首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capasso A 《Life sciences》2000,66(10):873-883
The effects exerted by adenosine A1 and A2 receptor agonists and antagonists on the acute opiate withdrawal induced by morphine were investigated in vitro. Following a 4 min in vitro exposure to morphine, the guinea-pig isolated ileum exhibited a strong contracture after the addition of naloxone. The P1 adenosine receptor agonist, adenosine, was able to reduce dose-dependently naloxone-precipitaded withdrawal. The same effect was induced by the adenosine A1 receptor agonist, N6-Cyclopentyladenosine (CPA) whereas the selective adenosine A2A receptor agonist CGS 21680 increased the naloxone-precipitated withdrawal phenomenon. Dipyridamole, a blocker of adenosine reuptake, induced a significant reduction of morphine dependence. Caffeine, an adenosine receptor antagonist, significantly increased the naloxone-precipitated withdrawal effect in a concentration dependent manner. The same effect was observed with 8-phenyltheophylline (8PT), an A1 adenosine receptor antagonist, whereas 3,7-dimethyl-1-propargylxanthine (DMPX), an A2 adenosine receptor antagonist, reduced the naloxone-precipitated withdrawal phenomenon. The results of our experiments indicate that both A1 and A2 adenosine receptor agonists and antagonists are able to influence opiate withdrawal in vitro, suggesting an important functional interaction between the adenosine receptors and opioid withdrawal.  相似文献   

2.
Coupar IM  Tran BL 《Life sciences》2001,69(7):779-790
The aim of this study was to investigate whether the A1/A2 receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA), and the selective A1 agonist, N6-cyclopentyladenosine (CPA), induced physical dependence by quantifying specific antagonist-precipitated withdrawal syndromes in conscious rats. In addition, the presence of bidirectional cross-withdrawal was also investigated. The agonists were administered s.c. to groups of rats at 12 h intervals. Antagonists were administered s.c., 12 hours after the last dose, followed by observation and measurement of faecal output for 20 min. NECA (4 x 0.03 mg kg(-1), s.c) and CPA (4 x 0.03, 0.1 and 0.3 mg kg(-1), s.c.) induced physical dependence, as shown by the expression of a significant withdrawal syndrome when challenged with the adenosine A1/A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX, 0.1 mg kg(-1), s.c.) and the A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine (CPDPX, 0.1 mg kg(-1), s.c.) respectively. The syndromes consisted of teeth chattering and shaking behaviours shown to occur in morphine-dependent animals withdrawn with naloxone viz, paw, body and 'wet-dog' shakes, but with the additional behaviours of head shaking and yawning. In further contrast to the opiate withdrawal syndrome, no diarrhoea occurred in the groups of animals treated with adenosine agonists and withdrawn with their respective antagonists. Bidirectional cross-withdrawal syndromes were also revealed when naloxone (3 mg kg(-1), s.c.) was administered to adenosine agonist pre-treated rats and adenosine antagonists were given to morphine pre-treated rats. This study provides further information illustrating that close links exist between the adenosine and opiate systems.  相似文献   

3.
Clonidine, a partial alpha 2-agonist, has been used empirically to alleviate opiate withdrawal symptoms, but the mechanism of its effects is not completely understood. We studied the interactions of opioid and adrenergic receptor agonists in the NG108-15 cells, which are a model of opiate dependence. We determined that in these cells the adenylate cyclase (AC) [EC 4.6.1.1; ATP pyrophosphate-lyase (cyclizing) overshoot response to opioid or alpha 2-agonist withdrawal can be significantly attenuated or suppressed by the other agonist. Subsequently, the AC overshoot response can be triggered with the antagonist to the second agonist to which the cells were not dependent. These results demonstrate that convergent dependence to morphine and alpha 2 agonists can occur in a homogeneous cell population without neuronal loops. Therefore, the basic mechanisms that can account for convergent dependence in this model take place at the level of intracellular regulatory pathways that do not require neuronal networks.  相似文献   

