首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of enzyme cooperativity are examined by studying a homotropic dimeric enzyme with identical reaction sites, both of which follow irreversible Michaelis-Menten kinetics. The problem is approached via scaling and linearization of the governing mass action kinetic equations. Homotropic interaction between the two sites are found to depend on three dimensionless groups, two for the substrate binding step and one for the chemical transformation. The interaction between the two reaction sites is shown capable of producing dynamic behavior qualitatively different from that of a simple Michaelis-Menten system; when the two sites interact to increase enzymatic activity over that of two independent monomeric enzymes (positive cooperativity) damped oscillatory behavior is possible, and for negative cooperativity in the chemical transformation step a multiplicity of steady states can occur, with one state unstable and leading to runaway behavior. Linear analysis gives significant insight into system dynamics, and their parametric sensitivity, and a way to identify regions of the parameter space where the approximate quasi-stationary and quasi-equilibrium analyses are appropriate.  相似文献   

2.
A Sobieszek 《Biochemistry》1985,24(5):1266-1274
Phosphorylation of vertebrate smooth muscle myosin or its isolated 20 000-dalton light chains by myosin light-chain kinase (MLCK) was found to follow first-order kinetics not only at low ([M] much less than Km) but also at high ([M] greater than or equal to Km) substrate concentration. This observation can most simply be explained by a product inhibition for which the Michaelis constants (Km) of the enzyme for the substrate (dephosphorylated myosin) and for the product (phosphorylated myosin) are approximately the same. For such a case, integration of the kinetic velocity equation gives an exponential formula similar to that of a true first-order reaction, the only difference being that its rate constant (k) depends additionally on the initial substrate concentration ([M]0). The standard kinetic constants (k, Km, Vmax) have been calculated by using this pseudo-first-order relationship. Independent evidence for the validity of the derived kinetic relationship was obtained from binding studies with myosin and MLCK. These showed that MLCK binds to phosphorylated and dephosphorylated myosin with approximately equal affinity (Ks = 30 X 10(-9) M). The possible applicability of the same kinetic relationship to other enzyme systems is discussed.  相似文献   

3.
1. Reactions of enzymes with site-specific reagents may involve intermediate adsorptive complexes formed by parallel reactions in several protonic states. Accordingly, a profile of the apparent second-order rate constant for the modification reaction (Kobs., the observed rate constant under conditions where the reagent concentration is low enough for the reaction to be first-order in reagent) against pH can, in general, reflect free-reactant-state molecular pKa values only if a quasi-equilibrium condition exists around the reactive protonic state (EHR) of the adsorptive complex. 2. Usually the condition for quasi-equilibrium is expressed in terms of the rate constants around EHR: (formula: see text) i.e. k mod. less than k-2. This often cannot be assessed directly, particularly if it is not possible to determine kmod. 3. It is shown that kmod. must be much less than k-2, however, if kobs. (the pH-independent value of kobs.) less than k+2. 4. Since probable values of k+2 greater than 10(6)M-1.S-1 and since values of kobs. for many modification reactions less than 10(6)M-1.S-1, the equilibrium assumption should be valid, and kinetic study of such reactions should provide reactant-state pKa values. 5. This may not apply to catalyses, because for them the value of kcat./Km may exceed 5 X 10(5)M-1.S-1. 6. The conditions under which the formation of an intermediate complex by parallel pathways may come to quasi-equilibrium are discussed in the Appendix.  相似文献   

4.
Several laboratories have now shown that monoclonal antibodies having enzyme-like properties can be generated. The generation of catalytic antibodies makes use of the same basic procedures that have been used for the generation of binding monoclonal antibodies, yet the process involves an additional crucial step: screening for catalytic activity. In this paper we address the unique problems involved in the detection of inefficient catalytic activity that is accompanied by uncatalyzed background reaction. An analysis that allows optimization of assay conditions and estimation of the minimal antibody concentration required to observe catalysis is presented. The results indicate that the structure of the substrate should be optimized to increase its affinity (i.e., decrease its Km) and reduce its concentration to pseudo-first-order conditions (S(O) much less than Km) so that the signal observed in the presence of a catalytic antibody (delta Pcat) is significantly higher than that of the background (delta P(uncat)). Other factors involved in the screening procedures, e.g., sensitivity of the assay, solubility and reactivity of the substrate, and purity of the antibody preparation, are also discussed. The effect of these assay parameters on the ability to detect catalytic activity is demonstrated with p-nitrophenyl ester-hydrolyzing antibodies.  相似文献   

