首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron micrographs of thin sections of nuclear, microsomal, and mitochondrial fractions obtained from a carrageenin-induced granuloma showed considerable contamination of the heavier by the lighter fractions. Striated collagen fibrils could be identified in the nuclei + debris fraction. Only a few striated fibrils occurred in the mitochondrial fraction; very fine filaments (diameter 50 A) could be seen in this fraction, but could not be distinguished with certainty from fibrillar material derived from broken nuclei. 35 per cent of the mitochondrial and 80 per cent of the microsomal collagen was extractable by 0.2 M NaCl and could be purified by the standard methods of solution and reprecipitation. The amino acid composition of these collagen fractions determined by ion exchange chromatography was within the range normally found for collagen and gelatin from other mammalian species, allowing for 10 to 20 per cent of some non-collagenous contaminant of the microsomal collagen. Hydroxyproline and proline were isolated by chromatography on paper from hydrolysates of the nuclear, mitochondrial, and microsomal collagen fractions, after incubation of tissue slices with L-14C-proline. The specific activities of the hydroxyproline from these collagens were in the approximate ratio 1:2:6, while that of bound hydroxyproline derived from the supernatant was only 1, indicating primary synthesis of collagen in the microsomes. Attempts to demonstrate incorporation of L-14C-proline into collagen or into free hydroxyproline in cell free systems were unsuccessful, nor was it possible to demonstrate non-specific incorporation of L-14C-valine into TCA-insoluble material by various combinations of subcellular fractions.  相似文献   

2.
The microsomal fraction from the spleen (after perfusion) of immunized rabbits incubated for 20 min at 37° C under usual conditions in the presence of energy sources incorporates14C-labelled amino acids both into the solubilized (by adding deoxycholate), and into the nonsolubilized part (15%). The cell supernatant incorporates under these conditions the14C-labelled amino acids into total proteins in the absence of microsomes but in a lower degree. The cell supernatant contains gamma globulin detectable by immunoelectrophoresis. Gamma globulin obtained by specific precipitation of the solubilized microsomal fraction with antigamma-globulin serum had an measurable radioactivity. The precipitate of gamma globulin obtained from the supernatant of the incubation medium in the same manner (after removing the microsomes) had a specific activity twice as high. On separating the microsomal fraction extract and the incubation medium supernatant on DEAE cellulose most fractions show on extinction maximum at 260 nm in the first case and at 280 nm in the second case. The microsomal fraction isolated from the spleen and lymph nodes of immunized pigs-48 and 72 h after revaccination, when incubatedin vitro, incorporated14C-labelled amino acids into total protein. After ultrasonic disintegration in 0.14m NaCl and filtration through a Sephadex G 25 column it is specifically precipitated with the antigammaglobulin serum. Gamma globulin isolated after incubation of the microsomal fraction had a measurable radioactivity. AntiHSA antibodies determined by adsorption on immunosorbent did not possess significant radioactivity. Only the concentrated supernatant of the incubation medium showed minute radioactivity of 75–94 counts/min /ml. The problem of investigating the formation of nascent specific antibodies on a subcellular levelin vitro during the early period of secondary response to the antigen is discussed, in particular the problem of their detection. An erratum to this article is available at .  相似文献   

