首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of folinic acid (5-formyl-5,6,7,8-tetrahydrofolate) to Lactobacillus casei dihydrofolate reductase has been measured. The natural 6S, alpha S diastereoisomer has a binding constant of 1.3 (+/- 0.6) X 10(8) M-1 at pH 6.0, 25 degrees C; the 6R, alpha S diastereoisomer binds approximately 10(4)-fold more weakly. The natural diastereoisomer of folinic acid binds negatively cooperatively with the coenzymes NADP+ and NADPH, binding 3 times more weakly in the presence of NADP+ and 600 times more weakly in the presence of NADPH than to the enzyme alone. Negative cooperativity has been unequivocally distinguished from competition by measurements of coenzyme binding as a function of folinic acid concentration, of the effects of folinic acid on the 1H and 31P chemical shifts of the bound coenzyme, and of the effects of folinic acid on the coenzyme dissociation rate constant. The latter experiments also give evidence for the coexistence of two slowly interconverting conformational forms of the ternary enzyme-coenzyme-folinic acid complex. Small changes in structure of the oxidized coenzymes have substantial effects on the cooperativity with folinic acid, with the thionicotinamide analogue showing positive rather than negative cooperativity. The changes in environment of the bound coenzyme produced by folinic acid, as revealed by 1H and 31P NMR, demonstrate clearly that the negative cooperativity shown by NADP+ and NADPH, respectively, arises by two structurally distinct mechanisms.  相似文献   

2.
Dihydrofolate reductase. The stereochemistry of inhibitor selectivity   总被引:7,自引:0,他引:7  
X-ray structural results are reported for 10 triazine and pyrimidine inhibitors of dihydrofolate reductase, each one studied as a ternary complex with NADPH and chicken dihydrofolate reductase. Analysis of these data and comparison with structural results from the preceding paper (Matthews, D.A., Bolin, J.T., Burridge, J.M., Filman, D.J., Volz, K.W., Kaufman, B. T., Beddell, C.R., Champness, J.N., Stammers, D.K., and Kraut, J. (1985) J. Biol. Chem. 260, 381-391) in which we contrasted binding of the antibiotic trimethoprim (TMP) to chicken dihydrofolate reductase on the one hand with its binding to Escherichia coli dihydrofolate reductase on the other, permit identification of differences that are important in accounting for TMP's selectivity. The crystallographic evidence strongly suggests that loss of a potential hydrogen bond between the 4-amino group of TMP and the backbone carbonyl of Val-115 when TMP binds to chicken dihydrofolate reductase but not when it binds to the E. coli reductase is the major factor responsible for this drug's more potent inhibition of bacterial dihydrofolate reductase. A key finding of the current study which is important in understanding why TMP binds differently to chicken and E. coli dihydrofolate reductases is that residues on opposite sides of the active-site cleft in chicken dihydrofolate reductase are about 1.5-2.0 A further apart than are structurally equivalent residues in the E. coli enzyme.  相似文献   

3.
Refined crystal structures are reported for complexes of Escherichia coli and chicken dihydrofolate reductase containing the antibiotic trimethoprim (TMP). Structural comparison of these two complexes reveals major geometrical differences in TMP binding that may be important in understanding the stereo-chemical basis of this inhibitor's selectivity for bacterial dihydrofolate reductases. For TMP bound to chicken dihydrofolate reductase we observe an altered binding geometry in which the 2,4-diaminopyrimidine occupies a position in closer proximity (by approximately 1 A) to helix alpha B compared to the pyrimidine position for TMP or methotrexate bound to E. coli dihydrofolate reductase. One important consequence of this deeper insertion of the pyrimidine into the active site of chicken dihydrofolate reductase is the loss of a potential hydrogen bond that would otherwise form between the carbonyl oxygen of Val-115 and the inhibitor's 4-amino group. In addition, for TMP bound to E. coli dihydrofolate reductase, the inhibitor's benzyl side chain is positioned low in the active-site pocket pointing down toward the nicotinamide-binding site, whereas, in chicken dihydrofolate reductase, the benzyl group is accommodated in a side channel running upward and away from the cofactor. As a result, the torsion angles about the C5-C7 and C7-C1' bonds for TMP bound to the bacterial reductase (177 degrees, 76 degrees) differ significantly from the corresponding angles for TMP bound to chicken dihydrofolate reductase (-85 degrees, 102 degrees). Finally, when TMP binds to the chicken holoenzyme, the Tyr-31 side chain undergoes a large conformational change (average movement is 5.4 A for all atoms beyond C beta), rotating down into a new position where it hydrogen bonds via an intervening water molecule to the backbone carbonyl oxygen of Trp-24.  相似文献   