5.
We examined the action of porcine pancreatic and bee-venom phospholipase A2 towards bilayers of phosphatidylcholine as a function of several physical characteristics of the lipid-water interface. 1. Unsonicated liposomes of dimyristoyl phosphatidylcholine are degraded by both phospholipases in the temperature region of the phase transition only (cf. Op den Kamp et al. (1974) Biochim. Biophys. Acta 345, 253--256 and Op den Kamp et al. (1975) Biochim. Biophys. Acta 406, 169--177). With sonicates the temperature range in which hydrolysis occurs is much wider. This discrepancy between liposomes and sonicates cannot be ascribed entirely to differences in available substrate surface. 2. Below the phase-transition temperature the phospholipases degrade dimyristoyl phosphatidylcholine single-bilayer vesicles with a strongly curved surface much more effectively than larger single-bilayer vesicles with a relatively low degree of curvature. 3. Vesicles composed of egg phosphatidylcholine can be degraded by pancreatic phospholipase A2 at 37 degrees C, provided that the substrate bilayer is strongly curved. The bee-venom enzyme shows a similar, but less pronounced, preference for small substrate vesicles. 4. In a limited temperature region just above the transition temperature of the substrate the action of both phospholipases initially proceeds with a gradually increasing velocity. This stimulation is presumably due to an increase of the transition temperature, effectuated by the products of the phospholipase action. 5. Structural defects in the substrate bilayer, introduced by sonication below the phase-transition temperature (cf. Lawaczeck et al. (1976) Biochim. Biophys. Acta 443, 313--330) facilitate the action of both phospholipases. The results lead to the general conclusion that structural irregularities in the packing of the substrate molecules facilitate the action of phospholipases A2 on phosphatidylcholine bilayers. Within the phase transition and with bilayers containing structural defects these irregularities represent boundaries between separate lipid domains. The stimulatory effect of strong bilayer curvature can be ascribed to an overall perturbation of the lipid packing as well as to a change in the phase-transition temperature.  相似文献   

6.
W Gibb 《Steroids》1979,33(4):459-466
A sensitive accurate assay for the placental microsomal 3 beta-hydroxysteroid dehydrogenase (E.C.1.1.1.51) has been developed using tritiated substrates. Kinetic analysis of the enzyme with 3 beta-hydroxy-5-androsten-17-one and 3 beta-hydroxy-5-pregnen-20-one indicates that the apparent Km values for these substrates are orders of magnitude less than previously described. Analyses were carried out with microsomal preparations from two different placentas. For placenta 1 the apparent Km value for 3 beta-hydroxy-5-androsten-17-one was 14 nM and for 3 beta-hydroxy-5-pregnen-20-one was 36 nM; for placental 2 apparent Km values were 19 nM and 42 nM respectively. The analyses were performed over wide ranges of substrate concentration (about 200 fold), both above and below the Km values and no deviation from linearity of Eadie-Hoftsee plots was observed.  相似文献   

7.
8.
When information concerning whether or not a ligand interacts with the same enzyme species as do the substrates, the variation of the Michaelis constant Km (for each substrate) with ligand concentration is sometimes used as a diagnostic. It is shown that the Michaelis constant is of no particular value in this respect and may be misleading. Thus, depending on the mechanism, Km may vary with ligand concentration even though the ligand interacts with species far removed in the mechanism from the substrate-binding steps, and it may stay constant in cases where the ligand competes directly for the free enzyme. In contrast, the slope of a double-reciprocal plot of the kinetic data (= Km/Vmax.) (or, equivalently, the ordinate intercept of a Hanes plot A/v versus A, where A is the substrate concentration) independently of the particular mechanism involved uniquely signifies whether or not such interaction occurs. The results clearly indicate that, for purposes other than communicating the substrate concentration yielding control of the enzymic activity, usage of Km and its variation with ligand concentration should be avoided and interest instead focused on the slope, in accordance with the long-established rules of Cleland [Biochim. Biophys. Acta (1963) 67, 188-196], for which the present analysis provides the formal framework.  相似文献   

