首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
During locomotion sensory information from cutaneous and muscle receptors is continuously integrated with the locomotor central pattern generator (CPG) to generate an appropriate motor output to meet the demands of the environment. Sensory signals from peripheral receptors can strongly impact the timing and amplitude of locomotor activity. This sensory information is gated centrally depending on the state of the system (i.e., rest vs. locomotion) but is also modulated according to the phase of a given task. Consequently, if one is to devise biologically relevant walking models it is imperative that these sensorimotor interactions at the spinal level be incorporated into the control system.  相似文献   

2.
The sequential stepping of left and right limbs is a fundamental motor behavior that underlies walking movements. This relatively simple locomotor behavior is generated by the rhythmic activity of motor neurons under the control of spinal neural networks known as central pattern generators (CPGs) that comprise multiple interneuron cell types. Little, however, is known about the identity and contribution of defined interneuronal populations to mammalian locomotor behaviors. We show a discrete subset of commissural spinal interneurons, whose fate is controlled by the activity of the homeobox gene Dbx1, has a critical role in controlling the left-right alternation of motor neurons innervating hindlimb muscles. Dbx1 mutant mice lacking these ventral interneurons exhibit an increased incidence of cobursting between left and right flexor/extensor motor neurons during drug-induced locomotion. Together, these findings identify Dbx1-dependent interneurons as key components of the spinal locomotor circuits that control stepping movements in mammals.  相似文献   

3.
Sensory activity contributes to motor control in two fundamentally different ways. It may mediate 'error signals' following sudden external perturbations and it may contribute to the pre-programmed motoneuronal drive. Here we review data, which illustrate these two functions of sensory feedback in relation to human walking. When ankle plantarflexors are unloaded in the stance phase there is a sudden decrease in the sensory activity in muscle and tendon afferents from the active muscles. This decrease in sensory activity results in a drop in EMG activity recorded from the soleus muscle, which demonstrates that the sensory activity contributes importantly to the activation of the muscles. Data suggests that a spinal pathway from gr. II muscle afferents is responsible for this positive feedback contribution to the motoneuronal drive during walking.When cutaneous nerves from the foot are stimulated in the early swing phase of walking a late reflex response may be observed in the tibialis anterior muscle. This reflex may help to ensure that the foot is lifted effectively over an obstacle. Data suggest that this reflex response is at least partly mediated by a transcortical reflex pathway. It seems to be important that reactions to external perturbations are integrated at a supraspinal level during human walking.  相似文献   

4.
Local nonspiking interneurons in the thoracic ganglia of insects are important premotor elements in posture control and locomotion. It was investigated whether these interneurons are involved in the central neuronal circuits generating the oscillatory motor output of the leg muscle system during rhythmic motor activity. Intracellular recordings from premotor nonspiking interneurons were made in the isolated and completely deafferented mesothoracic ganglion of the stick insect in preparations exhibiting rhythmic motor activity induced by the muscarinic agonist pilocarpine. All interneurons investigated provided synaptic drive to one or more motoneuron pools supplying the three proximal leg joints, that is, the thoraco-coxal joint, the coxa-trochanteral joint and the femur-tibia joint. During rhythmicity in 83% (n=67) of the recorded interneurons, three different kinds of synaptic oscillations in membrane potential were observed: (1) Oscillations were closely correlated with the activity of motoneuron pools affected; (2) membrane potential oscillations reflected only certain aspects of motoneuronal rhythmicity; and (3) membrane potential oscillations were correlated mainly with the occurrence of spontaneous recurrent patterns (SRP) of activity in the motoneuron pools. In individual interneurons membrane potential oscillations were associated with phase-dependent changes in the neuron's membrane conductance. Artificial changes in the interneurons' membrane potential strongly influenced motor activity. Injecting current pulses into individual interneurons caused a reset of rhythmicity in motoneurons. Furthermore, current injection into interneurons influenced shape and probability of occurrence for SRPs. Among others, identified nonspiking interneurons that are involved in posture control of leg joints were found to exhibit the above properties. From these results, the following conclusions on the role of nonspiking interneurons in the generation of rhythmic motor activity, and thus potentially also during locomotion, emerge: (1) During rhythmic motor activity most nonspiking interneurons receive strong synaptic drive from central rhythm-generating networks; and (2) individual nonspiking interneurons some of which underlie sensory-motor pathways in posture control, are elements of central neuronal networks that generate alternating activity in antagonistic leg motoneuron pools. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs’ wave-like activity lagged behind that of motoneurons by several segments. Thus, GVLIs are activated when the front of a forward motor wave reaches the second or third anterior segment. We propose that GVLIs are part of the feedback inhibition system that terminates motor activity once the front of the motor wave proceeds to anterior segments.  相似文献   