4.
Circular dichroism has been used to monitor the binding of pyridine nucleotide cofactors to enzyme-folate analog complexes of dihydrofolate reductase from Escherichia coli B (MB 1428). The enzyme binds one molar equivalent of many folate analogs and two molar equivalents of several pyridine nucleotide cofactors. The apo-enzyme has very low optical activity. The binding of folate analogs including folate, dihydrofolate, methotrexate, trimethoprim and pyrimethamine induce large Cotton effects. Pyridine nucleotides when bound to the enzyme-folate analog complexes also induce new optically active bands; all the effects being due to the first molar equivalent of cofactor bound. NADPH and NADP+ induce very similar bands when bound to the enzyme-methotrexate complex suggesting that the geometry of the complexes formed are very similar. The oxidized and reduced cofactor likewise have similar effects on the enzyme-folate complex. However, NADPH and NADP+ addition to both the enzyme-trimethoprim and enzyme-pyrimethamine complexes have significantly different effects on the circular dichroism spectra, suggesting that the inhibitors which are less homologous to the natural dihydrofolate substrate allow more conformational freedom in the enzyme-inhibitor-cofactor complex. In most cases the prior binding of the folate analog greatly increases the binding of the first molar equivalent of cofactor so that at concentrations of approx. 5-20 muM the binding appears stoichiometric. Pyrimethamine is an exception in that it apparently has no effect on the binding of NADPH to the enzyme.  相似文献   

5.
Two mutants of Lactobacillus casei dihydrofolate reductase, Trp 21----Leu and Asp 26----Glu, have been prepared by using site-directed mutagenesis methods, and their ligand binding and structural properties have been compared with those of the wild-type enzyme. 1H, 13C, and 31P NMR studies have been carried out to characterize the structural changes in the complexes of the mutant and wild-type enzymes. Replacement of the conserved Trp 21 by a Leu residue causes a decrease in activity of the enzyme and reduces the NADPH binding constant by a factor of 400. The binding of substrates and substrate analogues is only slightly affected. 1H NMR studies of the Trp 21----Leu enzyme complexes have confirmed the original resonance assignments for Trp 21. In complexes formed with methotrexate and the mutant enzyme, the results indicate some small changes in conformation occurring as much as 14 A away from the site of substitution. For the enzyme-NADPH complexes, the chemical shifts of nuclei in the bound coenzyme indicate that the nicotinamide ring binds differently in complexes with the mutant and the wild-type enzyme. There are complexes where the wild-type enzyme has been shown to exist in solution as a mixture of conformations, and studies on the corresponding complexes with the Trp 21----Leu mutant indicate that the delicately poised equilibria can be perturbed. For example, in the case of the ternary complex formed between enzyme, trimethoprim, and NADP+, two almost equally populated conformations (forms I and II) are seen with the wild-type enzyme but only form II (the one in which the nicotinamide ring of the coenzyme is extended away from the enzyme structure and into the solvent) is observed for the mutant enzyme complex. It appears that the Trp 21----Leu substitution has a major effect on the binding of the nicotinamide ring of the coenzyme. For the Asp 26----Glu enzyme there is a change in the bound conformation of the substrate folate. Further indications that some conformational adjustments are required to allow the carboxylate of Glu 26 to bind effectively to the N1 proton of inhibitors such as methotrexate and trimethoprim come from the observation of a change in the dynamics of the bound trimethoprim molecule as seen from the increased rate of the flipping of the 13C-labeled benzyl ring and the increased rate of the N1-H bond breaking.  相似文献   