9.
To facilitate mechanistic interpretation of the kinetics of time-dependent inhibition of enzymes and of similar protein modification reactions, it is important to know when the equilibrium assumption may be applied to the model: formula: (see text). The conventional criterion of quasi-equilibrium, k + 2 less than k-1, is not always easy to assess, particularly when k + 2 cannot be separately determined. It is demonstrated that the condition k + 2 less than k-1 is necessarily true, however, when the value of the apparent second-order rate constant for the modification reaction is much smaller than the value of k + 1. Since k + 1 is commonly at least 10(7)M-1.S-1 for substrates, it is probable that the equilibrium assumption may be properly applied to most irreversible inhibitions and modification reactions.  相似文献   

10.
A convenient and accurate procedure for determining the kinetic parameter Vmax./Km is described. This avoids the error in the usual method of taking the observed first-order rate constant of an enzymic reaction at low substrate concentration as Vmax./Km. A series of reactions is used in which the initial concentration of substrate is below Km (e.g. from 5% to 50% of Km). Measurements are taken over the same extent of reaction (e.g. 70%) for each member of the series, and treated as if the kinetics were truly first-order. The reciprocal of the observed first-order rate constant is then plotted against the initial concentration of substrate: the reciprocal of the ordinate intercept is Vmax./Km. The procedure, as well as being applicable to simple reactions, is shown to be valid when there is competitive inhibition by the product, or when the reaction is reversible, or when there is competitive or mixed inhibition. The hydrolysis of cephalosporin C by a beta-lactamase from Pseudomonas aeruginosa is used to illustrate the method.  相似文献   

11.
Phenylthiazolones (PTAs) of arginine and its homologs and analogs, homoarginine, norarginine (alpha-amino-gamma-guanidinobutyric acid), canavanine, and gamma-hydroxyarginine, were prepared. A steady-state kinetic analysis of the trypsin [EC 3.4.21.4]-catalyzed hydrolysis reactions was carried out and the kinetic parameters for these internal thioesters were compared with those for normal linear ester substrates. PTA-gamma-hydroxyarginine was so labile that hydrolysis by the enzyme could not be followed. PTA-arginine has a specificity constant (Kcat/Km) comparable to that for the Nalpha-unblocked arginine ester substrate, though the value is about 0.1% of that for a specific ester substrate, Nalpha-tosylarginine methyl ester. PTA derivatives of canavanine and homoarginine were hydrolyzed with Kcat/Km walues of the same order of magnitude as that for PTA-arginine. However, PTA-noraginine was much less susceptible to tryptic hydrolysis that PTA-homoarginine, while the linear esters of norarginine are known to be more susceptible than those of homoarginine.  相似文献   

12.
Yin Q  Park HH  Chung JY  Lin SC  Lo YC  da Graca LS  Jiang X  Wu H 《Molecular cell》2006,22(2):259-268
Caspase-9 activation is critical for intrinsic cell death. The activity of caspase-9 is increased dramatically upon association with the apoptosome, and the apoptosome bound caspase-9 is the caspase-9 holoenzyme (C9Holo). In this study, we use quantitative enzymatic assays to fully characterize C9Holo and a leucine-zipper-linked dimeric caspase-9 (LZ-C9). We surprisingly show that LZ-C9 is more active than C9Holo for the optimal caspase-9 peptide substrate LEHD-AFC but is much less active than C9Holo for the physiological substrate procaspase-3. The measured Km values of C9Holo and LZ-C9 for LEHD-AFC are similar, demonstrating that dimerization is sufficient for catalytic activation of caspase-9. The lower activity of C9Holo against LEHD-AFC may be attributed to incomplete C9Holo assembly. However, the measured Km of C9Holo for procaspase-3 is much lower than that of LZ-C9. Therefore, in addition to dimerization, the apoptosome activates caspase-9 by enhancing its affinity for procaspase-3, which is important for procaspase-3 activation at the physiological concentration.  相似文献   