3.
Abstract—
  • 1 The metabolism of three substrates, [U-14C]glucose, [U-14C]pyruvate and [U-14C]glutamate has been studied in vitro in neuronal and glial cell fractions obtained from rat cerebral cortex by a density gradient technique.
  • 2 The mixed cell suspension, after washing, metabolized glucose and glutamate in a manner essentially similar to the tissue slice. Exceptions were a reduced ability to generate lactate from glucose and alanine from glutamate, and a lowered effect of added glucose in suppressing the production of aspartate from glutamate.
  • 3 After 2 hr incubation with [U-14C]glucose, the concentration of the amino acids glutamate, glutamine, GABA, aspartate and alanine were raised in the neuronal, compared to the glial fraction to 234 per cent, 176 per cent, 202 per cent, 167 per cent and 230 per cent respectively although both were lower than in the tissue slice. Incorporation of radio-activity was absolutely lower in the neuronal fraction, however, and the specific activities of the amino acids were: glutamate 12 per cent, GABA 18 per cent, aspartate 34 per cent, and alanine 33 per cent of those in the glial fraction.
  • 4 After the incubation with [U-14C]pyruvate, the pool size of the amino acids were higher than after incubation with glucose, except for GABA, which was reduced to one-third. The concentrations of the amino acids glutamate, glutamine, GABA, aspartate, and alanine in the neuronal fraction were respectively 46 per cent, 143 per cent, 105 per cent, 97 per cent, and 57 per cent of those in the glial. Thus, with the exception of alanine, the specific activity of the neuronal amino acids compared to the glial was little increased when pyruvate replaced glucose as substrate.
  • 5 After 2 hr incubation with [U-14C]glutamate in the presence of non-radioactive glucose, the pool sizes of all the amino acids were increased in both neuronal and glial fractions, with the exception of neuronal alanine and glial glutamine. The concentrations of the amino acids glutamine, GABA, aspartate and alanine were raised in the neuronal fraction, compared to the glial, to 425 per cent, 187 per cent, 222 per cent, and 133 per cent respectively. The specific activities of all the amino acids were higher than with glucose alone with the exception of alanine, and neuronal GABA. Neuronal glutamine and aspartate had specific activities respectively 102 per cent and 84 per cent of glial.
  • 6 An unidentified amino acid, with RF comparable to that of alanine and specific activity close to that of glutamate, was also present after incubation. It was relatively concentrated in the neuronal fraction.
  • 7 The distribution of the enzymes glutamate dehydrogenase, aspartate aminotransferase, glutamate decarboxylase and glutamine synthetase between the cell fractions was studied. With the exception of glutamine synthetase, none of the enzymes was lost from the cell fractions during their preparation. Only 14 per cent of the glutamine synthetase, compared with 75 per cent of total protein, was recovered in the fractions. Of the enzymes, glutamate dehydrogenase activity was 406 per cent, and glutamate synthetase activity 177 per cent in the neuronal fraction compared to the glial in the absence of detergent. In the presence of detergent, glutamate dehydrogenase control was 261 per cent, aspartate aminotransferase activity 237 per cent is the neuronal as compared to the glial fraction.
  • 8 Incorporation of radioactivity into acid-insoluble material from either glutamate or pyruvate was twice as high into the neuronal as the glial fraction.
  • 9 The extent to which these differences may be extrapolated back to the intact tissue is considered, and certain correction factors calculated. The significance of the observations for an understanding of the compartmentation of amino acid pools and metabolism in the brain, and the possible identification of such compartments, is discussed.
  相似文献   

4.
Pancreatic tissue, (guinea pig) homogenized in 0.88 M sucrose, was fractionated by differential centrifugation into a nuclear, zymogen, mitochondrial, microsomal, and final supernatant fraction. The components of the particulate fractions were identified with well known intracellular structures by electron microscopy. The fractions were analyzed for protein-N and RNA, and were assayed for RNase and trypsin-activatable proteolytic (TAPase) activity. The zymogen fraction accounted for 30 to 40 per cent of the total TAPase and RNase activities, and its specific enzymatic activities were 4 to 10 times higher than those of any other cell fraction. The zymogen fraction was cytologically heterogeneous; zymogen granules and mitochondria represented its main components. More homogeneous zymogen fractions, obtained by successive washing or by separation in a discontinuous density-gradient, had specific activities 2 to 4 times greater than the crude zymogen fractions. Chymotrypsinogen was isolated by column chromatography from pancreas homogenates and derived cell fractions. The largest amount was recovered in the zymogen fraction. The final supernatant had properties similar to those of the trypsin inhibitor described by Kunitz and Northrop.  相似文献   