6.
A remarkable correlation has been discovered between fluorescence lifetimes of bound NADPH and rates of hydride transfer among mutants of dihydrofolate reductase (DHFR) from Escherichia coli. Rates of hydride transfer from NADPH to dihydrofolate change by a factor of 1,000 for the series of mutant enzymes. Since binding constants for the initial complex between coenzyme and DHFR change by only a factor of 10, the major portion of the change in hydride transfer must be attributed to losses in transition-state stabilization. The time course of fluorescence decay for NADPH bound to DHFR is biphasic. Lifetimes ranging from 0.3 to 0.5 ns are attributed to a solvent-exposed dihydronicotinamide conformation of bound coenzyme which is presumably not active in catalysis, while decay times (tau 2) in the range of 1.3 to 2.3 ns are assigned to a more tightly bound species of NADPH in which dihydronicotinamide is sequestered from solvent. It is this slower component that is of interest. Ternary complexes with three different inhibitors, methotrexate, 5-deazafolate, and trimethoprim, were investigated, along with the holoenzyme complex; 3-acetylNADPH was also investigated. Fluorescence polarization decay, excitation polarization spectra, the temperature variation of fluorescence lifetimes, fluorescence amplitudes, and wavelength of absorbance maxima were measured. We suggest that dynamic quenching or internal conversion promotes decay of the excited state in NADPH-DHFR. When rates of hydride transfer are plotted against the fluorescence lifetime (tau 2) of tightly bound NADPH, an unusual correlation is observed. The fluorescence lifetime becomes longer as the rate of catalysis decreases for most mutants studied. However, the fluorescence lifetime is unchanged for those mutations that principally alter the binding of dihydrofolate while leaving most dihydronicotinamide interactions relatively undisturbed. The data are interpreted in terms of possible dynamic motions of a flexible loop region in DHFR which closes over both substrate and coenzyme binding sites. These motions could lead to faster rates of fluorescence decay in holoenzyme complexes and, when correlated over time, may be involved in other motions which give rise to enhanced rates of catalysis in DHFR.  相似文献   

7.
Polshakov VI  Birdsall B  Feeney J 《Biochemistry》1999,38(48):15962-15969
NMR measurements have been used to investigate rates of ring-flipping and the activation parameters for the trimethoxybenzyl ring of the antibacterial drug trimethoprim (TMP) bound to Lactobacillus casei dihydrofolate reductase (DHFR) for a series of ternary complexes formed with analogues of the coenzyme NADPH. Rates were obtained at several temperatures from line shape analyses ((13)C-edited HSQC (1)H spectra) and transfer of magnetization measurements (zz-HSQC) on complexes containing 3'-O-[(13)C]trimethoprim. Examination of the structures of the complexes indicates that ring-flipping can only be achieved following major conformational changes and transient fluctuations of the protein and coenzyme structure around the trimethoxybenzyl ring. There is no simple correlation between rates of ring-flipping and binding constants. The presence of the coenzyme nicotinamide ring (in either its reduced or its oxidized forms) in the binding site close to the trimethoxybenzyl ring moiety is the major factor reducing the ring-flipping on coenzyme binding. Thus, the ternary complex with NADPH shows the largest reduction in the rate of ring-flipping (11 +/- 3 s(-)(1) at 298 K) as compared with the binary complex (793 +/- 80 s(-)(1) at 298 K). Complexes with NADPH analogues that either have no nicotinamide ring or are known to have their nicotinamide rings removed from the binding site show the smallest reductions. For the DHFR.TMP.NADP(+) complex where there are two conformations present, very different rates of ring-flipping were observed for the two forms. The activation parameters (DeltaH() and DeltaS()) for the ring-flipping in all the complexes are discussed in terms of the protein-ligand interactions and the possible constraints on the pathway through the transition state.  相似文献   