4.
Previous studies have documented direct vascular effects of opiate substances in the systemic circulation. Because opiate receptors have been identified in the lung, we wondered whether opiate substances might affect vasoreactivity in the lung circulation. We studied the pulmonary vascular effects of three opiate agonists: morphine, leucine-enkephalin, and dynorphin, as well as the opiate receptor antagonist naloxone, in isolated rat lungs perfused with a cell- and plasma-free salt solution. Because of previous reports of the smooth muscle effects of the methyl- and propylparaben preservatives in the naloxone preparation, we also studied the pulmonary vascular effects of these preservatives in the rat lung circulation. We found that morphine, a mu-receptor agonist, leucine-enkephalin, a delta-receptor agonist, and dynorphin, a kappa-receptor agonist, caused no immediate vascular effect when injected into the pulmonary artery. In addition, morphine did not affect the pulmonary vasoconstrictions induced by hypoxia, angiotensin II, or potassium chloride. The commercial preparation of naloxone, Narcan, caused a marked vasodilation during hypoxic pulmonary vasoconstriction. However, this effect was entirely attributable to the preservatives methyl- and propylparaben, as pure naloxone had no effect on either the baseline pulmonary vascular tone or the vasoconstrictive response to hypoxia. We conclude that opiate receptor agonists and antagonists do not affect vasoreactivity in the rat lung circulation and that the methyl- and propylparaben preservatives in Narcan are pulmonary vasodilators.  相似文献   

5.
Zhong W  Dong Z  Tian M  Cao J  Xu T  Xu L  Luo J 《Life sciences》2006,79(9):861-869
Adaptive changes in brain areas following drug withdrawal are believed to contribute to drug seeking and relapse. Cocaine withdrawal alters the expression of GluR1 and GluR2/3 subunits of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors in nucleus accumbens or amygdala, but the influence of drug withdrawal on hippocampus is little known. Here, we have examined the expression of GluR1 and GluR2/3 in hippocampal membrane and synaptic fractions following repeated morphine exposure and subsequent withdrawal. Repeated morphine exposure for 12 d increased GluR1 and GluR2/3 in synaptosome but not in membrane fraction. Interestingly, CaMKIIalpha, known to be able to regulate the function of AMPA receptors, was decreased in synaptosome but not in membrane fraction; pCaMKIIalpha, the phosphorylated form of CaMKIIalpha, was increased in both fractions. However, during opiate withdrawal, GluR1 was generally reduced while GluR2/3 was prominently increased in both fractions; pCaMKIIalpha was strongly decreased immediately after withdrawal, but detectably increased in late phase of morphine withdrawal in both fractions. Importantly, the opiate withdrawal-induced increase in GluR2/3 was dependent on the activation of glucocorticoid receptors and NMDA receptors, as it was prevented by the glucocorticoid receptor antagonist RU38486, or intrahippocampal injection of the NMDA receptor antagonist AP-5 or the antagonist to NR2B-containing NMDA receptors, Ro25-6981. These findings indicate that opiate withdrawal induces dynamic expression of GluR1 and GluR2/3 subunits of AMPA receptors in hippocampal synapses, possibly revealing an adaptive process of the hippocampal functions following opiate withdrawal.  相似文献   

6.
Tan PP  Chen JC  Li JY  Liang KW  Wong CH  Huang EY 《Peptides》1999,20(10):1211-1217
Neuropeptide FF (NPFF) has been reported to be an endogenous anti-opioid peptide that has significant effects on morphine tolerance and dependence. In the present study, we examined the chronic effects of NPFF and its synthetic analogs: the putative agonist, PFRFamide, and the putative antagonists, dansyl-PQRamide and PFR(Tic)amide on naloxone-precipitated morphine withdrawal syndromes in rats. After a 5-day co-administration with morphine [5 mg/kg, intraperitoneally (i.p.), twice per day (b.i.d.)] and the tested peptide [intracerebroventricularly (i.c.v.) or i.p., b.i.d.], naloxone (4 mg/kg, i.p.) was given systemically to evaluate the severity of the morphine withdrawal syndromes. Our results revealed that NPFF significantly potentiated the overall morphine withdrawal syndromes and, on the contrary, dansyl-PQRamide attenuated these syndromes. These results clearly indicate that modulation of the NPFF system in the mammalian central nervous system has significant effects on opiate dependence. In addition, morphine withdrawal syndromes could be practically applied as a valid parameter to functionally characterize the putative NPFF agonists and antagonists.  相似文献   