6.
Although the soleus muscle comprises only 6% of the ankle plantar flexor mass in the rat, a major role in stance and walking has been ascribed to it. The purpose of this study was to determine if removal of the soleus muscle would result in adaptations in the remaining gastrocnemius and plantaris muscles due to the new demands for force production imposed on them during stance or walking. A second purpose was to determine whether the mass or the fiber type of the muscle(s) removed was a more important determinant of compensatory adaptations. Male Sprague-Dawley rats underwent bilateral removal of soleus muscle, plantaris muscle, or both muscles. For comparison, compensatory hypertrophy was induced in soleus and plantaris muscles by gastrocnemius muscle ablation. After forty days, synergist muscles remaining intact were removed. Mass, and oxidative, glycolytic, and contractile enzyme activities were determined. Despite its role in stance and slow walking, removal of the soleus muscle did not elicit a measurable alteration in muscle mass, or in citrate synthase, lactate dehydrogenase, or myofibrillar ATPase activity in gastrocnemius or plantaris muscles. Similarly, removal of the plantaris muscle, or soleus and plantaris muscles, had no effect on the gastrocnemius muscle, suggesting that this muscle was able to easily meet the new demands placed on it. These results suggest that amount of muscle mass removed, rather than fiber type, is the most important stimulus for compensatory hypertrophy. They also suggest that slow-twitch motor units in the gastrocnemius muscle play an important role during stance and locomotion in the intact animal.  相似文献   

7.
The planar law of inter-segmental co-ordination we described may emerge from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle contraction intervenes at variable times to re-excite the intrinsic oscillations of the system when energy is lost. The hypothesis that a law of coordinative control results from a minimal active tuning of the passive inertial and viscoelastic coupling among limb segments is congruent with the idea that movement has evolved according to minimum energy criteria (1, 8). It is known that multi-segment motion of mammals locomotion is controlled by a network of coupled oscillators (CPGs, see 18, 33, 37). Flexible combination of unit oscillators gives rise to different forms of locomotion. Inter-oscillator coupling can be modified by changing the synaptic strength (or polarity) of the relative spinal connections. As a result, unit oscillators can be coupled in phase, out of phase, or with a variable phase, giving rise to different behaviors, such as speed increments or reversal of gait direction (from forward to backward). Supra-spinal centers may drive or modulate functional sets of coordinating interneurons to generate different walking modes (or gaits). Although it is often assumed that CPGs control patterns of muscle activity, an equally plausible hypothesis is that they control patterns of limb segment motion instead (22). According to this kinematic view, each unit oscillator would directly control a limb segment, alternately generating forward and backward oscillations of the segment. Inter-segmental coordination would be achieved by coupling unit oscillators with a variable phase. Inter-segmental kinematic phase plays the role of global control variable previously postulated for the network of central oscillators. In fact, inter-segmental phase shifts systematically with increasing speed both in man (4) and cat (38). Because this phase-shift is correlated with the net mechanical power output over a gait cycle (3, 4), phase control could be used for limiting the overall energy expenditure with increasing speed (22). Adaptation to different walking conditions, such as changes in body posture, body weight unloading and backward walk, also involves inter-segmental phase tuning, as does the maturation of limb kinematics in toddlers.  相似文献   