8.
1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) is the second enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. The structure of the apo-form of this enzyme from Zymomonas mobilis has been solved and refined to 1.9-A resolution, and that of a binary complex with the co-substrate NADPH to 2.7-A resolution. The subunit of DXR consists of three domains. Residues 1-150 form the NADPH binding domain, which is a variant of the typical dinucleotide-binding fold. The second domain comprises a four-stranded mixed beta-sheet, with three helices flanking the sheet. Most of the putative active site residues are located on this domain. The C-terminal domain (residues 300-386) folds into a four-helix bundle. In solution and in the crystal, the enzyme forms a homo-dimer. The interface between the two monomers is formed predominantly by extension of the sheet in the second domain. The adenosine phosphate moiety of NADPH binds to the nucleotide-binding fold in the canonical way. The adenine ring interacts with the loop after beta1 and with the loops between alpha2 and beta2 and alpha5 and beta5. The nicotinamide ring is disordered in crystals of this binary complex. Comparisons to Escherichia coli DXR show that the two enzymes are very similar in structure, and that the active site architecture is highly conserved. However, there are differences in the recognition of the adenine ring of NADPH in the two enzymes.  相似文献   

9.
A three-dimensional structure is engineered for the Trypanosoma congolense trypanothione reductase (TpR) using the sequence homology with glutathione reductase (GR) and lipoamide dehydrogenase, molecular graphics, energy optimization and molecular dynamics techniques. The model was extended to include the complex with the coenzyme nicotinamide adenine dinucleotide phosphate (NADP). The TpR-NADP structure is compared with X-ray data from the glutathione reductase complex with the reduced NADP (NADPH). A model of TpR-NADP including the trypanothione substrate is presented, and an electron-transfer mechanism is proposed.  相似文献   

10.
Aldose reductase is an NADPH-dependent oxidoreductase that catalyzes the reduction of a broad range of aldehydes, including glucose. Since aldose reductase has been strongly implicated in the development of the chronic complications of diabetes mellitus, much effort has been devoted to understanding the structure and mechanism of this enzyme, and many aldose reductase inhibitors have been developed as potential drugs for the treatment of these complications. We describe here the 2.75 A crystal structure of recombinant human aldose reductase (Cys-298 to Ser mutant) complexed with NADPH. This mutant displays unusual kinetic behavior characterized by high Km/high Vmax substrate kinetics and reduced sensitivity to certain aldose reductase inhibitors. The crystal structure revealed that the enzyme is a beta/alpha-barrel with the coenzyme-binding domain located at the carboxyl-terminal end of the parallel strands of the barrel. The enzyme undergoes a large conformational change upon binding NADPH which involves the reorientation of loop 7 to a position which appears to lock the coenzyme into place. NADPH is bound to aldose reductase in an unusual manner, more similar to FAD- rather than NAD(P)-dependent oxidoreductases. No disulfide bridges were observed in the crystal structure.  相似文献   