7.
Variations in incubation temperature can markedly differentiate opiate receptor binding of agonists and antagonists. In the presence of sodium increasing incubation temperatures from 0° to 30° reduces receptor binding of 3H-naloxone by 50% while tripling the binding of the agonist 3H-dihydromorphine. Lowering incubation temperature from 25° to 0° reduces the potency of morphine in inhibiting 3H-naloxone binding by 9-fold while not affecting the potency of the antagonist nalorphine. At temperatures of 25° and higher the number of binding sites for opiate antagonists is increased by sodium and the number of sites for agonists is decreased by sodium with no changes in affinity. By contrast, in the presence of sodium lowering of incubation temperature to 0° increases opiate receptor binding of the antagonist naloxone by enhancing its affinity for binding sites even though the total number of binding sites are not changed.  相似文献   

8.
The effects of the administration into the brain ventricle of histamine, selective H1- and H2-receptor agonists and antagonists and chemically similar substances with nonspecific activity on basal and morphine-stimulated growth hormone (GH) secretion in normal male rats were studied. None of the drugs had any significant effect on baseline rat GH levels, but histamine and H1 agonists were able to decrease the rat GH release evoked by morphine. Mepyramine (H1 antagonist) had no consistent effect by itself but was effective in preventing the inhibitory action of 2-methylhistamine (H1 agonist). H2 agonists and antagonists and their chemical analogues were all inhibitory, but by a mechanism which is nonspecific and must be interpreted cautiously. These results confirm the inhibitory effect of histamine on rat GH release and indicate that H1 receptors in the CNS are responsible for this effect.  相似文献   

9.
Mice were rendered dependent on morphine by mixing morphine with their food (2 mg/g) for three days. Increasing doses of naloxone precipitated dose-dependent withdrawal reactions such as weight loss and jumping. These withdrawal reactions were antagonized by morphine pretreatment. Effects of morphine, such as increased locomotor activity, inhibition of intestinal transport, and analgesia were antagonized by naloxone in both non-dependent and dependent subjects. The antagonist actions of naloxone were increased in dependent subjects; lower doses of naloxone were sufficient to antagonize effects of morphine. The present results confirm earlier studies indicating that precipitation of withdrawal can be antagonized by morphine pretreatment suggesting that withdrawal reactions are due to actions of naloxone at the same receptor at which opioid agonists act. The increased antagonist potency of naloxone in dependent subjects extends earlier results obtained with analgesic effects to several other agonist effects of morphine and is consistent with the interpretation that exposure to an opioid agonist induces a change in the conformation of opioid receptors.  相似文献   

10.
The bee venom phospholipase A(2) (PLA(2)) inhibitory activity of petrosaspongiolide M (PM), a marine metabolite displaying a potent anti-inflammatory activity and able to covalently bind and block group II and III secretory PLA(2) enzymes, has been investigated by mass spectrometry and molecular modeling. The model reveals interesting insight on the PM-PLA(2) inhibition process and may prove useful in the design of new anti-inflammatory agents targeting PLA(2) secretory enzymes. In this paper, the effect of PM has been investigated on opiate withdrawal in an in vitro model. After a 4 min in vitro exposure to morphine a strong contracture of guinea pig isolated ileum was observed after the addition of naloxone. PM treatment 1 x 10(-8), 5 x 10(-8), 1 x 10(-7) M was able to reduce morphine withdrawal. These results suggest that PM effect in this in vitro model of opiate withdrawal may be due to extracellular type II PLA(2) inhibition.  相似文献   