5.
Subcellular fractions isolated and purified from rat brain cerebral cortices were assayed for phosphatidylinositol (PI-), phosphatidylinositol-4-phosphate (PIP-), and diacylglycerol (DG-) kinase activities in the presence of endogenous or exogenously added lipid substrates and [γ-32P]ATP. Measurable amounts of all three kinase activities were observed in each subcellular fraction, including the cytosol. However, their subcellular profiles were uniquely distinct. In the absence of exogenous lipid substrates, PI-kinase specific activity was greatest in the microsomal and non-synaptic plasma membrane fractions (150–200 pmol/min per mg protein), whereas PIP-kinase was predominantly active in the synaptosomal fraction (136 pmol/min per mg protein). Based on percentage of total protein, total recovered PI-kinase activity was most abundant in the cytosolic, synaptosomal, microsomal and mitochondrial fractions (4–11 nmol/min). With the exception of the microsomal fraction, a similar profile was observed for PIP-kinase activity when assayed in the presence of exogenous PIP (4 nmol/20 mg protein in a final assay volume of 0.1 ml). Exogenous PIP (4 nmol/20 mg protein) inhibited PI-kinase activity in most fractions by 40–70%, while enhancing PIP-kinase activity. PI- and PIP-kinase activities were observed in the cytosolic fraction when assayed in the presence of exogenously added PI or PIP, respectively, but not in heat-inactivated membranes containing these substrates. When subcellular fractions were assayed for DG-kinase activity using heat-inactivated DG-enriched membranes as substrate, DG-kinase specific activity was predominantly present in the cytosol. However, incubation of subcellular fractions in the presence of deoxycholate resulted in a striking enhancement of DG-kinase activities in all membrane fractions. These findings demonstrate a bimodal distribution between particulate and soluble fractions of all three lipid kinases, with each exhibiting its own unique subcellular topography. The preferential expression of PIP-kinase specific activity in the synaptic membranes is suggestive of the involvement of PIP2 in synaptic function, while the expression of PI-kinase specific activity in the microsomal fraction suggests additional, yet unknown, functions for PIP in these membranes.  相似文献   

6.
Pancreatic tissue, (guinea pig) homogenized in 0.88 M sucrose, was fractionated by differential centrifugation into a nuclear, zymogen, mitochondrial, microsomal, and final supernatant fraction. The components of the particulate fractions were identified with well known intracellular structures by electron microscopy. The fractions were analyzed for protein-N and RNA, and were assayed for RNase and trypsin-activatable proteolytic (TAPase) activity. The zymogen fraction accounted for 30 to 40 per cent of the total TAPase and RNase activities, and its specific enzymatic activities were 4 to 10 times higher than those of any other cell fraction. The zymogen fraction was cytologically heterogeneous; zymogen granules and mitochondria represented its main components. More homogeneous zymogen fractions, obtained by successive washing or by separation in a discontinuous density-gradient, had specific activities 2 to 4 times greater than the crude zymogen fractions. Chymotrypsinogen was isolated by column chromatography from pancreas homogenates and derived cell fractions. The largest amount was recovered in the zymogen fraction. The final supernatant had properties similar to those of the trypsin inhibitor described by Kunitz and Northrop.  相似文献   

7.
Abstract— The properties of RNA fractions from nuclei of brain cells which were capable of stimulating amino acid incorporation into proteins of an homologous ribosomal system were investigated. RNA was routinely prepared from crude nuclear preparations of rat brain by a method which involved treatment with sodium dodecyl sulphate and phenol at 65°. The capacity of this preparation to stimulate incorporation of radioactivity from a mixture of 15 l -[14C]amino acids was greatly enhanced by preliminary incubation of the ribosomal system from brain for 5–20 min. The response was markedly dependent upon the concentrations of ribosomes and of the pH 5 fraction. The optimal level of Mg2+ for basal incorporation of amino acids into protein was 8 mm ; however, incorporation in the presence of nuclear RNA was greater at higher concentrations of Mg2+. The response to nuclear RNA was also enhanced as the K+ concentration was increased from 25 to 100 mm . The stimulatory effect of nuclear RNA on incorporation of l -[12C]eucine was either unaltered or depressed by addition of a mixture of 19 l -[12C]amino acids each at concentrations, of 10?8, 10?2, or 10?1 mm . Under appropriate conditions of incubation, basal rates of incorporation and rates of incorporation stimulated by nuclear RNA were linear for 30 min. The response was proportional to the concentration of nuclear RNA between 34 and 136 μg. RNA prepared from ribosomes of rat brain essentially failed to stimulate incorporation of amino acids over this range of concentrations. Fractionation of nuclear RNA by centrifugation in sucrose density gradients revealed that 75 per cent of the stimulatory activity was in the fraction which sedimented below 12 S and contained about 25 per cent of the total RNA. Most of the remaining activity was in the 18 S region. Less than 5 per cent of the RNA in the lightest fraction (< 12 S) exhibited amino acid-acceptor activity, The stimulatory action of nuclear RNA on incorporation of amino acids was readily destroyed by mild treatment with pancreatic ribonuclease, whereas amino acid-acceptor activity was relatively resistant to this treatment. The results suggest that the brain may contain low molecular weight RNA with properties of messenger RNA.  相似文献   

