首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Implant-associated infection is caused by surface-adhering bacteria persisting as biofilm. Periprosthetic joint infection is difficult to diagnose and treat. The high susceptibility of implanted devices to infection is because of a locally acquired host defense defect, and persistence is mainly because of the rapid formation of a biofilm resistant to host defense and antimicrobial agents. Successful treatment of periprosthetic joint infection requires the optimal surgical procedure combined with long-term antimicrobial therapy directed against surface-adhering microorganisms. Surgical treatment according to an algorithm has been validated in several observational studies. The role of rifampin against device-associated staphylococcal infection has been evaluated in an animal model, in observational studies and in a controlled trial. Given the limited efficacy of traditional antibiotics in implant-associated infections, novel strategies such as coating of the device, vaccination against biofilms, and quorum-sensing inhibitors are promising future options for prevention and treatment.  相似文献   

2.
3.
Past and recent findings on tumor heterogeneity have led clinicians and researchers to broadly define cancer development as an evolving process. This evolutionary model of tumorigenesis has largely been shaped by seminal reports of fitness-promoting mutations conferring a malignant cellular phenotype. Despite the major clinical and intellectual advances that have resulted from studying heritable heterogeneity, it has long been overlooked that compositional tumor heterogeneity and tumor microenvironment (TME)-induced selection pressures drive tumor evolution, significantly contributing to tumor development and outcomes of clinical cancer treatment. In this review, we seek to summarize major milestones in tumor evolution, identify key aspects of tumor heterogeneity in a TME-dependent evolutionary context, and provide insights on the clinical challenges facing researchers and clinicians alike.  相似文献   

4.
The concept of state dissociation in humans was made possible only by applying information obtained from basic science animal research studies to the human condition--without which these often dramatic, and treatable conditions would have remained in the mystical, supra-natural, or psychiatric arenas, without appropriate or effective treatment options. Sleep or wakefulness occurring asynchronously in bits and pieces of the brain is a most useful concept. From our standpoint, the basic science work in the function and mechanism of sleep is pertinent, not only adding to our knowledge in these important areas for the sake of knowledge, but also in providing clinicians with important information that is of immense clinical importance. The payoff of such research has been great, and demands that it should be ongoing. The field of sleep research and sleep medicine is in a unique position to foster close interactions between basic scientists and clinicians, the result being basic science answers to clinical questions, and unanswered clinical questions guiding the direction of and reinforcing the basic science research. The clinical conditions discussed above underscore the value of close cooperation among those working at all levels: molecular, cellular, multi-cellular, and clinical. Continued study of state dissociation by both basic scientists and clinicians will undoubtedly identify and explain even more of these fascinating conditions, with important therapeutic implications. The reciprocal benefits of close collaboration between basic scientists and clinicians will continue to be realized.  相似文献   

5.
Evolving concepts of thyroid hormone action.   总被引:5,自引:0,他引:5  
J H Oppenheimer 《Biochimie》1999,81(5):539-543
The past 25 years have witnessed dramatic changes in our concepts of thyroid hormone action. Progress in this area was made possible by the recognition of the central role of triiodothyronine in mediating thyroid hormone action and the recognition of specific nuclear receptors in target tissues as demonstrated by displacement studies. The cloning of the receptors and receptor variants has enabled investigators to undertake detailed analyses of the biochemical events which underlie the physiological and pathological action of thyroid hormone.  相似文献   

6.
7.
Traditional methods of cancer treatment are limited in their efficacy due to both inherent and acquired factors. Many different studies have shown that the generation of ceramide in response to cytotoxic therapy is generally an important step leading to cell death. Cancer cells employ different methods to both limit ceramide generation and to remove ceramide in order to become resistant to treatment. Furthermore, sphingosine kinase activity, which phosphorylates sphingosine the product of ceramide hydrolysis, has been linked to multidrug resistance, and can act as a strong survival factor. This review will examine several of the most frequently used cancer therapies and their effect on both ceramide generation and the mechanisms employed to remove it. The development and use of inhibitors of sphingosine kinase will be focused upon as an example of how targeting sphingolipid metabolism may provide an effective means to improve treatment response rates and reduce associated treatment toxicity. This article is part of a Special Issue entitled Tools to study lipid functions.  相似文献   

8.
Anaerobic biofilm infections in cystic fibrosis   总被引:4,自引:0,他引:4  
Pseudomonas aeruginosa is an important pathogen that infects the lungs of cystic fibrosis patients. A paper published in the October issue of Developmental Cell proves that the bacterial cells in the lung live in anaerobic biofilms and adopt a metabolic pattern and a phenotype that differ significantly from those of test tube-grown cells, and even from those of aerobic biofilms.  相似文献   

