首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two series of semispecific acyl donors, hydroxyalkyl esters of Z-Ala-OH and TV-modified carboxamidomethyl (Cam) esters of Z-Xaa-OH (Xaa = Ala, Leu, Phe) were synthesized as substrates for trypsin-catalyzed peptide synthesis. It follows from the specificity constants of these compounds, that the carboxamidomethyl derivatives are well accepted by trypsin due to favourable S2′ – P2′ interactions. These new substrates can be successfully used for the trypsin-mediated formation of dipeptide amides. The synthesis outcome depends on the amino acid in the P1 position, the ability of the leaving group to provide efficient interactions with the enzyme subsite and the hydrophobicity of the nucleophilic amino acid amide. The modified Cam esters give better peptide yields in comparison to the unmodified ones.  相似文献   

2.
The carboxypeptidase Y-catalyzed reaction of acyl transfer of acylamino acid and peptide residues from the corresponding esters to ammonia and to amides of amino acids has been studied, and conditions for obtaining amides of amino acids and peptides with the yields up to 90% found.  相似文献   

3.
alpha-Chymotrypsin (EC 3.4.21.1)-catalysed syntheses of peptides were performed with various N-acylated amino acid or peptide esters as donors, and amino acid derivatives, peptides or their derivatives as acceptors. Under optimal conditions the synthesis was almost quantitative. As acceptor nucleophiles, free amino acids or the ester derivatives were inadequate, but amino acid amides or hydrazides, di- or tri-peptides, or the amides, hydrazides and esters of the peptides were useful. The nucleophile specificity for synthesis was markedly similar to the leaving-group specificity in hydrolysis; hydrophobic or bulky amino acid residues were most effecient at both P1' and P2' positions [notation of Schechter & Berger (1967) Biochem. Biophys. Res. Commun. 27, 157-162], but L-proline as well as D-amino acid residues were the worst choices. The synthesis was further dependent on the solubility of the products synthesized; a higher yield of products was expected with lower solubility. As donor esters, good substrates were all useful. Accordingly, fragment condensation was possible by using N-acylated peptide esters and various peptides. The present study suggested that alpha-chymotrypsin may become a useful tool for peptide synthesis.  相似文献   

4.
Summary A new method of enzymatic peptide synthesis without any liquid added has been proposed. The method is based on the admixing of N-acylamino acid (peptide) esters and nucleophiles (amides or tert.-butylesters of amino acids or peptides, peptides) with various proteolytic enzymes such as α-chymotrypsin, trypsin, proteinase K, subtilisin, elastase and papain in the presence of Na2CO3. 10H2O. In most instances, acylating components were completely converted within a few hours giving satisfactory yields of desired peptide products.  相似文献   

5.
Derivatives of l-cysteine and the A chain of bovine insulin have been chemically modified at the cysteinyl β-sulfhydryl by certain sulfhydryl-specific alkyl alkanethiolsulfonate reagents. The alkanethiolation products possess mixed-disulfide side chains structurally similar to the side chains of lysine and phenylalanine and hence were studied here as substrates for trypsin and α-chymotrypsin, respectively. Kinetic parameters were obtained for the enzyme-catalyzed hydrolyses of the modified l-cysteine analogs and of specific reference amino acids which were derivatized analogously at both the α-amino and α-carboxyl groups and assayed identically. For both enzymes it was found that the specificity constants, kcatKm, for analog esters compare favorably with those for specific reference esters, whereas specificity constants for analog amides compare much less favorably with those for specific reference amides. This discrepancy is largely a consequence of the kcat values for the analog amides being relatively much lower than the corresponding values for the reference amides. Consistent with this trend, no detectable enzyme-catalyzed hydrolysis of the amide bonds at the sites of modified cysteine residues in the A chain of bovine insulin was observed. It is proposed that the predominant kinetic consequence of the mixed-disulfide side chains of the alkanethiolated cysteine moieties is a decrease in the acylation rate constants, k2, arising from an increase in the transition-state free energies of acylation.  相似文献   