8.
Abstract— Homogenates of neuronal perikarya isolated from the cerebral cortex of the 8-day-old rat were incubated with [3H]leucine, and the characteristics of the protein synthetic process were studied. Incorporation of leucine into protein was linear up to 90 min, proceeded optimally at pH 7.6 and was stimulated by K+ and NH4+, unaffected by Li+ and inhibited by Na+. Puromycin, cycloheximide, RNAse, sulphhydryl blocking agents and phospholipase A exerted a pronounced inhibition, whereas chloramphenicol and phospholipase C had no effect. About 42 per cent of the total radioactive protein formed in the optimally fortified in uitro system was recovered in non-sedimentable form. Incorporation into the subcellular fractions of the neuronal perikarya increased steadily with increasing time of incubation. The microsomal fraction acquired the highest specific radioactivity (d.p.m./mg of protein), followed by the mitochondrial and the nuclear + cell debris fractions. The high-speed soluble fraction exhibited the lowest specific radioactivity. Although the addition of L-methionine to a suitably fortified incubation medium inhibited neuronal protein synthesis by about 80 per cent, the addition of D-methionhe, α-methyl-DL-methionine or L-tryptophan was relatively ineffective by comparison.  相似文献   

9.
Five ribonucleoprotein (RNP) fractions were isolated from the postmitochondrial supernatant of the pancreas of the guinea pig. Two were obtained from the microsomes which, by deoxycholate (DOC) treatment, were subdivided into a DOC-soluble and a DOC-insoluble fraction. The latter was taken to represent attached RNP particles. Two other fractions obtained from the microsomal supernatant supposedly represent free RNP particles existing as such in the cytoplasm, while a third fraction resisted sedimentation for 20 hours at 105,000 g and is considered to be a soluble nucleoprotein. These fractions exhibited different RNA/protein ratios and also different RNA turnover patterns, as determined after in vivo labelling with adenine-8-C14. However, little discernible differences could be detected in the nucleotide composition of the RNA moieties of these RNP fractions. Amino acid-"activating" enzymes were found to occur in the fraction containing the soluble nucleoproteins. The discussion focuses on the relationships between these fractions and protein synthesis in the pancreas, using data given in this and a previous paper, and data contained in the literature.  相似文献   

10.
LIVER MICROSOMES : AN INTEGRATED MORPHOLOGICAL AND BIOCHEMICAL STUDY   总被引:58,自引:35,他引:58       下载免费PDF全文
Rat liver, liver homogenates, and microsome fractions separated therefrom were examined systematically in the electron microscope in sections of OsO4-fixed, methacrylate-embedded tissue and pellets. It was found that most microsomes are morphologically identical with the rough surfaced elements of the endoplasmic reticula of hepatic cells. They appear as isolated, membrane-bound vesicles, tubules, and cisternae which contain an apparently homogeneous material of noticeable density, and bear small, dense particles (100 to 150 A) attached to their outer aspect. In solutions of various osmolar concentrations they behave like osmometers. The findings suggest that they derive from the endoplasmic reticulum by a generalized pinching-off process rather than by mechanical fragmentation. The microsome fractions contain in addition relatively few vesicles free of attached particles, probably derived from the smooth surfaced parts of the endoplasmic reticula. Dense, peribiliary bodies represent a minor component of the same fractions. The microsomes derived from 1 gm. wet weight liver pulp contained (averages of 10 experiments) 3.09 mg. protein N, 3.46 mg. RNA (RNA/protein N = 1.12), and 487 µg. phospholipide P. They displayed DPNH-cytochrome c reductase activity and contained an alcohol-soluble hemochromogen. The microsome preparations proved resistant to washing and "aging." Treatment with versene and incubation with ribonuclease (30 minutes at 37°C.) resulted in appreciable losses of RNA and in partial or total disappearance of attached particles. Treatment with deoxycholate (0.3 to 0.5 per cent, pH = 7.5) induced a partial clarification of the microsome suspensions which, upon centrifugation, yielded a small pellet of conglomerated small, dense particles (100 to 150 A) with only occasionally interspersed vesicles. The pellet contained ~80 to 90 per cent of the RNA and ~20 per cent of the protein N of the original microsomes. The supernatant accounted satisfactorily for the materials lost during deoxycholate treatment. The findings suggest that the microsomal RNA is associated with the small particles whereas most of the protein and nearly all of the phospholipide, hemochromogen, and DPNH-cytochrome c reductase activity are associated with the membrane or content of the microsomes.  相似文献   