8.
9.
A new method for measuring and characterizing free-living human locomotion is presented. A portable device was developed to objectively record and measure foot-ground contact information in every step for up to 24h. An artificial neural network (ANN) was developed to identify the type and intensity of locomotion. Forty subjects participated in the study. The subjects performed level walking, running, ascending and descending stairs at slow, normal and fast speeds determined by each subject, respectively. The device correctly identified walking, running, ascending and descending stairs (accuracy 98.78%, 98.33%, 97.33%, and 97.29% respectively) among different types of activities. It was also able to determine the speed of walking and running. The correlation between actual speed and estimated speed is 0.98, p< 0.0001. The average error of walking and running speed estimation is -0.050+/-0.747 km/h (mean +/- standard deviation). The study has shown the measurement of duration, frequency, type, and intensity of locomotion highly accurate using the new device and an ANN. It provides an alternative tool to the use of a gait lab to quantitatively study locomotion with high accuracy via a small, light and portable device, and to do so under free-living conditions for the clinical applications.  相似文献   

10.
Antri M  Mellen N  Cazalets JR 《PloS one》2011,6(6):e20529
Although the mammalian locomotor CPG has been localized to the lumbar spinal cord, the functional-anatomical organization of flexor and extensor interneurons has not been characterized. Here, we tested the hypothesis that flexor and extensor interneuronal networks for walking are physically segregated in the lumbar spinal cord. For this purpose, we performed optical recordings and lesion experiments from a horizontally sectioned lumbar spinal cord isolated from neonate rats. This ventral hemi spinal cord preparation produces well-organized fictive locomotion when superfused with 5-HT/NMDA. The dorsal surface of the preparation was visualized using the Ca(2+) indicator fluo-4 AM, while simultaneously monitoring motor output at ventral roots L2 and L5. Using calcium imaging, we provided a general mapping view of the interneurons that maintained a stable phase relationship with motor output. We showed that the dorsal surface of L1 segment contains a higher density of locomotor rhythmic cells than the other segments. Moreover, L1 segment lesioning induced the most important changes in the locomotor activity in comparison with lesions at the T13 or L2 segments. However, no lesions led to selective disruption of either flexor or extensor output. In addition, this study found no evidence of functional parcellation of locomotor interneurons into flexor and extensor pools at the dorsal-ventral midline of the lumbar spinal cord of the rat.  相似文献   

11.
In order to understand the neural mechanisms of pheromone-oriented walking in male silkworm moths, Bombyxmori, we have characterized olfactory responses and three-dimensional structure of two clusters (Group-I, Group-II) of descending interneurons in the brain by intracellular recording and staining with lucifer yellow. Neurons were imaged with laser-scanning confocal microscopy. Group-I and Group-II descending interneurons were classified into three morphological types, respectively. In response to the sex pheromone, bombykol, Type-A Group-I descending interneurons showed characteristic flipflopping activity. The Group-I descending interneurons had dendritic arborizations in the lateral accessory lobe and varicose profiles in the posterior-lateral part of the suboesophageal ganglion where the dendritic arborizations of a neck motor neuron (i.e., cv1 NMN) reside. Other types of Group-I descending interneurons exhibited long-lasting suppression of firing. The pheromonal responses of Group-II descending interneurons fell into two classes: brief excitation and brief inhibition. Type-A Group-II descending interneurons showing brief excitation had blebby processes in the posterior-lateral part of the suboesophageal ganglion. Type-B and Type-C Group-II descending interneurons did not have varicose profiles there. Therefore, the neck motor neuron regulating head turning, which accompanies the pheromone-oriented walking, may be controlled by these two types, flipflop and phasic excitation, of descending activity patterns. Accepted: 2 November 1998  相似文献   