6.
A novel carboxypeptidase (CPD-S3) from Penicillium janthinellum IBT 3991 has been isolated in a two-step purification procedure by cation exchange and affinity chromatography. The enzyme is a serine carboxypeptidase with a denatured molecular mass determined by SDS of 62 kDa of which 32% is carbohydrate. The isoelectric point is 5.1. CPD-S3 exhibits a high stability towards organic solvents and elevated temperatures. Besides the carboxypeptidase activity, CPD-S3 exhibits esterase, amidase, and carboxamidohydrolase activities. CPD-S3 favors substrates of -configuration with basic amino acid residues in either P1 or P1', and particularly dibasic substrates and medium-sized straight-chain alkyl esters for hydrolysis. In aminolysis of esters, amino acid amides and hydrazines coupled in good yield, but methyl esters poorly, and unlike other carboxypeptidases, free amino acids could not be coupled or transpeptidation effected to form amides. In ester semisynthesis, peptides with neutral, but not basic, residues in P1 could be esterified. The scope of applicability for enzymatic peptide synthesis is limited.  相似文献   

7.
Specific trypsin substrates (esters, anilides, amides, peptides) were shown to accelerate deacetylation of monoacetylated trypsin. The amidase activity of monoacetyl-, monopropyonyl-, and tetraformyl-trypsin was not manifested if the amidase activity of native enzyme was suppressed in these preparations by the ester substrates (benzoylarginine ethyl ester or p-nitrophenyl acetate). Therefore the differences in the residual amidase and esterase activities of these acylated trypsin preparations found earlier did not contradict the universality of the acylenzyme mechanism. These differences are due to the strong deacylating effect of specific substrate in its complex with the enzyme modified with nonspecific acyl residue. The latter fact is suggested to be an experimental confirmation of the "induced fit" hypothesis.  相似文献   

8.
Papain catalyzed synthesis of glyceryl esters of BOC(Z)-protected amino acids and peptides was performed at 40-50 degrees C in a 50 molar excess of glycerol. Equilibrium was achieved in 6-7 h. The maximal yield of esters (50-70%) was obtained at 10% of water and pH 3.2-3.4. A lower water concentration resulted in a sharp decrease of the ester yield. The synthesized glyceryl esters of neutral amino acids are good substrates for trypsin and can be used for peptide synthesis catalyzed for trypsin. Glycerol esters are also good substrates for other enzymes possessing esterase activity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 287-290, 1997.  相似文献   

9.
The action of serine (and cysteine) proteases on peptide esters proceeds, as a generalization, orders of magnitude faster than the corresponding enzymatic hydrolysis of peptide bonds or peptide amides. Esterolysis liberates an alcohol while generating a free carboxyl group on the peptide; the proton produced can be detected by the use of an appropriate indicator. The action of trypsin on benzyloxycarbonylalanylarginine methyl ester was used as a model for the development of a simple microtiter plate assay procedure that takes advantage of the speed of these reactions and the ease of detection afforded by the color change of the indicator. A family of ester substrates of the form benzyloxycarbonylalanyl-X-methyl ester, in which X is one of the 20 common amino acids, was synthesized to allow the determination of the primary specificity profiles of serine proteases. Using a 96-well microtiter plate the specificity profiles of four enzymes with all 20 substrates can be carried out in approximately 4 h per enzyme, including setting up and data processing. The primary substrate preferences of trypsin, chymotrypsin, thrombin, pancreatic elastase, α-lytic protease, subtilisin, and proteinase K were determined to demonstrate the method and were found to be in good general agreement with reported specificities established by more conventional means.  相似文献   

10.
Mono esters of a homologous series of diacids of dihydrotestosterone were synthesized and converted to the corresponding n-butyl amides. The relative binding affinities of these amides to androgen receptor were compared with the degree of purification of rat prostate androgen receptor by affinity columns prepared by linking the steroidal acid to amino Sepharose. There was good correlation between binding of the amide model to androgen receptor and the extent of purification by the affinity resin.  相似文献   