13.
5-Oxoprolinase catalyzes the coupled hydrolysis of ATP and 5-oxoproline to yield glutamate, ADP, and Pi; the reaction may be partially or completely uncoupled by structural modification of either substrate. In the present work, we found slow 5-oxoproline-dependent changes in the rates of hydrolysis of ITP, GTP, and UTP. For example, in the absence of 5-oxoproline, the enzyme catalyzes the hydrolysis of UTP at a rapid and constant rate. Following addition of 5-oxo-L-proline, the rate of hydrolysis decreases slowly; after about 25 min, a much slower and constant rate of hydrolysis is attained. This change in rate is associated with a decrease in Vmax and an increase in the Km for UTP. In similar studies with ATP, both Vmax and Km increase over a much shorter time period (less than 10 s). The findings indicate that 5-oxoprolinase is a hysteretic enzyme, and are consistent with the hypothesis that in the normal catalytic reaction, the binding of both ATP and 5-oxo-proline to the enzyme induces a conformational change that brings the substrates into a juxtaposition that facilitates the reaction.  相似文献   

14.
The steady-state kinetics of enzymes in tissues, cells, and concentrated lysates can be characterized using high-resolution nuclear magnetic resonance spectroscopy; this is possible because almost invariably there are differences in the spectra of substrates and products of a reaction and these spectra are obtainable even from optically opaque samples. We used 1H spin-echo NMR spectroscopy to study the hydrolysis of alpha-L-glutamyl-L-alanine by cytosolic peptidases of lysed human erythrocytes. Nonlinear regression of the integrated Michaelis-Menten expression onto the progress-curve data yielded, directly, estimates of Vmax and Km for the hydrolase; a procedure for analyzing progress curves in this manner was adapted and compared with a commonly used procedure which employs the Newton-Raphson algorithm. We also performed a sensitivity analysis of the integrated Michaelis-Menten expression; this yielded equations that indicate under what conditions estimates of Km and Vmax are most sensitive to variations in experimental observables. Specifically, we showed that the most accurate estimates of the steady-state parameters from analysis of progress curves are obtained when the initial substrate concentration is much greater than Km. Furthermore, estimates of these parameters obtained by such an analysis are most sensitive to data obtained when the reaction is 60-80% complete, having started with the highest practicable initial substrate concentration.  相似文献   

15.
Steady-state measurements of synthetic substrate hydrolysis by human alpha-thrombin in the presence of human fibrinogen, under experimental conditions where light scattering due to the formation of fibrin aggregates is negligible, have allowed for a quantitative evaluation of Km for fibrinogen. Measurements of Km for fibrinogen carried out at pH 7.5 and 37 degrees C as a function of NaCl, NaBr, KCl, and KBr concentration, from 50 to 500 mM, show that the derivative d ln Km/d ln a +/-, where a +/- is the mean ion activity, is constant over the entire range of salt concentrations and is strictly dependent on the particular salt present in solution. The values of d ln Km/d ln a +/- are found to be equal to 0.75 +/- 0.03 (NaCl), 0.90 +/- 0.01 (NaBr), 0.62 +/- 0.07 (KCl), and 0.60 +/- 0.03 (KBr). Measurements of Km for two synthetic amide substrates, under identical solution conditions, reveal practically no change in Km with salt concentration, while they show a significant decrease in kcat when Na+ salts are replaced by K+ salts. The drastic difference in the salt dependence of Km between fibrinogen and the synthetic amide substrate points out that a significant role may be played by the fibrinogen recognition site in the energetics of thrombin-fibrinogen interaction. The sensitivity of Km for fibrinogen to different salts unequivocally demonstrates that specific ion effects, rather than nonspecific ionic strength effects, modulate thrombin-fibrinogen interaction under experimental conditions of physiological relevance. Analysis of ion effects on clotting curves obtained at pH 7.5 and 37 degrees C also shows a drastic differential effect of cations and anions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The kinetic characteristics of substrate utilization by hepatic adenylate cyclase were investigated under a variety of incubation conditions, including veriations in pH, [substrate], [Mg2+], and in the absence or presence of glucagon. Activities were compared with ATP and 5'-adenylylimidodiphosphate (App(NH)p) as substrates. The Km for both substrates was about 50 muM; Vmax given with App(NH)p was about 40% lower than obtained with ATP as substrate. In the presence of a saturating concentration of substrate (1 mM), basal activity was increased 4-fold by increasing [Mg2+] from 5 to 50 mM. The stimulatory effect of Mg2+ was not due to an allosteric action since basal activity was only marginally enhanced (40%) when the substrate concentration was reduced to 10 muM. As suggested by deHaen ((1974 J. Biol. Chem. 249, 2756), it is likely that Mg2+ increases enzyme activity by decreasing the concentration of an inhibitory, unchelated form of substrate that competes with the productive magnesium-substrate complex at the active site. Activity-pH profiles differed with ATP and App(NH)p as substrates; a shift in pH optimum was observed which correlated with the different pKa of the terminal phosphate groups of ATP and App(nh)p, and which reflect the concentration of protonated substrate (ATPH-3 minus) present in the incubation medium. Accordingly, protonated substrate is the predominant inhibitory species of unchelated substrate and probably has a considerably higher affinity for the active site than does the magnesium-substrate complex. Glucagon-stimulated activity was less susceptible to inhibition by protonated substrate than is the basal state as evidenced by lower stimulatory effect when the [Mg2+] was increased from 5 to 20 mM. However, increasing the [Mg2+] from 20 to 50 mM resulted in marked inhibition of glucagon-stimulated activity, particularly in the presence of 10 muM substrate. Conversely, at a fixed [Mg2+], concentrations of substrate at least 20-fold higher than the Km were required to achieve maximal hormone-stimulated activity. These findings suggest that the unchelated, fully ionized form of substrate serves as an activating ligand, as has been observed with guanine nucleotides at considerably lower concentrations. Thus, Mg2+ affects adenylate cyclase activity by forming the productive substrate complex and by titrating the inhibitory protonated and activating free forms of substrate. As a result of these effects of unchelated substrate, it proved difficult to evaluate the kinetic parameters involved in substrate binding and utilization and the effects of hormone thereon when substrate was added as the only source of activating ligand. However, linear Michaelis kinetic data were obtained by adding the activating ligand 5'-guanylylimidodiphosphate with glucagon and by making appropriate adjustments of pH and [Mg2+]. Vmax was increased 4-fold without changes in Km by the actions of 5'-guanylylimidodiphosphate and glucagon.  相似文献   

