved in nucleotide incorporation opposite the bulky 10S (+)-trans-anti-[BP]-N(2)-dG adduct by Dpo4. Dpo4 is able to bypass the 10S (+)-trans-anti-[BP]-N(2)-dG adduct, albeit to a lesser extent than unmodified guanine, and the V(max) values for insertion of all four nucleotides opposite the adduct by Dpo4 are similar. Computational studies suggest that 10S (+)-trans-anti-[BP]-N(2)-dG can be accommodated in the active site of Dpo4 in either the anti or syn conformation due to the limited protein-DNA contacts and the open nature of both the minor and major groove sides of the nascent base pair, which can contribute to the promiscuous nucleotide incorporation opposite this lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号