11.
The substrate specificities of two different molecular sizes of cathepsin A, A,L (large form) and A,S (small form), for synthetic substrates were examined kinetically. Both enzymes showed a similar broad substrate specificity against various acyl dipeptides, amino acid esters, and amino acid amides. Z-Phe-Ala and Ac-Phe-OEt were good substrates. Peptides containing hydrophobic amino acids were hydrolyzed rapidly. The presence of hydrophobic amino acid residues, not only at the C-terminal position but also at the second position and probably the third position from the C-terminal, resulted in an increase in the rate of hydrolysis. Peptides containing glycine and proline were hydrolyzed slowly. Inhibition studies with Z-D-Phe-D-Ala and Z-Phe suggested that the peptidase and esterase activities of the enzymes are both catalyzed by the same site of the enzyme molecule, but it remains to be elucidated whether or not the binding sites for peptides and esters are the same.  相似文献   

12.
We discuss in this article the origin and magnitude of the single bond rotational barrier in amides and esters. The high rotational barrier of amides is biochemically manifested in the limited conformational freedom of proteins, Since there are only two instead of three bonds to rotate about per arnino acid residue. On the basis of thermochemical estimates with model compounds, we find that the resonance energy of esters is somewhat higher than that of amides. However, the experimental rotational barrier for the former is considerably lower than the latter. We suggest esters have lower rotational barriers than the corresponding amides because they retain a large fraction of the resonance energy in the transition state. Justification is offerred using an orbital delocalization argument.  相似文献   

13.
Trypsin-catalyzed syntheses of peptides were performed using various N-acylated amino acid or peptide esters as donors and amino acid derivatives, peptides, or their derivatives as acceptors. The synthesis was almost quantitative under optimal conditions. Considerably more enzyme and a more alkaline pH were necessary for synthesis than hydrolysis. Another very important condition was the concentration of the starting materials; higher concentrations resulted in much better product yields. The nucleophile specificity for synthesis was also important; hydrophobic or bulky amino acid residues were most efficient at the P1' position, and L-proline as well as D-amino acid residues were the worst choices. The synthesis was also dependent on the solubility of the products synthesized; the yield was higher with products of lower solubility. As donor esters, good substrates were all useful. Accordingly, fragment condensation was possible using N-acylated peptide esters and various peptides. The present study suggests that trypsin may become a useful tool for peptide synthesis.  相似文献   

14.
Structure-activity relationships for the inhibition of thrombin and trypsin by N alpha-substituted amidinophenyl-alpha-aminoalkylcarboxylic acid amides are presented. Secondary cyclic amides of N alpha-substituted 4-amidinophenylalanine and 2-amino-5-(4-amidinophenyl)valeric acid were found to be potent and specific inhibitors of thrombin, whereas trypsin was inhibited strongly by primary amides of 2-amino-4-(4-amidinophenyl) butyric acid. For this type of inhibitor the carbon amide structure seems to play a decisive role in the enzyme-inhibitor interaction.  相似文献   

15.
Various esters and amides of benzoylarginine and of benzyloxycarbonylarginine were subjected to enzymic hydrolysis at pH 8.5 and 7.2 by soybean trypsin-like enzyme (STLE). The kcat values for the hydrolysis of esters and amides were essentially identical regardless of the kind of leaving group. These results suggest that the STLE-catalyzed hydrolysis of ester and amide substrates proceeds via an acylenzyme intermediate and that the deacylation step is rate-determining. Hydrolysis of various 4-methylcoumaryl-7-amides of varying chain length and amino acid sequence was carried out at pH 8.5. Analysis of kinetic parameters revealed that STLE does not exhibit any remarkable subsite requirement, but somewhat preferentially hydrolyzes shorter substrates. These observations are consistent with the fact that STLE does not hydrolyze protein substrates or oxidized insulin B chain but hydrolyzes oligopeptides (Nishikata, M. (1984) J. Biochem. 95, 1169-1177). It is possible that the active site of STLE is located at a deep position in the enzyme molecule. From the pH dependency of kcat/Km, the participation of a histidine residue in the catalytic process of STLE was suggested.  相似文献   