11.
Rat liver, liver homogenates, and microsome fractions separated therefrom were examined systematically in the electron microscope in sections of OsO(4)-fixed, methacrylate-embedded tissue and pellets. It was found that most microsomes are morphologically identical with the rough surfaced elements of the endoplasmic reticula of hepatic cells. They appear as isolated, membrane-bound vesicles, tubules, and cisternae which contain an apparently homogeneous material of noticeable density, and bear small, dense particles (100 to 150 A) attached to their outer aspect. In solutions of various osmolar concentrations they behave like osmometers. The findings suggest that they derive from the endoplasmic reticulum by a generalized pinching-off process rather than by mechanical fragmentation. The microsome fractions contain in addition relatively few vesicles free of attached particles, probably derived from the smooth surfaced parts of the endoplasmic reticula. Dense, peribiliary bodies represent a minor component of the same fractions. The microsomes derived from 1 gm. wet weight liver pulp contained (averages of 10 experiments) 3.09 mg. protein N, 3.46 mg. RNA (RNA/protein N = 1.12), and 487 microg. phospholipide P. They displayed DPNH-cytochrome c reductase activity and contained an alcohol-soluble hemochromogen. The microsome preparations proved resistant to washing and "aging." Treatment with versene and incubation with ribonuclease (30 minutes at 37 degrees C.) resulted in appreciable losses of RNA and in partial or total disappearance of attached particles. Treatment with deoxycholate (0.3 to 0.5 per cent, pH = 7.5) induced a partial clarification of the microsome suspensions which, upon centrifugation, yielded a small pellet of conglomerated small, dense particles (100 to 150 A) with only occasionally interspersed vesicles. The pellet contained approximately 80 to 90 per cent of the RNA and approximately 20 per cent of the protein N of the original microsomes. The supernatant accounted satisfactorily for the materials lost during deoxycholate treatment. The findings suggest that the microsomal RNA is associated with the small particles whereas most of the protein and nearly all of the phospholipide, hemochromogen, and DPNH-cytochrome c reductase activity are associated with the membrane or content of the microsomes.  相似文献   

12.
Assay conditions are worked out for determination of activity of beta-hydroxy-beta-methylglutaryl-CoA reductase (HMG-CoA reductase) in 140.000 g supernatant fraction of the rat liver. Some kinetic properties of the enzyme are studied: the activity dependency on the incubation time, protein concentration, pH, glutathione, dithiothreitol and HMG-CoA contents in the incubation medium. The effect of Triton WR 1339 on the activity of HMG-CoA reductase in the liver 140.000 g supernatant and microsomal fractions is comparatively studied. Diurnal activity variations of soluble and microsomal enzymes are also investigated. It is suggested that the rat liver HMG-CoA reductase in the 140.000 g supernatant fraction is not identical to the enzyme located in the microsomal fraction.  相似文献   

13.
Microsomes isolated by differential centrifugation from a rat liver homogenate in 0.88 M sucrose solution have been studied from the biochemical and morphological point of view. 1. Under these experimental conditions, the "total microsome" fraction was obtained by centrifuging the cytoplasmic extract free of nuclei and mitochondria, for 3 hours at 145,000 g. Morphologically, the total microsomes consist mainly of "rough-surfaced membranes" and "smooth" ones. 2. The total microsomes have been divided into 2 subfractions so that the 1st microsomal fraction contains the "rough" vesicles (2 hours centrifugation at 40,000 g) while the 2nd microsomal fraction consists essentially of smooth vesicles, free particles, and ferritin (centrifugation of the supernatant at 145,000 g for 3 hours). 3. By the action of 0.4 per cent sodium deoxycholate in 0.88 M sucrose, it was possible to obtain a pellet for each of the 2 fractions which consisted of dense particles, rich in RNA, poor in lipids, and which represented about 50 to 60 percent of the RNA and 10 to 15 per cent of the proteins. The results have been discussed taking into consideration the hypothesis of the presence of RNA in the membranes of microsomal vesicles.  相似文献   