17.
In conventional kinetic substrate assays the standard curve is plotted as observed reaction rate, upsilon obs, versus added substrate concentration, Sadd, and has a linearity limited to Sadd much less than Km. From this plot the blank reaction rate, upsilon bl, is easily estimated but not the contaminating substrate concentration, Scon, present in reagents (unless it is the only blank source). Thus the actual substrate concentration, S = Scon + Sadd, cannot be estimated as required for the various linear plots based on the Michaelis-Menten equation. We have derived an expression, (upsilon obs - upsilon bl)/Vapp = Sadd/(Kmapp + Sadd), containing only those parameters measured for a conventional standard curve (Vapp and Kmapp are obtained from a plot of (upsilon obs - upsilon bl) versus (upsilon obs - upsilon bl)/Sadd). A plot of (upsilon obs - upsilon bl)/Vapp versus Sadd/(Kmapp + Sadd) can be used as a standard curve with the following advantages over the conventional standard curve: (a) For all kinetic substrate assays it is identical and connects the points (0, 0) and (1, 1). Thus deviations from true Michaelis-Menten kinetics or erroneous kinetic constants are easily detected. (b) Since it is linear even above Km, the analytically useful range is considerably extended. (c) For assays with a wide dynamic range it can be used in lin-lin or log-log form. The procedure is illustrated for a kinetic assay of glycerol (Kmapp = 40 mumol/liter). The plot was found to be entirely linear in the range 0.07-100 mumol/liter (glycerol concentration in cuvette).  相似文献   

18.
The analysis of the initial-rate kinetics of the liver mitochondrial acetyl-CoA acetyltransferase (acetoacetyl-CoA thiolase) in the direction of acetoacetyl-CoA synthesis under product inhibition was performed. 1. Acetyl-CoA acetyltransferase shows a hyperbolic response of reaction velocity to changes in acetyl-CoA concentrations with an apparent Km of 0.237 +/- 0.001 mM. 2. CoASH is a (non-competitive) product inhibitor with a Kis of 22.6 microM and shifts the apparent Km for acetyl-CoA to the physiological concentration of this substrate in mitochondria (S0.5 = 1.12 mM in the presence of 121 microM CoASH). 3. CoASH causes a transformation of the Michaelis-Menten kinetics into initial-rate kinetics with four intermediary plateau regions. 4. The product analogue desulpho-CoA triggers a negative cooperativity as to the dependence of the reaction velocity on the acetyl-CoA concentration. These product effects drastically desensitize the acetyl-CoA acetyltransferase in its reaction velocity response to the acetyl-CoA concentrations and simultaneously extend the substrate dependence range. Thus a control of acetoacetyl-CoA synthesis by the substrate is established over the physiological acetyl-CoA concentration range. We suggest that this control mechanism is the key in establishing the rates of ketogenesis.  相似文献   