16.
Penicillin V acylase from Streptomyces mobaraensis (Sm-PVA) showed high acyl-transfer activity in reactions using methyl esters of carboxylic acid (acyl donor) and amino compounds (nucleophile), to produce the corresponding amides. Moreover, Sm-PVA had broad substrate specificity, as indicated by the fact that it catalyzed the efficient synthesis of beta-lactam antibiotics, capsaicin derivatives, and N-fatty-acyl-amino acid/N-fatty-acyl-peptide derivatives.  相似文献   

17.
Patricelli MP  Cravatt BF 《Biochemistry》1999,38(43):14125-14130
The greater reactivity of esters relative to amides has typically been reflected in their faster rates of both solvolysis and enzymatic hydrolysis. In contrast to this general principle, the serine hydrolytic enzyme fatty acid amide hydrolase (FAAH) was found to degrade amides and esters with equivalent catalytic efficiencies. Mutation of a single lysine residue (K142) to alanine (K142A) abolished this property, generating a catalytically compromised enzyme that hydrolyzed esters more than 500-fold faster than amides. Conversion of this same lysine residue to glutamic acid (K142E) produced an enzyme that also displayed severely diminished catalytic activity, but one that now maintained FAAH's ability to react with amides and esters at competitive rates. The significant catalytic defects exhibited by both the K142A and K142E mutants, in conjunction with their altered pH-rate profiles, support a role for lysine 142 as a general base involved in the activation of FAAH's serine nucleophile. Moreover, the dramatically different amide versus ester selectivities observed for the K142A and K142E mutants reveal that FAAH's catalytic efficiency and catalytic selectivity depend on distinguishable properties of the same residue, with the former relying on a strong catalytic base and the latter requiring coupled general acid-base catalysis. We hypothesize that FAAH's unusual catalytic properties may empower the enzyme to function effectively as both an amidase and esterase in vivo.  相似文献   

18.
The association constants of various amino acids or their derivatives (methyl esters, amides, etc.) with mononucleosides in aqueous solutions have been measured by using precise ultraviolet difference absorbance photometry. Some of the results are in agreement with those of the previous solubility experiments. The superiority of this ultraviolet absorbance method over the solubility experiments is that it can discriminate between stacking and hydrogen-bonding interactions. New types of specific interactions of some amino acids with nucleic acid bases by using a peptidyl carboxylate ion and another donor or acceptor in their side chains have been found using this technique.  相似文献   

19.
Caffeic acid has been widely recognized as a versatile pharmacophore for synthesis of new chemical entities, among which caffeic acid derived phenethyl esters and amides are the most extensively-investigated bioactive compounds with potential therapeutical applications. However, the natural biosynthetic routes for caffeic acid derived phenethyl esters or amides remain enigmatic, limiting their bio-based production. Herein, product-directed design of biosynthetic schemes allowed the development of thermodynamically favorable pathways for these compounds via acyltransferase (ATF) mediated trans-esterification. Production based screening identified a microbial O-ATF from Saccharomyces cerevisiae and a plant N-ATF from Capsicum annuum capable of forming caffeic acid derived esters and amides, respectively. Subsequent combinatorial incorporation of caffeic acid with various aromatic alcohol or amine biosynthetic pathways permitted the de novo bacterial production of a panel of caffeic acid derived phenethyl esters or amides in Escherichia coli for the first time. Particularly, host strain engineering via systematic knocking out endogenous caffeoyl-CoA degrading thioesterase and pathway optimization via titrating co-substrates enabled production enhancement of five caffeic acid derived phenethyl esters and amides, with titers ranging from 9.2 to 369.1 mg/L. This platform expanded the capabilities of bacterial production of high-value natural aromatic esters and amides from renewable carbon source via tailoring non-natural biosynthetic pathways.  相似文献   

20.
The specificity of porcine elastase (EC 3.4.4.7) has been studied. Ethyl esters derived from benzoyl amino acids with straight side chains are better substrates than those with branched side chains; the best substrate is norvaline ester. In the series of benzoylalanine alkyl esters the alcohol moiety markedly affects the susceptibility. The benzyl ester was found to be the best nonactivated substrate derived from monomeric amino acid. With elastase acylation is rate limiting, in contrast to chymotrypsin and trypsin where deacylation is generally the rate determining step with specific ester substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号