11.
The brain peptide Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2) was tested for its effects on electrically stimulated contractions in the guinea pig ileum assay. Tyr-MIF-1 acted as an opiate agonist in reducing these contractions. Its IC50 was about 9 microM, and its effects were reversed by naloxone and CTOP. The ability of Tyr-MIF-1 also to antagonize the inhibitory effects of opiates on electrically stimulated contractions was more evident in the ileum removed from a guinea pig tolerant to morphine or after partial inactivation of opiate receptors with beta-CNA. Similar results were observed with hemorphin. The endogenous peptide Tyr-MIF-1 and the blood-derived peptide hemorphin, therefore, can act as agonists as well as antagonists in the guinea pig ileum. The effects as antagonists are best observed in preparations of ileum with reduced receptor reserve (tolerant or beta-CNA treated) and are consistent with the idea that properties of endogenous peptides as opiate antagonists are enhanced in the tolerant state.  相似文献   

12.
The effects of subchronic subcutaneous treatment with tachykinin receptor antagonists over nine days on the repeated mild stress response induced by daily subcutaneous injections and on the severe acute stress induced by morphine withdrawal were investigated in guinea-pigs. The NK(1) receptor antagonist, L733,060, 0.25mg/kg, significantly increased locomotor activity of guinea-pigs compared with animals subjected to repeated injection of the inactive enantiomer, but inhibited Fos-like immunoreactivity (Fos-LI) in the hypothalamus. In animals subjected to the acute severe stress of naltrexone-induced morphine withdrawal, treatment with the NK(1) antagonist, L733,060, produced reductions in Fos-LI in the spinal dorsal horn, whereas those treated with the NK(3) antagonist, SSR146,977, 0.3mg/kg, had reduced Fos-LI in the dorsal horn, adrenal medulla, nucleus accumbens, ventral tegmental area and periaqueductal grey. Those animals treated with both NK(1) and NK(3) antagonists also had reduced Fos-LI in the amygdala and paraventricular nucleus of the thalamus. It was concluded that the NK(1) antagonist reduced the hypothalamic response to mild stress but the NK(3) antagonist was more effective in reducing the severe stress response to morphine withdrawal. Furthermore, combination of NK(1) and NK(3) antagonists was more effective than either antagonist in reducing the Fos-LI response to morphine withdrawal.  相似文献   

13.
Role of corticotropin-releasing factor receptor-1 in opiate withdrawal   总被引:3,自引:0,他引:3  
Previous studies indicate that corticotropin-releasing factor (CRF) contributes to the anxiety-like and aversive states associated with drug-induced withdrawal. The present study extends this work by analyzing the CRF receptor subtype involved in withdrawal responses. First, the influence of a selective CRF receptor-1 (CRF-R1) antagonist, CP-154,526, on opiate withdrawal behavior was examined. Pretreatment with the CRF-R1 antagonist significantly attenuated several behavioral signs of naltrexone-induced morphine withdrawal, including writhing, chewing, weight loss, lacrimation, salivation, and irritability, measured during the first hour of withdrawal. Next the expression of CRF-R1 was determined as a second measure of the involvement of this receptor in opiate withdrawal. Naltrexone-induced morphine withdrawal resulted in down-regulation of CRF-R1 mRNA in several brain regions, including the frontal cortex, parietal cortex, striatum, nucleus accumbens, and amygdala, but not in the hypothalamus or periaqueductal gray. Expression of CRF-R2, the other major CRF receptor subtype, was not down-regulated significantly by withdrawal in any of the regions examined, although morphine alone significantly increased levels of this receptor subtype. Taken together, the behavioral and receptor regulation findings indicate that CRF-R1 is the primary mediator of the actions of the CRF system on opiate withdrawal, although it is possible that CRF-R2 contributes to the response.  相似文献   