19.
1. Several peptides containing either of the sequences -Phe(NO2)-Trp- and -Phe(NO2)-Phe- and an uncharged hydrophilic group were synthesized, and the steady-state kinetics of their hydrolysis by pig pepsin (EC 3.4.23.1) and chicken liver cathepsin D (EC 3.4.23.5) were determined. Despite the presence of a hydrophilic group to increase substrate solubility, it was not possible to achieve the condition [S]0 much greater than Km, and, in some cases, only values of kcat./Km could be determined by measuring the first-order rate constant when [S]0 much less than Km. 2. Occupancy of the P2 and P3 sites considerably enhanced the specificity constant, and alanine was more effective than glycine at site P2. 3. The specificity constants for the hydrolysis by pepsin of those substrates in the present series that contain an amino acid residue at site P3 are considerably lower than for comparable substrates containing a cationic group. This difference does not apply to cathepsin D. 4. Hydrolyses with cathepsin D commonly exhibited a lag phase, and a possible explanation for this is given.  相似文献   

20.
The steady state kinetics and effects of salts on chicken breast phosphoglycerate mutase have been examined. The enzyme can catalyze three phosphoryl transfer reactions: mutase, bisphosphoglycerate phosphatase, and bisphosphoglycerate synthase. The mutase rate was measured in the favorable direction (Keq = glycerate-3-P/glycerate-2-P approximately equal to 12) using [2T]glycerate-2-P as substrate. The bisphosphoglycerate phosphatase activity was studied in the presence of the activator, glycolate-2-P. The latter is an analog of the glycerate-P's and appears to act as an abortive mutase substrate. The kinetic pattern obtained with both activities is that of a ping-pong mechanism with inhibition by the second substrate occurring at a lower concentration than the Km value for that substrate. The kinetic parameters for the mutase determined in 50 mM N-[tris(hydroxymethyl)methyl-2-amino]ethanesulfonate (TES)/sodium buffer containing 0.1 M KCl, pH 7.5, 25 degrees C are: Km glycerate-2,3-P2, 0.069 micron; Km glycerate-2-P, 14 micron; Km glycerate-3-P approximately 200 micron; Ki glycerate-2-P, 4 micron. The kinetic parameters for the phosphatase reaction in 50 mM triethanolamine/Cl- buffer, pH 7.5, 25 degrees C are: Km glycerate-2,3-P2, 0.065 micron:Km glycolate-2P, 479 micron; Ki glycolate-2-P, 135 micron. The enzyme is sensitive to changes in the ionic environment. Increasing salt concentrations activate the phosphatase in the presence of glycolate-2-P by decreasing the apparent Km of glycerate-2,3-P2. The effects are due to the anionic component and Cl- greater than acetate greater than TES. The same salts are competitive inhibitors with respect to glycolate-2-P. With high levels of KCl that produce a 30-fold decrease in the apparent maximal velocity due to competition with glycolate-2-P, the Km of glycerate-2,3-P2 remains low. These observations lead us to postulate that each monophosphoglycerate substrate has a separate site on the enzyme and that glycerate-2,3-P2 can bind to either site. The binding of anions to one site of the nonphosphorylated enzyme allows an increase in the on and off rates of glycerate-2,3-P2 at the alternate site. Salts inhibit the mutase reaction. The Km of glycerate-2,3-P2 is increased as is that of glycerate-2-P. The effect on the Km of glycerate-2,3-P2 is attributed to an increase in the off rate/on rate ratio for glycerate-2,3-P2. The bisphosphoglycerate synthase reaction is shown to require added glycerate-3-P. The equilibrium between enzyme and glycerate-1,3-P2 is favorable (Kdiss less than or equal 7 X 10(-8) M) and suggests that in the absence of a separate synthase this reaction may have functional significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号