9.
Evolving concepts in plant glycolysis: two centuries of progress   总被引:4,自引:0,他引:4  
Glycolysis, the process responsible for the conversion of monosaccharides to pyruvic acid, is a ubiquitous feature of cellular metabolism and was the first major biochemical pathway to be well characterized. Although the majority of glycolytic enzymes are common to all organisms, the past quarter of a century has revealed that glycolysis in higher plants possesses numerous distinctive features. Research in the nineteenth century established convincingly that plants carry out alcoholic fermentation under anaerobic conditions. In 1878, Wilhelm Pfeffer asserted that a non-oxygen-requiring ‘intramolecular respiration’ was involved in the aerobic respiration of plants. Between 1900 and 1950 it was demonstrated that plants metabolize sugar and starch by a glycolytic pathway broadly similar to that of yeasts and muscle tissue. In 1948, the first purification and characterization of a plant glycolytic enzyme, aldolase, was published by Paul Stumpf. By 1960 the presence of each of the 10 enzymes of glycolysis, presumed at the time to be located in the cytosol, had been confirmed in higher plants. Shortly after 1960 it was shown that the mechanism of glycolytic regulation in plants had features in common with that of animals and yeasts, especially as regards the important role played by the enzyme phosphofructokinase; but important regulatory properties peculiar to plants were soon demonstrated. In the last 30 years, higher-plant glycolysis has been found to exhibit a number of additional characteristics peculiar to plant systems. One conspicuous feature of plant glycolysis, discovered in the 1970s, is the presence of a complete or nearly complete sequence of glycolytic enzymes in plastids, distinct and spatially separated from the glycolytic enzymes located in the cytosol. Plastidic and cytosolic isoenzymes of glycolysis have been shown to differ in their kinetic and regulatory properties, suggesting that the two pathways are independently regulated. Since about 1980 it has become increasingly clear that the cytosolic glycolysis of plants may make use of several enzymes other than the conventional ones found in yeasts, muscle tissue and plant plastids: these enzymes include a pyrophosphate-dependent phosphofructokinase, a non-reversible and nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, a phosphoenolpyruvate phosphatase (vacuolar location) and a three-enzyme sequence able to produce pyruvate from phosphoenolpyruvate avoiding the pyruvate-kinase step. These non-conventional enzymes may catalyze glycolysis in the plant cytosol especially under conditions of metabolic stress. Experiments on transgenic plants possessing significantly elevated or reduced (reduced to virtually nil in some cases) levels of glycolytic enzymes are currently playing an important part in improving our understanding of the regulation of plant glycolysis; such experiments illustrate an impressive degree of flexibility in the pathway's operation. Plant cells are able to make use of enzymes bypassing or substituting for several of the conventional enzymic steps in the glycolytic pathway; the extent and conditions under which these bypasses operate are the subject of current research. The duplication of the glycolytic pathway in plants and the flexible nature of the pathway have possibly evolved in relation to the crucial biosynthetic role played by plant glycolysis beyond its function in energy generation; both functions must proceed if a plant is to survive under varying and often stressful environmental or nutritional conditions.  相似文献   

10.
Heterozygosity for PAX6 deficiency (PAX6+/-) results in aniridia. Corneal changes in aniridia-related keratopathy (ARK) include corneal vascular pannus formation, conjunctival invasion of the corneal surface, corneal epithelial erosions and epithelial abnormalities, which eventually result in corneal opacity and contribute to visual loss. Corneal changes in aniridia have been attributed to congenital deficiency of corneal limbal stem cells. The aim of this paper is to review the potential mechanisms that may underlie the pathogenesis of aniridia related keratopathy. Current evidence, based on clinical observations and an animal model of aniridia suggest that the proliferative potential of the corneal limbal stem cells may not primarily be impaired. The corneal changes in aniridia may be related to an abnormality within the limbal stem cell niche. The mechanisms underlying progressive corneal pathology in aniridia appear multi-factorial and include: (1) abnormal corneal healing responses secondary to anomalous extracellular matrix metabolism; (2) abnormal corneal epithelial differentiation leading to fragility of epithelial cells; (3) reduction in cell adhesion molecules in the PAX6 heterozygous state, rendering the cells susceptible to natural shearing forces; and (4) conjunctival and corneal changes leading to the presence of cells derived from conjunctiva on the corneal surface.  相似文献   