11.
The C-terminal domain (C(t)-FDH) of 10-formyltetrahydrofolate dehydrogenase (FDH, ALDH1L1) is an NADP(+)-dependent oxidoreductase and a structural and functional homolog of aldehyde dehydrogenases. Here we report the crystal structures of several C(t)-FDH mutants in which two essential catalytic residues adjacent to the nicotinamide ring of bound NADP(+), Cys-707 and Glu-673, were replaced separately or simultaneously. The replacement of the glutamate with an alanine causes irreversible binding of the coenzyme without any noticeable conformational changes in the vicinity of the nicotinamide ring. Additional replacement of cysteine 707 with an alanine (E673A/C707A double mutant) did not affect this irreversible binding indicating that the lack of the glutamate is solely responsible for the enhanced interaction between the enzyme and the coenzyme. The substitution of the cysteine with an alanine did not affect binding of NADP(+) but resulted in the enzyme lacking the ability to differentiate between the oxidized and reduced coenzyme: unlike the wild-type C(t)-FDH/NADPH complex, in the C707A mutant the position of NADPH is identical to the position of NADP(+) with the nicotinamide ring well ordered within the catalytic center. Thus, whereas the glutamate restricts the affinity for the coenzyme, the cysteine is the sensor of the coenzyme redox state. These conclusions were confirmed by coenzyme binding experiments. Our study further suggests that the binding of the coenzyme is additionally controlled by a long-range communication between the catalytic center and the coenzyme-binding domain and points toward an α-helix involved in the adenine moiety binding as a participant of this communication.  相似文献   

12.
In the x-ray structure of the human dihydrofolate reductase, phenylalanine 31 and phenylalanine 34 have been shown to be involved in hydrophobic interactions with bound substrates and inhibitors. Using oligonucleotide-directed mutagenesis and a bacterial expression system producing the wild-type and mutant human dihydrofolate reductases at levels of 10% of the bacterial protein, we have constructed, expressed, and purified a serine 31 (S31) mutant and a serine 34 (S34) mutant. Fluorescence titration experiments indicated that S31 bound the substrate H2folate 10-fold tighter and the coenzyme NADPH 2-fold tighter than the wild-type human dihydrofolate reductase. The serine 31 mutation had little effect on the steady-state kinetic properties of the enzyme but produced a 100-fold increase in the dissociation constant (Kd) for the inhibitor methotrexate. The serine 34 mutant had much greater alterations in its properties than S31; specifically, S34 had a 3-fold reduction in the Km for NADPH, a 24-fold increase in the Km for H2folate, a 3-fold reduction in the overall reaction rate kcat, and an 80,000-fold increase in the Kd for methotrexate. In addition, the pH dependence of the steady-state kinetic parameters of S34 were different from that of the wild-type enzyme. These results suggest that phenylalanine 31 and phenylalanine 34 make very different contributions to ligand binding and catalysis in the human dihydrofolate reductase.  相似文献   

13.
Quantum-mechanical electron density calculations reveal that a significant polarization is induced in the cofactor NADPH (reduced nicotinamide adenine dinucleotide phosphate) on binding to the enzyme dihydrofolate reductase. The calculations indicate that electron density corresponding to approximately 0.7 electron charges is shifted within the molecule, extending over more than 20 A. Further calculations on proposed enzyme mutants show that the polarization of NADPH on binding to DHFR is, in large part, induced by a motif of three positively charged residues. This motif was also identified to be directly responsible for the positive electrostatic potential surrounding the cofactor binding site in the enzyme. The possibility of this long-range polarization of NADPH was originally proposed based on a previous study of ligand binding to DHFR where a conserved structural motif of three positively charged residues was found to play a major role in polarizing the substrate folate over its entire length of 18 A.  相似文献   

14.
The 2.1 A resolution crystal structure of flavin reductase P with the inhibitor nicotinamide adenine dinucleotide (NAD) bound in the active site has been determined. NAD adopts a novel, folded conformation in which the nicotinamide and adenine rings stack in parallel with an inter-ring distance of 3.6 A. The pyrophosphate binds next to the flavin cofactor isoalloxazine, while the stacked nicotinamide/adenine moiety faces away from the flavin. The observed NAD conformation is quite different from the extended conformations observed in other enzyme/NAD(P) structures; however, it resembles the conformation proposed for NAD in solution. The flavin reductase P/NAD structure provides new information about the conformational diversity of NAD, which is important for understanding catalysis. This structure offers the first crystallographic evidence of a folded NAD with ring stacking, and it is the first enzyme structure containing an FMN cofactor interacting with NAD(P). Analysis of the structure suggests a possible dynamic mechanism underlying NADPH substrate specificity and product release that involves unfolding and folding of NADP(H).  相似文献   