14.
Sterol biosynthesis in sub-cellular particles of higher plants   总被引:1,自引:1,他引:0       下载免费PDF全文
Mevalonic acid-2-14C was administered to cut stems of bean seedlings (Phaseolus vulgaris L.) for time intervals varying from 20 min to 24 hr. The plants were homogenized in a pH 7.8 tris-sucrose buffer and the homogenates separated into chloroplast, mitochondrial, microsomal, and supernatant fractions by means of differential centrifugation. The distribution of radioactivity into non-saponifiable material in each of the fractions was then determined. After short incubation periods labeled squalene was localized in the supernatant fraction. Labeled sterol was limited at all incubation periods to the microsomal and supernatant fractions. The data presented clearly implicate the microsomal and supernatant fractions in sterol biosynthesis in higher plants.  相似文献   

15.
—(1) ATP: creatine phosphotransferase of rat cerebral cortex is soluble to the extent of 57 per cent when the tissue is homogenized in 0.25 M-sucrose and 80 per cent when distilled water is used for tissue dispersion. Among particulate fractions, the crude mitochondria] fraction contains the highest percentage of enzyme activity. (2) Discontinuous sucrose gradient fractionation of the crude mitochondrial fraction yields about 55 per cent of the particulate activity in the nerve ending fractions and 24 per cent in the mitochondrial pellet. (3) Rupturing of the nerve-ending particles by a moderate osmotic shock designed to spare the mitochondria results in about 60 per cent of the ATP:creatine phosphotransferase becoming soluble, the remainder preserving the association with heavy particles, presumably mitochondria. (4) Subfractionation of the microsomal fraction on a discontinuous sucrose gradient reveals that this particulate component of the enzyme is an adsorption artifact. (5) The overall evidence points to at least two distinct subcellular localizations of the enzyme in rat brain cortex, a major soluble component and a particulate component. It has not been unequivocally shown whether the latter, in turn, reflects the presence of a single, mitochondrial component or whether the soluble matrix of the nerve ending particles represents a third locale for the enzyme.  相似文献   

16.
The distribution of cyclic AMP-dependent protein kinase activity in porcine thyroid glands has been studied. Enzyme activity catalyzing phosphorylation of exogenous substrate (protamine) from ATP, and cyclic AMP binding were determined in parallel in subcellular fractions purified by differential centrifugation and flotation on sucrose density layers. Both activities were found in all the studied fractions; they were quantitatively the highest in the cytosol but particles showed the highest specific activities.Latent protein-kinase activity was unmasked by action of detergents on microsomes (× 5–10 fold) and solubilized (85 to 99 p. cent of the initial total activity). Cyclic AMP binding capacity was also recovered in detergent-treated microsomal extracts in spite of reduced cyclic AMP binding in the presence of detergent.Protein kinase activity and cyclic AMP-binding proteins were less represented in purified nuclei than in microsomes. Again both activities were unmasked by detergent.Preparations highly enriched in Golgi membranes were compared to rough microsomal preparations. Higher protein kinase activity was detected in rough microsomes as compared to Golgi membranes, whereas the reverse was true for cyclic AMP binding. Both activities were equalized after detergent treatment. Since unmasking of protein kinase activity was the highest in Golgi membranes, this fraction contains more enzyme activity and cyclic AMP binding capacity than rough microsomes.The localization of endogeneous protein substrates of cyclic AMP-dependent protein kinases was investigated using purified soluble protein kinase subcellular fractions. The better endogeneous substrates seemed to be localized in the rough microsomal and in the nuclear fractions.  相似文献   

17.
Abstract— Differential and gradient centrifugation revealed that 90 per cent of the 5-HT, dopamine and noradrenaline in the CNS of the fresh water mussel was bound to particles; 60-70 per cent of the bound monoamines appeared in the mitochondrial and 15-20 per cent in the microsomal fraction. Spectrofluorimetric assay and electron microscopic analysis of the subfractions obtained by separation of the mitochondrial fraction on sucrose density gradients showed that the nerve endings and their dense-core vesicles were concentrated in fractions with high relative specific activity of the three monoamines. This supports the proposed function of these monoamines as interneuronal mediators. Osmotic shock treatment resulted in the formation of a synaptosomal subfraction of low density displaying a high relative specific activity for 5-HT. From the results obtained one cannot draw clear-cut conclusions regarding the participation of subcellular particles in the storage of serotonin detectable in the perikarya by means of histochemical methods.  相似文献   