11.
Endophthalmitis is an important disease of the eye that is most frequently caused by postoperative and post-traumatic introduction of bacteria into the posterior segment of the eye. In the case of severe infections, visual acuity is greatly damaged or completely lost. Much work has focused on the ability of planktonic bacteria to cause infection and ocular damage while little work has focused on chronic infections in endophthalmitis mediated by the formation of bacterial biofilms on the surface of the lens. This review focuses on the interaction of Staphylococcus aureus and Staphylococcus epidermidis lens-associated biofilms in endophthalmitis. Additionally, this review highlights some relevant biofilm-immune system interactions and outlines a new in vivo mouse model to explore biofilm-related infections in endophthalmitis.  相似文献   

12.
In the natural environment, microorganisms exist together in self-produced polymeric matrix biofilms. Often, several species, which can belong to both bacterial and fungal kingdoms, coexist and interact in ways which are not completely understood. Biofilm infections have become prevalent largely in medical settings because of the increasing use of indwelling medical devices such as catheters or prosthetics. These infections are resistant to common antimicrobial therapies because of the inherent nature of their structure. In terms of infectious biofilms, it is important to understand the microbe-microbe interactions and how the host immune system reacts in order to discover therapeutic targets. Currently, single infection immune response studies are thriving with the use of invertebrate models. This review highlights the advances in single microbial-host immune response as well as the promising aspects of polymicrobial biofilm study in five invertebrate models: Lemna minor (duckweed), Arabidopsis thaliana (thale cress), Dictyostelium discoideum (slime mold), Drosophila melanogaster (common fruit fly), and Caenorhabditis elegans (roundworm).  相似文献   

13.
Recent public announcements stated that 60% to 85% of all microbial infections involve biofilms developed on natural tissues (skin, mucosa, endothelial epithelia, teeth, bones) or artificial devices (central venous, peritoneal and urinary catheters, dental materials, cardiac valves, intrauterine contraceptive devices, contact lenses, different types of implants). Prosthetic medical devices are risk factors of chronic infections in developed countries and these infections are characterized by slow onset, middle intensity symptoms, chronic evolution and resistance to antibiotic treatment. In case of biofilm development, a series of genes (40-60% of the prokaryotic genome) are modulated (activated/inhibited) by complex cell to cell signalling mechanisms and the biofilm cells become phenotypically distinct from their counterpart--free cells, being more resistant to stress conditions (including all types of antimicrobial substances); this resistance is phenotypical, behavioural and, more recently, called TOLERANCE. Four major mechanisms can account for biofilm antibiotic tolerance: (1) the failure of antibiotic penetration into the depth of a mature biofilm due to the biofilm matrix; (2) the accumulation of high levels of antibiotic degrading enzymes; (3) in the depth of biofilm, cells are experiencing nutrient limitation entering in a slow-growing or starved state; slow-growing or non-growing cells being not highly susceptible to antimicrobial agents, this phenomenon could be amplified by the presence of phenotypic variants or "persisters" and (4) biofilm's bacteria can turn on stress-response genes and switch to more tolerant phenotypes on exposure to environmental stresses; (5) genetic changes, probably selected by different stress conditions, such as mutations and gene transfer could occur inside the biofilm. In these conditions, biofilm associated infections require a different approach, both clinically and paraclinically.  相似文献   

14.
Recent evidence shows that many hospital-acquired infections, including most device-associated infections, involve the persistence of sessile organisms in the form of biofilms that are attached to a device surface and encased in an extracellular matrix. The cells in this environment exhibit an altered phenotype with respect to antimicrobial resistance and thus are extraordinarily difficult to eradicate without device removal. Although a number of implantable and topical devices are at risk for Candida biofilm formation, this review focuses on the diagnosis of the most common of these infections, biofilm growth on the surface of central venous catheters and urinary catheters.  相似文献   

15.
Tuberculosis in the United States is evolving in nearly all respects--epidemiology, diagnosis, treatment, and prophylaxis. Today a relatively larger segment of the population has predisposing factors to infection with tuberculosis. There is a greater percentage of people who are elderly, who have immigrated from countries endemic for tuberculosis, or who are immunosuppressed due to medications necessary for other conditions, because of malignancies, or because of infection with HIV. Skin test classifications have been revised to give different meanings to different-sized areas of induration at the injection site for defined populations. More sensitive, more specific, and faster diagnostic laboratory tests for tuberculosis are being developed. Short-course chemotherapy of from six to nine months is now accepted as standard treatment, regardless of exactly which of the proven regimens of antibiotics or accepted lengths of therapy is used. Patient compliance is improved with the shorter courses both for treatment and for prophylaxis. Better compliance with therapy results in better treatment outcomes of infections with Mycobacterium tuberculosis.  相似文献   