12.
Crickets exhibit oriented walking behavior in response to air-current stimuli. Because crickets move in the opposite direction from the stimulus source, this behavior is considered to represent ‘escape behavior’ from an approaching predator. However, details of the stimulus-angle-dependent control of locomotion during the immediate phase, and the neural basis underlying the directional motor control of this behavior remain unclear. In this study, we used a spherical-treadmill system to measure locomotory parameters including trajectory, turn angle and velocity during the immediate phase of responses to air-puff stimuli applied from various angles. Both walking direction and turn angle were correlated with stimulus angle, but their relationships followed different rules. A shorter stimulus also induced directionally-controlled walking, but reduced the yaw rotation in stimulus-angle-dependent turning. These results suggest that neural control of the turn angle requires different sensory information than that required for oriented walking. Hemi-severance of the ventral nerve cords containing descending axons from the cephalic to the prothoracic ganglion abolished stimulus-angle-dependent control, indicating that this control required descending signals from the brain. Furthermore, we selectively ablated identified ascending giant interneurons (GIs) in vivo to examine their functional roles in wind-elicited walking. Ablation of GI8-1 diminished control of the turn angle and decreased walking distance in the initial response. Meanwhile, GI9-1b ablation had no discernible effect on stimulus-angle-dependent control or walking distance, but delayed the reaction time. These results suggest that the ascending signals conveyed by GI8-1 are required for turn-angle control and maintenance of walking behavior, and that GI9-1b is responsible for rapid initiation of walking. It is possible that individual types of GIs separately supply the sensory signals required to control wind-elicited walking.  相似文献   

13.
Rhythmic activity is responsible for numerous essential motor functions including locomotion, breathing and chewing. In the case of locomotion, it has been realized for some time that the spinal cord contains sufficient circuitry to produce a sophisticated stepping pattern. However, the central pattern generator for locomotion in mammals has remained a ‘black box’ where inputs to the network were manipulated and the outputs interpreted. Over the last decade, new genetic approaches and techniques have been developed that provide ways to identify and manipulate the activity of classes of interneurons. The use of these techniques will be critically discussed and related to current models of network function.  相似文献   

14.
Modulation of limb dynamics in the swing phase of locomotion   总被引:6,自引:0,他引:6  
A method was presented for quantifying cat (Felis catus) hind limb dynamics during swing phase of locomotion using a two-link rigid body model of leg and paw, which highlighted the dynamic interactions between segments. Comprehensive determination was made of cat segment parameters necessary for dynamic analysis, and regression equations were formulated to predict the inertial parameters of any comparable cat. Modulations in muscle and non-muscle components of knee and ankle joint moments were examined at two treadmill speeds using three gaits: (a) pace-like walk and trot-like walk, at 1.0 ms-1, and (b) gallop, at 2.1 ms-1. Results showed that muscle and segment interactive moments significantly effected limb trajectories during swing. Some moment components were greater in galloping than in walking, but net joint maxima were not significantly different between speeds. Moment magnitudes typically were greater for pace-like walking than for trot-like walking at the same speed. Generally, across gaits, the net and muscle moments were in phase with the direction of distal joint motion, and these same moments were out of phase with proximal joint motion. Intersegmental dynamics were not modulated exclusively by speed of locomotion, but interactive moments were also influenced significantly by gait mode.  相似文献   

15.
The “walking backward” mode was achieved within a single model of cat hind-limb locomotion with the balance maintenance only due to a change in the controlling actions (in addition to the “forward walking” mode). The skeletal part of the model contains the spine, pelvis, and two limbs consisting of the thigh, shin, and foot. The hip joint and spine mount in the thoracic region have three degrees of freedom; the knee and ankle joints have one degree of freedom. The pelvis is rigidly connected to the spine. Control is performed by model muscles (flexors and extensors of the thigh, shin, and foot). The muscle activation is performed by the effects that are typical for motoneurons that control the muscles. The feet in the support phase touch the treadmill, which moves at a constant speed. The model qualitatively reproduces multiple characteristics of feline movements during forward and backward walking (supporting its validity).  相似文献   

16.
A brain-machine interface (BMI) is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking) could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics.  相似文献   