14.
A number of opiate antagonists and the dextro isomers of some of these drugs were studied for antagonism of acute opiate effects on ilea isolated from opiate-naive guinea pigs, precipitation of a withdrawal contraction of ilea isolated from morphine-dependent guinea pigs, precipitation of withdrawal in morphine-dependent rhesus monkeys and stereospecific displacement of 3H-etorphine binding to rat-brain membranes. With the exception of d-naloxone, all of the compounds displaced 3H-etorphine. With the exception of d-naloxone, nalorphine, and quaternary nalorphine, all of the antagonists caused a contraction of ilea isolated from morphine-dependent guinea pigs. Moreover, the IC 50 values of the compounds for displacing 3H-etorphine binding were well correlated with both their Ke values for antagonism in the ileum (r = 0.95) and with their EC 50 values for precipitating a contraction in this preparation (r = 0.92). Generally, the concentration of antagonist necessary to precipitate half maximal contracture was 30-fold greater than the Ke value of the antagonist. Most of the opiate antagonists also precipitated withdrawal when administered to morphine-dependent rhesus monkeys and their in vivo potencies were well correlated with their in vitro potencies in ileum (with Ke: r = 0.95; with EC 50: r = 0.99) and in displacing 3H-etorphine (r = 0.95). The quaternary derivative of naltrexone, however, was an effective opiate antagonist only in vitro, and was ineffective in precipitating withdrawal in morphine-dependent rhesus monkeys. These results suggest that the receptor sites labeled by 3H-etorphine are the same as those involved in antagonism of acute opiate actions and in precipitation of withdrawal.  相似文献   

15.
Intracellular microelectrode studies were conducted to investigate the actions of the partial agonist-antagonist nalorphine at an opiate receptor on functional frog skeletal muscle fiber membranes. In high bath concentrations (greater than or equal to 10(-4) M), nalorphine alone produces agonist actions similar to the "full" opiate agonists. These actions were (i) to depress both the sodium and potassium (gNa and gK) conductance increases due to electrical stimulation by a nonspecific local anestheticlike mechanism and (ii) to depress gNa by a specific opiate receptor mediated mechanism. In a much lower bath concentration (1 X 10(-8) M) nalorphine acts to antagonize the specific opiate receptor mediated depression of gNa produced by the "full" agonist meperidine. Thus in this preparation nalorphine, "the partial antagonist," has the same actions as naloxone, which is often considered to be a full antagonist. The quantitative differences observed in the effects of these two opiate antagonists are discussed.  相似文献   

16.
Multiple studies demonstrate that coadministration of N-methyl-D-aspartate (NMDA) receptor antagonists with the opioid agonist morphine attenuates the development of analgesic tolerance. Sex differences in the effects of noncompetitive, but not competitive NMDA receptor antagonists on acute morphine analgesia, have been reported in mice, yet the role of sex in modulation of morphine tolerance by NMDA receptor antagonists has yet to be addressed. Therefore, we tested whether there is a sex difference in the effect of NMDA receptor antagonists on the development of morphine analgesic tolerance in C57BL/6J mice. Acutely, at a dose required to affect morphine tolerance in male mice, the noncompetitive NMDA receptor antagonist dizocilpine (MK-801) prolonged morphine analgesia similarly in both sexes in the hot plate and tail withdrawal assays. In the hot plate assay, coadministration of MK-801 or the competitive antagonist 3-(2-carboxpiperazin-4-yl)propyl-1-phosphanoic acid (CPP) with morphine attenuated the development of tolerance in male mice, while having no effect in females. Like normal and sham females, ovariectomized mice were similarly insensitive to the attenuation of morphine tolerance by MK-801 in the hot plate assay. Surprisingly, in the tail withdrawal assay, MK-801 facilitated the development of morphine-induced hyperalgesia and tolerance in males but not females. The results demonstrate that male mice are more sensitive to modulation of nociception and morphine analgesia after repeated coadministration of NMDA receptor antagonists. Furthermore, the underlying mechanisms are likely to be different from those mediating the sex difference in the modulation of acute morphine analgesia that has previously been reported.  相似文献   