15.
NADPH:ferredoxin reductase (AvFPR) is involved in the response to oxidative stress in Azotobacter vinelandii. The crystal structure of AvFPR has been determined at 2.0 A resolution. The polypeptide fold is homologous with six other oxidoreductases whose structures have been solved including Escherichia coli flavodoxin reductase (EcFldR) and spinach, and Anabaena ferredoxin:NADP+ reductases (FNR). AvFPR is overall most homologous to EcFldR. The structure is comprised of a N-terminal six-stranded antiparallel beta-barrel domain, which binds FAD, and a C-terminal five-stranded parallel beta-sheet domain, which binds NADPH/NADP+ and has a classical nucleotide binding fold. The two domains associate to form a deep cleft where the NADPH and FAD binding sites are juxtaposed. The structure displays sequence conserved motifs in the region surrounding the two dinucleotide binding sites, which are characteristic of the homologous enzymes. The folded over conformation of FAD in AvFPR is similar to that in EcFldR due to stacking of Phe255 on the adenine ring of FAD, but it differs from that in the FNR enzymes, which lack a homologous aromatic residue. The structure of AvFPR displays three unique features in the environment of the bound FAD. Two features may affect the rate of reduction of FAD: the absence of an aromatic residue stacked on the isoalloxazine ring in the NADPH binding site; and the interaction of a carbonyl group with N10 of the flavin. Both of these features are due to the substitution of a conserved C-terminal tyrosine residue with alanine (Ala254) in AvFPR. An additional unique feature may affect the interaction of AvFPR with its redox partner ferredoxin I (FdI). This is the extension of the C-terminus by three residues relative to EcFldR and by four residues relative to FNR. The C-terminal residue, Lys258, interacts with the AMP phosphate of FAD. Consequently, both phosphate groups are paired with a basic group due to the simultaneous interaction of the FMN phosphate with Arg51 in a conserved FAD binding motif. The fourth feature, common to homologous oxidoreductases, is a concentration of 10 basic residues on the face of the protein surrounding the active site, in addition to Arg51 and Lys258.  相似文献   

16.
D J Murphy  S J Benkovic 《Biochemistry》1989,28(7):3025-3031
The strictly conserved residue leucine-54 of Escherichia coli dihydrofolate reductase forms part of the hydrophobic wall which binds the p-aminobenzoyl side chain of dihydrofolate. In addition to the previously reported glycine-54 mutant, isoleucine-54 and asparagine-54 substitutions have been constructed and characterized with regard to their effects on binding and catalysis. NADP+ and NADPH binding is virtually unaffected with the exception of a 15-fold decrease in NADPH dissociation from the Gly-54 mutant. The synergistic effect of NADPH on tetrahydrofolate dissociation seen in the wild-type enzyme is lost in the isoleucine-54 mutant: little acceleration is seen in tetrahydrofolate dissociation when cofactor is bound, and there is no discrimination between reduced and oxidized cofactor. The dissociation constants for dihydrofolate and methotrexate increase in the order Leu less than Ile less than Asn less than Gly, varying by a maximum factor of 1700 for dihydrofolate and 6300 for methotrexate. Despite these large changes in binding affinity, the hydride transfer rate of 950 s-1 in the wild-type enzyme is decreased by a constant factor of ca. 30 (2 kcal/mol) regardless of the mutant. Thus, the contributions of residue 54 to binding and catalysis appear to have been separated.  相似文献   