17.
Electromyographic studies of mammalian locomotion have concentrated on cursorial species. Since these may not be typical of mammals in general, the present study has been made on the relatively non-cursorial rat.
Electromyography has been performed on 20 muscles or muscle groups of the hind-limb in decerebrate rats, moving at from one to eight steps per second. All muscles were active in discrete bursts, with fixed phase relations in the step cycle. They can be categorized as flexors–active just before and during swing, extensors/adductors–active just before and during stance, muscles controlling the foot, and some double joint muscles. The latter, represented by semitendinosus and rectus femoris, tend to be active twice in each step cycle. There is a distinct reciprocity in the activities of these two muscles. The duration of the extensor/adductor activity decreases with increase of stepping speed.
The pattern of muscle activity during the step cycle is very similar in both cursorial species and the rat. This suggests that central nervous mechanisms controlling the timing of single limb motor output in mammals may be very conservative.  相似文献   

18.
T. Kimura 《Human Evolution》1991,6(5-6):377-390
The voluntary bipedal walking of infant chimpanzees was studied by the analysis of foot force and by motion analysis. The infants were trained to locomote on a level platform without any restrictions on the locomotor pattern. The voluntary bipedal walking was compared with the other types of locomotion at the same age and with the trained bipedal walking performed by other chimpanzees, including adult chimpanzees. The characteristics of voluntary bipedal walking in the infant until one year of age were: (1) high-speed walking with short cycle duration; (2) short stance phase duration; (3) small braking component of the preceding leg and large acceleration of the following leg; (4) one downward peak in the vertical component; and (5) a relatively small transverse component. Bipedal walking usually continued for less than one second and ended in quadrupedal locomotion. During walking, the preceding foot touched the floor, heel first, as in the case of older chimpanzees and humans. At this age, bipedal walking was similar to high-speed locomotion. The voluntary bipedal walking of the two-year-old and frour-yearold chimpanzees was characterized as follows: (1) slower speed than during quadrupedal locomotion, (2) relatively long periods and distances; (3) well balanced accelerating and braking components; and (4) a vertical component showing two downward peaks and a trough in between during numerous trials. The last characteristic means that the body center of gravity is higher in the single stance phase, just as in the bipedal walkinbg of the adult chimpanzees and humans. The bipedal walking of infant chimpanzees was discussed in comparison with the walking of humans, including infants.  相似文献   

19.
Butt SJ  Kiehn O 《Neuron》2003,38(6):953-963
Local neuronal networks that are responsible for walking are poorly characterized in mammals. Using an innovative approach to identify interneuron inputs onto motorneuron populations in a neonatal rodent spinal cord preparation, we have investigated the network responsible for left-right coordination of the hindlimbs. We demonstrate how commissural interneurons (CINs), whose axons traverse the midline to innervate contralateral neurons, are organized such that distinct flexor and extensor centers in the rostral lumbar spinal cord define activity in both flexor and extensor caudal motor pools. In addition, the nature of some connections are reconfigured on switching from rest to locomotion via a mechanism that might be associated with synaptic plasticity in the spinal cord. These results from identified pattern-generating interneurons demonstrate how interneuron populations create an effective network to underlie behavior in mammals.  相似文献   

20.
Neural networks in the spinal cord control two basic features of locomotor movements: rhythm generation and pattern generation. Rhythm generation is generally considered to be dependent on glutamatergic excitatory neurons. Pattern generation involves neural circuits controlling left-right alternation, which has been described in great detail, and flexor-extensor alternation, which remains poorly understood. Here, we use a mouse model in which glutamatergic neurotransmission has been ablated in the locomotor region of the spinal cord. The isolated in?vitro spinal cord from these mice produces locomotor-like activity-when stimulated with neuroactive substances-with prominent flexor-extensor alternation. Under these conditions, unlike in control mice, networks of inhibitory interneurons generate the rhythmic activity. In the absence of glutamatergic synaptic transmission, the flexor-extensor alternation appears to be generated by Ia inhibitory interneurons, which mediate reciprocal inhibition from muscle proprioceptors to antagonist motor neurons. Our study defines a minimal inhibitory network that is needed to produce flexor-extensor alternation during locomotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号