18.
To determine the possible significance of in vivo or in vitro enzyme action in ribonucleoprotein systems, rat liver microsomes and ribonucleoprotein particles (RNP) prepared from them by deoxycholate treatment were incubated for 1 hour at 37°C. with crystalline pancreatic ribonuclease (RNase) or various RNase-free crystalline proteolytic enzymes. The extent of the degradation of the RNA of the microsomes and RNP was determined and the protein degradation estimated in both cases. With either microsomes or RNP, RNase (0.5 to 1.0 mg. per ml.) degraded from 75 to 95 per cent of the RNA, with little protein breakdown being apparent when microsomes were used but with significant protein degradation in the RNP. When microsomes were treated with proteolytic enzymes approximately 40 to 50 per cent of the original microsomal protein became nonsedimentable while at the same time 60 to 80 per cent of the RNA was also found to be non-sedimentable. Of the non-sedimentable RNA, approximately one-third was in the form of acid-precipitable RNA while the remainder was in the form of acid-soluble nucleotides. When RNP was treated with proteolytic enzymes, about 95 per cent of the RNA could no longer be sedimented. About half of this appeared as acid-precipitable RNA and half as acid-soluble nucleotides. Both microsomes and RNP contained significant RNase activity with RNP exhibiting about 10 times the specific activity of microsomes. Some of the characteristics of this RNase activity were determined and the results with proteolytic enzymes interpreted in light of this activity.  相似文献   

19.
Abstract— Microsomal, mitochondrial, synaptosomal and synaptic vesicle fractions of rat brain took up [3H-methyl]choline by a similar carrier-mediated transport system. The apparent Km for the uptake of [3H-methyl]choline in these subcellular fractions was about 5 × 10?5 M. Choline uptake was also observed in microsomal fractions prepared from liver and skeletal muscle. Virtually identical kinetic properties for [3H-methyl]choline transport were found in the synaptosomal fractions prepared from the whole brain, cerebellum or basal ganglia. Countertransport of [3H-methyl]choline from the synaptosomal fraction was demonstrated against a concentration gradient. HC-3 was a competitive inhibitor of the uptake of [3H-methyl]choline in brain microsomal, synaptosomal and mitochondria] fractions with respective values for Ki of 4.0, 2.1 and 2.3 × 10?5 M. HC-15 was a competitive inhibitor of the transport of [3H-methyl]choline in the synaptosomal fraction, with a Ki of 1.7 × 10?4 M. Upon entry into the microsomal fraction, 74 per cent of the radioactivity could be recovered as unaltered choline, 10 per cent as phosphorylcholine, 1.5 per cent as acetylcholine and 2.5 per cent as phospholipid. Choline acetyltransferase (EC 2.3.1.6) was assayed with [14C]acetylCoA in synaptosomal fractions prepared from basal ganglia and cerebellum, and in the 31,000 g supernatant fraction of a rat brain homogenate. Enzyme activity was 11-fold greater in the synaptosomal fraction from the basal ganglia than in that from the cerebellum. HC-3 did not inhibit choline acetyltransferase and there was no evidence for acetylation of HC-3. Our findings suggest that choline uptake is a ubiquitous property of membranes in the CNS and cannot serve to distinguish cholinergic nerve endings and their synaptic vesicles.  相似文献   

20.
The ultrastructural features of a purified fraction of Na+,K+-adenosine triphosphatase (ATPase) isolated from dog kidney medulla were compared with those of the initial crude microsomal fraction in the purification sequence. Although both fractions consist of vesicular structures, the purified fraction is more homogeneous with respect to overall size and intramembrane protein particle size and distribution. Polyacrylamide gel electrophoresis profiles of both fractions reveal multiple proteins in the microsomal fraction but only two in the final purified fraction. The membranes of the pure fraction comprised one class of particles roughly 95–120 Å in diameter which represent the in vitro configuration of Na+,K+-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号