16.
17.
The detection and identification of bacteria present in natural and industrial ecosystems is now entirely based on molecular systems that detect microbial RNA or DNA. Culture methods were abandoned, in the 1980s, because direct observations showed that <1% of the bacteria in these systems grew on laboratory media. Culture methods comprise the backbone of the Food and Drug Administration-approved diagnostic systems used in hospital laboratories, with some molecular methods being approved for the detection of specific pathogens that are difficult to grow in vitro. In several medical specialties, the reaction to negative cultures in cases in which overt signs of infection clearly exist has produced a spreading skepticism concerning the sensitivity and accuracy of traditional culture methods. We summarize evidence from the field of orthopedic surgery, and from other medical specialties, that support the contention that culture techniques are especially insensitive and inaccurate in the detection of chronic biofilm infections. We examine the plethora of molecular techniques that could replace cultures in the diagnosis of bacterial diseases, and we identify the new Ibis technique that is based on base ratios (not base sequences), as the molecular system most likely to fulfill the requirements of routine diagnosis in orthopedic surgery.  相似文献   

18.
More than 40% of nosocomial infections are those of the urinary tract, most of these occurring in catheterized patients. Bacterial colonization of the urinary tract and catheters results not only in infection, but also various complications, such as blockage of catheters with crystalline deposits of bacterial origin, generation of gravels and pyelonephritis. The diversity of the biofilm microbial community increases with duration of catheter emplacement. One of the most important pathogens in this regard is Proteus mirabilis. The aims of this study were to identify and assess particular virulence factors present in catheter-associated urinary tract infection (CAUTI) isolates, their correlation and linkages: three types of motility (swarming, swimming and twitching), the ability to swarm over urinary catheters, biofilm production in two types of media, urease production and adherence of bacterial cells to various types of urinary tract catheters. We examined 102 CAUTI isolates and 50 isolates taken from stool samples of healthy people. Among the microorganisms isolated from urinary catheters, significant differences were found in biofilm-forming ability and the swarming motility. In comparison with the control group, the microorganisms isolated from urinary catheters showed a wider spectrum of virulence factors. The virulence factors (twitching motility, swimming motility, swarming over various types of catheters and biofilm formation) were also more intensively expressed.  相似文献   

19.
Previous physiological and biochemical studies suggest the existence of an endogenous renin-angiotensin system (RAS) in the kidney. However, these data cannot exclude the contribution of the circulating RAS. Proof of the local synthesis of RAS components in the kidney has been obtained recently through the use of molecular biological techniques. Using Northern blot analysis, we have demonstrated the intrarenal expression of renin, angiotensinogen, and angiotensin-converting enzyme messenger RNAs. Employing in situ hybridization histochemistry, we have localized the intrarenal tissue sites of renin and angiotensinogen messenger RNA synthesis. Renin gene expression was found in cells of the juxtaglomerular apparatus. Angiotensinogen mRNA was primarily produced in the proximal convoluted tubule with lesser amounts in glomerular tufts and vasculature. These findings led us to hypothesize that the proximal tubule is a major site of renal Ang II synthesis and that locally synthesized Ang II might directly modulate tubular function. Both genes are subject to feedback regulation. Our studies showed that Ang II exerted a stimulatory effect on angiotensinogen but a negative feedback effect on renin gene expression. Dietary NaCl restriction stimulated the expression of both genes, although the onset of renin gene activation required more prolonged sodium chloride restriction. Furthermore, our data indicated that the sodium cation, irrespective of the anion, was primarily important in regulating renal angiotensinogen mRNA levels. Our studies also showed altered intrarenal renin or angiotensinogen expressions in pathophysiological states, e.g. in experimental heart failure and the spontaneously hypertensive rat. Taken together, these data support the existence of a intrarenal RAS and suggest its potential roles in the regulation of renal function in health and disease.  相似文献   

20.
Serratia marcescens is an opportunistic pathogen causing severe urinary tract infections in hospitalized individuals. Infections of S. marcescens are of great concern because of its increasing resistance towards conventional antibiotics. Quorum sensing (QS)-a cell to cell communication-system of S. marcescens acts as a global regulator of almost all the virulence factors and majorly its biofilm formation. Since, the QS system of S. marcescens directly accords to its pathogenesis, targeting QS system will provide an improved strategy to combat drug resistant pathogens. In the present study, QS system of S. marcescens has been used as target and its inhibition has been studied upon exposure to bioactives from coral associated bacteria (CAB). This study also emphasises the potential of CAB in producing bioactive agents with anti-QS and antibiofilm properties. Two CAB isolates CAB 23 and 41 have shown to inhibit biofilm formation and the production of QS dependent virulence factors like prodigiosin, protease, lipase and swarming motility. The study, on the whole explicates the potential of QS system as a target to treat drug resistant bacterial infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号