17.
Circular-dichroism spectra (200--450 nm) were recorded for Lactobacillus casei MTX/R dihydrofolate reductase and its complexes with substrates, inhibitors and coenzymes. These spectra are compared with those reported by others for dihydrofolate reductase from other sources. The binding of NADP+ or NADPH is associated with the perturbation of one or more aromatic amino acid residues, and there is marked enhancement of the negative c.d. band at 340 nm arising from the dihydronicotinamide chromophore of NADPH. The substrates folate and dihydrofolate give rise to substantial extrinsic c.d. bands on binding, which show a number of specific differences between enzymes from different sources. The binary complexes between the enzyme and the inhibitors methotrexate or trimethoprim also show strong c.d. bands, and these are qualitatively very similar for all dihydrofolate reductases studied so far. The ternary complexes between enzyme, NADPH and trimethoprim or methotrexate are very different from the sum of the spectra of the binary complexes. Trimethoprim leads to the disappearance of the 340 nm c.d. band of bound NADPH, whereas in the methotrexate--NADPH--enzyme ternary complex a "couplet" c.d. spectrum is observed at long wavelengths. Analysis of this latter feature suggests that it arises from a direct interaction between the dihydronicotinamide and pteridine rings in the ternary complex.  相似文献   

18.
We have prepared a selectively deuterated dihydrofolate reductase in which all the aromatic protons except the C(2) protons of tryptophan have been replaced by deuterium and have examined the 1H NMR spectra of its complexes with folate, trimethoprim, methotrexate, NADP+, and NADPH. One of the four Trp C(2)-proton resonance signals (signal P at 3.66 ppm from dioxane) has been assigned to Trp-21 by examining the NMR spectrum of a selectively deuterated N-bromosuccinimide-modified dihydrofolate reductase. This signal is not perturbed by NADPH, indicating that the coenzyme is not binding close to the 2 position of Trp-21. This contrasts markedly with the 19F shift (2.7 ppm) observed for the 19F signal of Trp-21 in the NADPH complex with the 6-fluorotryptophan-labeled enzyme. In fact the crystal structure of the enzyme . methotrexate . NADPH shows that the carboxamide group of the reduced nicotinamide ring is near to the 6 position of Trp-21 but remote from its 2 position. The nonadditivity of the 1H chemical-shift contributions for signals tentatively assigned to Trp-5 and -133 indicates that these residues are influenced by ligand-induced conformational changes.  相似文献   

19.
D A Matthews 《Biochemistry》1979,18(8):1602-1610
The three-dimensional molecular structure of Lactobacillus casei dihydrofolate reductase complexed with NADPH and methotrexate has been used to interpret published magnetic resonance spectra for this enzyme. Proton resonances from histidine residues and 19F resonances from fluorine-labeled fluorotyrosine and fluorotryptophan dihydrofolate reductase have been assigned in several cases to specific amino acids in the primary sequence. Furthermore, the 31P signals from the pyrophosphate moiety of bound NADPH have been assigned and the large upfield shift for 13C-labeled (at the carboxamide carbon) NADP+ upon binding to the reductase has been explained in terms of desolvation effects.  相似文献   

20.
The binding of substrates and inhibitors to dihydrofolate reductase was studied by steady-state kinetics and high-field 1H-n.m.r. spectroscopy. A series of 5-substituted 2,4-diaminopyrimidines were examined and were found to be 'tightly binding' inhibitors of the enzyme (Ki less than 10(-9) M). Studies on the binding of 4-substituted benzenesulphonamides and benzenesulphonic acids also established the existence of a 'sulphonamide-binding site' on the enzyme. Subsequent n.m.r. experiments showed that there are two binding sites for the sulphonamides on the enzyme, one of which overlaps the coenzyme (NADPH) adenine-ring-binding site. An examination of the pH-dependence of the binding of sulphonamides to the enzyme indicated the influence of an ionizable group on the enzyme that was not directly involved in the sulphonamide binding. The change in pKa value from 6.7 to 7.2 observed on sulphonamide binding suggests the involvement of a histidine residue, which could be histidine-28.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号