17.
M S Ahmed  T Schoof  D H Zhou  C Quarles 《Life sciences》1989,45(25):2383-2393
Human placental villus tissue is non-innervated, yet it contains components of the opiate and cholinergic systems. We investigated whether opioids modulate a calcium dependent acetylcholine release from the villus tissue in a manner similar to that demonstrated by the parasympathetic nerve-smooth muscle junction. We reported that the kappa receptor agonist ethylketocyclazocine (EKC) inhibits acetylcholine release, and that the inhibition is reversed by the selective antagonist, Mr2266. Findings reported here substantiate the role of opioids as modulators of acetylcholine release from villus tissue. The nonselective agonist, morphine, also inhibits acetylcholine release. Inhibition caused by morphine is reversed by low concentrations of non-selective antagonists, naloxone and naltrexone. Naloxone at high concentrations potentiates the inhibition of acetylcholine release caused by morphine. In addition, the calcium channel blocker, diltiazem, was found to inhibit the release of acetylcholine. The combination of morphine and diltiazem resulted in a greater inhibition of acetylcholine release than by either alone. These results suggest that opiate cholinergic interactions occur in non-neural tissue with a mechanism similar to that known to occur at certain cholinergic synapses.  相似文献   

18.
T T Chau-Pham  G King  W L Dewey 《Life sciences》1978,23(12):1293-1299
The inhibitory potency of opiate agonists on the stereo-specific binding of 3H-dihydromorphine in mouse brain homogenates was not affected by the presence of sodium ions. That of pure antagonists was greatly enhanced by NaCl whereas the inhibitory effects of mixed agonist-antagonists were reduced by NaCl, indicating that sodium ions might affect the agonist component more than the antagonist component of narcotic-antagonist analgesics. The inhibitory potency of the opiates tested in our system agrees with their potency in reducing the stereospecific binding of 3H-naloxone to rat membranes, the contractions of co-axially stimulated guinea pig ileum and their analgesic potency in animals and humans.  相似文献   

19.
Ma Y  Yang M  Gao H  Niu G  Yan Y  Lang L  Kiesewetter DO  Chen X 《Amino acids》2012,43(4):1625-1632
An LC/MS method was used to evaluate 2-fluoropropionyl (FP) and 4-fluorobenzoyl (FB) modified bombsin peptides: GRPR agonist [Aca-QWAVGHLM-NH(2)] and antagonist [fQWAVGHL-NHEt], and their hydrophilic linker modified counterparts with the attachment of GGGRDN sequence. This study developed strategies to evaluate the in vitro receptor mediated cell uptake and metabolic profile of the various GRPR agonists and antagonists. We identified the metabolites produced by rat hepatocytes and quantitatively analyzed the uptake and internalization of the ligands in PC-3 human prostate cancer cells. The major metabolites of both GRPR agonists and antagonists were the result of peptide bond hydrolysis between WA and AV. The agonists also formed a unique metabolite resulting from hydrolysis of the C-terminal amide. The antagonists showed significantly higher stability against metabolism compared to the agonists in rat hepatocytes. The directly modified agonists (FP-BBN and FB-BBN) had higher internalization with similar cell binding compared to the unmodified agonist (BBN), whereas the hydrophilic linker modified agonists (G-BBN and FG-BBN) had much lower total cell uptake. The labeled antagonists (FP-NBBN, FB-NBBN, G-NBBN and FP-G-NBBN) displayed lower internalization. The optimal imaging agent will depend on the interplay of ligand metabolism, cellular uptake, and internalization in vivo.  相似文献   

20.
Summary Novel conformationally constrained opioid peptide analogs with δ antagonist, mixed μ agonist/δ antagonist or δ agonist properties were developed. TIP(P)-related δ antagonists showed unprecedented δ antagonist potency and δ receptor selectivity, and may have potential for use in analgesia in combination with μ agonists. A definitive model of their δ receptor-bound conformation was developed. Three prototype mixed μ agonist/δ antagonists were discovered. They represent the only known compounds with this pharmacological profile and, as expected, one of them was shown to be a potent analgesic and to produce no dependence and less tolerance than morphine. Novel dipeptide derivatives turned out to be potent and selective δ agonists. Because of their low molecular weight and lipophilic character, these compounds may cross the blood-brain barrier and, thus, may have potential as centrally acting analgesics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号